Book Review: The Comic Book Guide to Growing Food

If you’re new to gardening, starting a garden can be quite intimidating. The learning curve can seem steep and the barriers to entry can feel vast. Having a beautiful, productive garden like those you might see around your neighborhood can seem like an unreachable goal. What isn’t obvious when encountering nice gardens are the mistakes made, the lessons learned, and the years of trial and error that brought the garden and gardener to where they are now. Even the most experienced gardeners continue to fail and learn from those failures, which is part of what makes gardening such an exciting pursuit. The looming question for beginners, though, is where do I start?

Luckily, resources abound for new gardeners – from countless books and magazines, to YouTube videos and podcasts, to university and college courses and degrees. Easily one of the best places to start if you live in the United States are extension services of land-grant colleges and universities. One of their main reasons for existence is to help people grow successful gardens. But while the dream of having a garden is exciting, the information one needs to absorb in order to get there can be overwhelming. Rote learning of basic instructions presented in a dry way can turn people off from wanting to proceed, which is why I find Joseph Tychonievich and Liz Anna Kozik’s recent book, The Comic Book Guide to Growing Food, so refreshing. Just about everything can be made more entertaining when presented in comic book form, and gardening tutorials are no exception.

As with most comic books, The Comic Book Guide to Growing Food tells a story. Mia is a computer programmer who lives next to George, an avid gardener. One day, Mia finds George having trouble sending photos to his grandchildren. Mia offers to help; George reluctantly accepts. In return, George gifts Mia a basket of spring greens and daffodils from his garden, which prompts Mia to share her dream of one day having a garden. George jumps at the opportunity to help, and thus begins a new friendship and yearlong mentorship as George helps Mia start her first garden.

George guides Mia along each step of the way – from choosing a location in her yard, to deciding what to plant and when, to helping her deal with pests and diseases, to knowing what and when to harvest, and to, finally, encouraging her to throw a garden party to share her bounty with friends. Much more is explained along the way, often with George starting the conversation with, “The #1 rule of gardening…”, and Mia cringing at yet another #1 rule to remember.

Planting too early can be deadly for frost sensitive plants. Don’t be fooled by fake spring.

The story is simple and easy to follow, and the information is basic but solid. There are greater details to explore, but for a beginning gardener, this book is an excellent starting point. The resource section at the end of the book will get the reader to those greater details when they’re ready. I found George’s harvesting guide particularly useful. As a gardener living in the semi-arid Intermountain West, I had to laugh when George claimed that some years he doesn’t water his garden at all. A vegetable garden in our climate typically wouldn’t survive long without regular, supplemental irrigation. However, if you live in a region that reliably receives rain in the summer, watering may be unnecessary. Thankfully, there is a “Cheat Sheet” included in the book with a great flowchart to help you determine if and when to water.

Joseph provided the text for this book and is a skilled garden communicator, something he’s been doing for much of his life. Without his words, this book would not be the stand-out resource that it is. However, it was Liz’s artwork that sold me on this book. Having followed her work on twitter for a while now, I was thrilled to learn she had a book out. Much like Joseph’s lessons in gardening, Liz’s artwork is simple and approachable, yet accurate enough to recognize exactly what plant is being represented even without the finer details found in the botanical illustrations of many field guides. This book is honestly worth having just to be able to hold in your hands a collection of Liz’s beautiful artwork.

A selection of easy herbs to grow from The Comic Book Guide to Growing Food

Buy the book, but also check out the personal websites of the author and illustrator:

Winter Trees and Shrubs: Northern Catalpa

The names of plants often contain clues that can either help with identification or that tell something about the plant’s history or use. The name, catalpa, is said to be derived from the Muscogee word, katałpa, meaning “winged head,” presumably referring to the tree’s winged seeds. Or maybe, as one writer speculates, it refers to the large, heart-shaped, floppy leaves that can make it look like the tree is “ready to take flight.” Or perhaps it’s a reference to the fluted, fused petals of the tree’s large, tubular flowers. I suppose it could mean any number of things, but I’m sticking with its seeds, which are packed by the dozens in the tree’s long, slender, bean-like fruits. The seeds are flat, pale brown, and equipped with paper thin, fringed appendages on either side that assist in wind dispersal – wings, in other words.

winged seeds of northern catalpa (Catalpa speciosa)

Catalpa speciosa, or northern catalpa, is a relatively fast growing, short-lived tree native to the Midwest and one of only two species in the genus Catalpa found in the United States. Its distribution prior to the arrival of Europeans appears to have been restricted to a portion of the central Mississippi River valley, extending west into Arkansas, east into Tennessee, and north into Illinois and Indiana. It has since been widely planted outside of its native range, naturalizing in areas across the Midwest and eastern US. Early colonizers planted northern catalpa for use as fence posts, railroad ties, and firewood. Its popularity as an ornamental tree is not what it once was a century ago, but it is still occasionally planted in urban areas as a shade tree. Its messiness – littering the ground below with large leaves, flowers, and seed capsules – and its tendency to spread outside of cultivation into natural areas are reasons why it has fallen out of favor with some people.

The oval to heart-shaped, 8 to 12 inch long leaves with long petioles rotting on the ground below the tree are one sure sign that you’ve encountered a catalpa in the winter time. The leaves are some of the first to fall at the end of the growing season, briefly turning an unmemorable yellow before dropping.

leaf of northern catalpa (Catalpa speciosa) in the winter with soft hairs on the underside still visible

The leaf arrangement on northern catalpa is whorled and sometimes opposite. The twigs are easy to identify due to several unique features. They are stout, round, and grayish brown with prominent lenticels. The leaf scars are large, rounded, and raised up on the twig, looking a bit like little suction cups. They are arranged in whorls of three, with one scar considerably smaller than the other two. A series of bundle traces inside the scar form an ellipse. The leaf buds are tiny compared to the scar and are protected by loose, pointed, brown bud scales. Northern catalpa twigs lack a terminal bud. In the winter, seed capsules or the stalk of an old inflorescence often remain attached to the terminal end of the twig. The pith inside of the twig is thick, white, and solid.

twig of northern catalpa (Catalpa speciosa)

pith inside twig of northern catalpa (Catalpa speciosa)

Another common name for Catalpa speciosa is cigar tree, a name that comes from its up to 18 inch long, cigar-like seed capsules that hang from the otherwise naked tree throughout the winter. The sturdy, cylindrical pod starts out green in the summer and turns dark brown by late fall. Seed pods that haven’t fallen or already split open will dehisce in the spring time, releasing their papery seeds to the wind.

fruits of northern catalpa (Catalpa speciosa) hanging from the tree in the winter

The young bark of northern catalpa is thin and easily damaged. As it matures, it becomes furrowed with either scaly ridges or blocky plates. Mature trees are generally twisted at the base but otherwise grow straight, reaching 30 to 60 feet tall (sometimes taller) with an open-rounded to narrow-oval crown.

maturing bark of northern catalpa (Catalpa speciosa)

Northern catalpa is one of the last trees to leaf out in the spring. In late spring or early summer, 10 inch long clusters of white, tubular flowers are produced at the tips of stems. Before the flowers open, they look a bit like popped popcorn, reminding me of a song from my childhood (which I will reluctantly leave right here). The margins of its trumpet-shaped petals are ruffled and there is yellow, orange, and/or purple spotting or streaking on the inside of the tubes.

flower of northern catalpa (Catalpa speciosa) just before it opens

More Winter Trees and Shrubs on Awkward Botany:

Winter Trees and Shrubs: Netleaf Hackberry

Boise, Idaho is frequently referred to as the City of Trees despite being located in a semiarid region of the Intermountain West known as the sagebrush steppe where few trees naturally grow. It earns this moniker partly because the name Boise is derived from the river that runs through it (the Boise River), which was named La Rivere Boisse, or The Wooded River, by early French trappers. Although it flows through a largely treeless landscape, The Wooded River was an apt name on account of the wide expanse of cottonwoods and willows that grew along its banks. The fervent efforts of early colonizers to plant trees in large numbers across their new city also helped Boise earn the title, City of Trees. Today, residents continue the legacy of planting trees, ensuring that the city will remain wooded for decades to come.

As is likely the case for most urban areas, the majority of trees being planted in Boise are not native to the region. After all, very few tree species are. However, apart from the trees that flank the Boise River, there is one tree in particular that naturally occurs in the area. Celtis reticulata, commonly known as netleaf hackberry, can be found scattered across the Boise Foothills amongst shrubs, bunchgrasses, and wildflowers, taking advantage of deep pockets of moisture found in rocky outcrops and draws.

The western edge of netleaf hackberry’s range extends to the northwest of Boise into Washington, west into Oregon, and down into California. The majority of its range is found south of Idaho, across the Southwest and into northern Mexico, then east into the prairie regions of Kansas and Oklahoma. Previously placed in the elm family, it is now considered a member of the family Cannabaceae (along with hemp and hops). It’s a relatively small, broad tree (sometimes a shrub) with a semi-rounded crown. It grows slowly, is long-lived, and generally has a gnarled, hardened, twisted look to it. It’s a tough tree that has clearly been through a lot.

The leaves of Celtis reticulata are rough, leathery, and oval to lance shaped with serrate or entire leaf margins. Their undersides have a distinct net-like pattern that gives the tree its common name. A very small insect called a hackberry psyllid lays its eggs inside the leaf buds of netleaf hackberries in the spring. Its larvae develop inside the leaf, feeding on the sugars produced during photosynthesis, and causing nipple galls to form in the leaves. It’s not uncommon to see a netleaf hackberry with warty-looking galls on just about every leaf. Luckily, the tree doesn’t seem to be bothered by this.

fallen leaves of netleaf hackberry (Celtis reticulata) with nipple galls

The fruit of netleaf hackberry is a pea-sized drupe that hangs at the end of a pedicel that is 1/4 to 1/2 inch long. Its skin is red-orange to purple-brown, and its flesh is thin with a large seed in the center. The fruits, along with a few random leaves, persist on the tree throughout the winter and provide food for dozens of species of birds and a variety of mammals.

persistent fruit of netleaf hackberry (Celtis reticulata)

Celtis reticulata is alternately branched. Its twigs are slender, zig-zagging, and often curved back towards the trunk. They are reddish-brown with several pale lenticels and have sparse, fine, short hairs that are hard to see without a hand lens. The leaf scars are small, half-round, and raised up from the twig. They have three bundle scars that form a triangle. The buds are triangle-shaped with fuzzy bud scales that are slightly lighter in color than the twig. The twigs are topped with a subterminal bud, and the pith (the inner portion of the twig) is either chambered or diaphragmed and difficult to see clearly without a hand lens. 

twigs of netleaf hackberry (Celtis reticulata)

The young bark of netleaf hackberry is generally smooth and grey, developing shallow, orange-tinged furrows as it gets older. Mature bark is warty like its cousin, Celtis occidentals, and develops thick, grey, corky ridges. Due to its slow growth, the bark can be retained long enough that it becomes habitat for extensive lichen colonies.

bark of young netleaf hackberry (Celtis reticulata)

bark of mature netleaf hackberry (Celtis reticulata)

Netleaf hackberry is one of the last trees to leaf out in the spring, presumably preserving as much moisture as possible as it prepares to enter another scorching hot, bone-dry summer typical of the western states. Its flowers open around the same time and are miniscule and without petals. Their oversized mustache-shaped, fuzzy, white stigmas provide some entertainment for those of us who take the time to lean in for a closer look.

spring flowers of netleaf hackberry (Celtis reticulata)

More Winter Trees and Shrubs on Awkward Botany:

———————

Photos of netleaf hackberry taken at Idaho Botanical Garden in Boise, Idaho.

Dispersal by Bulbils – A Bulbous Bluegrass Story

The main way that a plant gets from place to place is in the form of a seed. As seeds, plants have the ability to travel miles from home, especially with the assistance of outside forces like wind, water, and animals. They could also simply drop to the ground at the base of their parent plant and stay there. The possibilities are endless, really.

But what about plants that don’t even bother making seeds? How do they get around? In the case of bulbous bluegrass, miniature bulbs produced in place of flowers function exactly like seeds. They are formed in the same location as seeds, reach maturity and drop from the plant just like seed-bearing fruits, and are then dispersed in the same ways that seeds are. They even experience a period of dormancy similar to seeds, in that they lie in wait for months or years until the right environmental conditions “tell” them to sprout. And so, bulbils are basically seeds, but different.

bulbous bluegrass (Poa bulbosa)

Bulbous bluegrass (Poa bulbosa) is a Eurasian native but is widely distributed outside of its native range having been repeatedly spread around by humans both intentionally and accidentally. It’s a short-lived, perennial grass that can reach up to 2 feet tall but is often considerably shorter. Its leaves are similar to other bluegrasses – narrow, flat or slightly rolled, with boat-shaped tips and membranous ligules – yet the plants are easy to distinguish thanks to their bulbous bases and the bulbils that form in their flower heads. Their bulbous bases are actually true bulbs, and bulbous bluegrass is said to be the only grass species that has this trait. Just like other bulb-producing plants, the production of these basal bulbs is one way that bulbous bluegrass propagates itself.

basal bulbs of bulbous bluegrass

Bulbous bluegrass is also propagated by seeds and bulbils. Seeds form, like any other plant species, in the ovary of a pollinated flower. But sometimes bulbous bluegrass doesn’t make flowers, and instead modifies its flower parts to form bulbils in their place. Bulbils are essentially tiny, immature plants that, once separated from their parent plant, can form roots and grow into a full size plant. The drawback is that, unlike with most seeds, no sexual recombination has occurred, and so bulbils are essentially clones of a single parent.

The bulbils of bulbous bluegrass sit atop the glumes (bracts) of a spikelet, which would otherwise consist of multiple florets. They have dark purple bases and long, slender, grass-like tips. Bulbils are a type of pseudovivipary, in that they are little plantlets attached to a parent plant. True vivipary occurs when a seed germinates inside of a fruit while still attached to its parent.

Like seeds, bulbils are small packets of starch and fat, and so they are sought ought by small mammals and birds as a source of food. Ants and small rodents are said to collect and cache the bulbils, which is one way they get dispersed. Otherwise, the bulbils rely mostly on wind to get around. They then lie dormant for as long as 2 or 3 years, awaiting the ideal time to take root.

bulbils of bulbous bluegrass

Bulbous bluegrass was accidentally brought to North America as a contaminant in alfalfa and clover seed. It was also intentionally planted as early as 1907 and has been evaluated repeatedly by the USDA and other organizations for use as a forage crop or turfgrass. It has been used in restoration to stabilize soils and reduce erosion. Despite numerous trials, it has consistently underperformed mainly due to its short growth cycle and long dormancy period. It is one of the first grasses to green up in the spring, but by the start of summer it has often gone completely dormant, limiting its value as forage and making for a pretty pathetic turfgrass. Otherwise, it’s pretty good at propagating itself and persisting in locations where it hasn’t been invited and is now mostly considered a weed – a noxious one at that according to some states. Due to its preference for dry climates, it is found most commonly in western North America.

In its native range, bulbous bluegrass frequently reproduces sexually. In North America, however, sexual reproduction is rare, and bulbils are the most common method of reproduction. Prolific asexual reproduction suggests that bulbous bluegress populations in North America should have low genetic diversity. Researchers set out to examine this by comparing populations found in Washington, Oregon, and Idaho. Their results, published in Northwest Science (1997), showed a surprising amount of genetic variation within and among populations. They concluded that multiple introductions, some sexual reproduction, and the autopolyploidy nature of the species help explain this high level of diversity.

———————

Interested in learning more about how plants get around? Check out the first issue of our new zine Dispersal Stories.

Eating Weeds: Blue Mustard

Spring is here, and it’s time to start eating weeds again. One of the earliest edible weeds to emerge in the spring is Chorispora tenella, commonly known by many names including blue mustard, crossflower, and musk mustard. Introduced to North America from Russia and southwestern Asia, this annual mustard has become commonplace in disturbed areas, and is particularly fond of sunny, dry spots with poor soil. It can become problematic in agricultural areas, but to those who enjoy eating it, seeing it in large quantities isn’t necessarily viewed as a problem.

rosettes of blue mustard (Chorispora tenella)

The plant starts off as a rosette. Identifying it can be challenging because the shape of the leaves and leaf margins can be so variable. Leaves can either be lance-shaped with a rounded tip or more of an egg shape. Leaf margins are usually wavy and can be deeply lobed to mildly lobed or not lobed at all. Leaves are semi-succulent and usually covered sparsely in sticky hairs, a condition that botanists refer to as glandular.

A leafy flower stalk rises from the rosette and reaches between 6 and 18 inches tall. Like all plants in the mustard family, the flowers are four-petaled and cross-shaped. They are about a half inch across and pale purple to blue in color. Soon they turn into long, slender seed pods that break apart into several two-seeded sections. Splitting apart crosswise like a pill capsule rather than lengthwise is an unusual trait for a plant in the mustard family.

blue mustard (Chorispora tenella)

Multiple sources comment on the smell of the plant. Weeds of North America calls it “ill-scented.” Its Wikipedia entry refers to it as having “a strong scent which is generally considered unpleasant.” The blog Hunger and Thirst comments on its “wet dish rag” smell, and Southwest Colorado Wildflowers claims that its “peculiar odor” is akin to warm, melting crayons. Weeds of the West says it has a “disagreeable odor,” and warns of the funny tasting milk that results when cows eat it. All this to say that the plant is notorious for smelling bad; however, I have yet to detect the smell. My sense of smell isn’t my greatest strength, which probably explains why I’m not picking up the scent. It could also be because I haven’t encountered it growing in large enough quantities in a single location. Maybe I’m just not getting a strong enough whiff.

Regardless of its smell, for those of us inclined to eat weeds, the scent doesn’t seem to turn us away. The entire plant is edible, but the leaves are probably the part most commonly consumed. The leaves are thick and have a mushroom-like taste to them. They also have a radish or horseradish spiciness akin to arugula, a fellow member of the mustard family. I haven’t found them to be particularly spicy, but I think the spiciness depends on what stage the plant is in when the leaves are harvested. I have only eaten the leaves of very young plants.

The leaves are great in salads and sandwiches, and can also be sauteed, steamed, or fried. I borrowed Backyard Forager’s idea and tried them in finger sandwiches, because who can resist tiny sandwiches? I added cucumber to mine and thought they were delicious. If you’re new to eating weeds, blue mustard is a pretty safe bet to start with – a gateway weed, if you will.

blue mustard and cucumber finger sandwiches

For more information about blue mustard, go here.

Eating Weeds 2018:

Tiny Plants: Idahoa

This is a post I wrote three years ago as a guest writer for a blog called Closet Botanist. That blog has since dissolved, hence the re-post.

This year, we returned to the location in the Boise Foothills where I encountered the plant that inspired this post. I found what might be seedlings of the tiny plant. If that’s the case, the phenology is a bit delayed compared to three years ago. I’ll check again in a week or so. Until then, meet Idahoa.

———————

I have taken a real liking to tiny plants. So many of the plants we regularly interact with are relatively big. Large trees loom above us. Tall shrubs greet us at eye level. Flowering perennials come up around our knees or higher. But how often do we get down low and observe the plants that hug the ground or that reach just a few centimeters above it? Turf grass is ubiquitous and groundcovers are common, but among such low growing plants (or plants kept low), even more diminutive species lurk.

It was a hunt for a tiny plant that sent me down a certain trail in the Boise Foothills earlier this spring. Listening to a talk by a local botanist at an Idaho Native Plant Society meeting, I learned about Idahoa scapigera. A genus named after Idaho!? I was immediately intrigued. Polecat Gulch was the place to see it, so off I went.

Commonly known as oldstem idahoa, flatpod, or Scapose scalepod, Idahoa scapigera is the only species in its genus. It is an annual plant in the mustard family, which means it is related to other small, annual mustard species like Draba verna. It is native to far western North America and is distributed from British Columbia down to California and east into Montana. It occurs in a variety of habitat types found in meadows, mountains, and foothills.

Idahoa scapigera is truly tiny. Before it flowers, it forms a basal rosette of leaves that max out at about 3 centimeters long. Next it sends up several skinny flower stalks that reach maybe 10 centimeters high (some are much shorter). One single flower is born atop each stalk. Its petite petals are white and are cupped by red to purple sepals. Its fruit is a flat round or oblong disk held vertically as though it is ready to give neighboring fruits a high five. Happening upon a patch of these plants in fruit is a real joy.

Which brings me to my hunt. It was the morning of March 20th (the first day of Spring) when I headed down the Polecat Gulch trail in search of Idahoa, among other things. The trail forms a loop around the gulch and is about 6 miles long with options for shortening the loop by taking trails that cut through the middle. I have yet to make it all the way around. Stopping every 10 yards to look at plants, insects, and other things makes for slow hiking.

I was about a half mile – 1 hour or more – into the hike when Idahoa entered my view. A group of them were growing on the upslope side of the trail, greeting me just below waist level. Many of them had already finished flowering and had fresh green fruits topping their thin stalks. At this location they are a late winter/early spring ephemeral. I made a mental note of the site and decided to return when the fruits had matured. Next year, I will head out earlier in hopes of catching more of them in flower.

On the way to Idahoa, I noted numerous other small, green things growing in the sandy soil. It turns out there are countless other tiny plants to see and explore. It got me thinking about all the small things that go unnoticed right underneath our feet or outside of our view. I resolved to move slower and get down lower to observe the wonders I’ve been overlooking all this time.

Further Reading:

Field Trip: Utah State University Botanical Center

usu bc sign

Last month I was in Utah visiting family, so I took the opportunity to check out the Utah State University Botanical Center in Kaysville. Located along Interstate 15, it’s hard to miss, and yet I had never visited despite having driven past it numerous times. Of course, March is not the ideal time to visit a botanical garden in Utah. Spring was in the air, but the garden still had a lot of waking up to do. Regardless it was fun to check the place out and imagine what it might have to offer in its prime.

The vision of the USU Botanical Center is “to guide the conservation and wise use of plant, water, and energy resources through research-based educational experiences, demonstrations, and technologies.” Some of the demonstration gardens are located alongside a series of ponds that are stocked with fish and are home to wetland bird species and other wildlife.  Next door to the ponds is the Utah House, a demonstration house modeling energy efficient design and construction along with other sustainable practices. The landscaping surrounding the Utah House, apart from the vegetable garden, consists mainly of drought-tolerant plants.

Utah State University has recently acquired some neighboring land and is in the process of expanding their demonstration gardens and arboretum. I enjoyed my brief visit (particularly the time I spent watching the ducks) and will make it a point to stop again, both during a warmer time of year and as the gardens continue to expand.

Sumac

The fruits of smooth sumac (Rhus glabra)

Pinus heldreichii 'green bun'

Dwarf Bosnian Pine (Pinus heldreichii ‘Green Bun’)

Daphne x burkwoodii 'carol mackie'

Carol Mackie Daphne (Daphne x burkwoodii ‘Carol Mackie’)

Amelanchier alnifolia leafing out

Saskatoon serviceberry leafing out (Amelanchier alnifolia)

Physocarpus opulifolius 'Dart's Gold'

Dart’s Gold Ninebark (Physocarpus opulifolius ‘Dart’s Gold’)

Aprium blossoms

Aprium blossoms – 75% apricot, 25% plum

green roof

Green roof on a shed near the Utah House

ducks!

The wetlands at USU Botanical Center offer a great opportunity to teach the public about the importance of wetland habitat and wetland conservation. Signage informs visitors that despite the fact that wetlands and riparian areas only make up 1% of Utah, 80% of Utah’s wildlife use such areas at some point during their life. Learn more here.

What botanical gardens are you visiting this spring? Leave your travelogues and recommendations in the comments section below.

Vines for Spring

I’m taking a break from writing a regular post this time around. It’s the first week of spring, and there is a lot going on. I hope you are getting outside and enjoying the warmer weather (at least those of you in the northern hemisphere anyway). It was a pretty mild winter in my neck of the woods, but that doesn’t diminish my excitement when I see plants start to flower and leaf out. The gray days of winter are largely behind us, and holing up in my cave of an apartment is suddenly less appealing.

What I have for you this week are some short video clips. I recently joined Vine, a short-form, video-sharing social media site where each post is a six second, looped video. I’m late to the scene as usual, but I’ve been having fun messing around with it. The following videos are some of my first attempts (and lousy ones at that); if I decide to stick with it you can expect better content. If you’re interested in this sort of thing, please join, follow, favorite, share, like, comment, etc. Regardless, I hope you will find time to pry yourself away from a screen and experience nature during this beautiful and singular time of year.

 

 

 

 

Awkward Botany is also on Twitter and Tumblr, so feel free to follow me there too if you would like. Happy Spring!

Book Review: Jade Pearls and Alien Eyeballs

The spring season for plant-obsessed gardeners is a time to prepare to grow something new and different – something you’ve never tried growing before. Sure, standards and favorites will make an appearance, but when you love plants for plant’s sake you’ve got to try them all, especially the rare and unusual ones – the ones no one else is growing. Even if it ultimately turns out to be a disaster or a dud, at least you tried and can say you did.

That seems to be the spirit behind Jade Pearls and Alien Eyeballs by Emma Cooper. Subtitled, “Unusual Edible Plants and the People Who Grow Them,” Cooper’s book is all about trying new plants, both in the garden and on your plate. While its focus is on the rare and unusual, it is not a comprehensive guide to such plants – a book like that would require several volumes – rather it is a treatise about trying something different along with a few recommendations to get you started.

jadepearls_cover

Cooper starts out by explaining what she means by “unusual edible” – “exotic, old-fashioned, wild, or just plain weird.” Her definition includes plants that may be commonly grown agriculturally but may not make regular appearances in home gardens. She goes on to give a brief overview of plant exploration throughout history, highlighting the interest that humans have had for centuries – millennia even – in seeking out new plants to grow. She acknowledges that, in modern times, plant explorations have shifted from simply finding exotic species to bring home and exploit to cataloging species and advocating for their conservation in the wild. Of course, many of these explorations are still interested in finding species that are useful to humans or finding crop wild relatives that have something to offer genetically.

Cooper then includes more than 2o short interviews of people who are growers and promoters of lesser known edible plants. The people interviewed have much to offer in the way of plant suggestions and resource recommendations; however, this part of the book was a bit dull. Cooper includes several pages of resources at the end of the book, and many of the interviewees suggest the same plants and resources, so this section seemed redundant. That being said, there are some great responses to Cooper’s questions, including Owen Smith’s argument for “citizen-led research and breeding projects” and James Wong’s advise to seek out edible houseplants.

The remainder of the book is essentially a list of the plants that Cooper suggests trying. Again, it is not a comprehensive list of the unusual plants one could try, nor it is a full list of the plants that Cooper would recommend, but it is a good starting point. Cooper offers a description of each plant and an explanation for why it is included. The list is separated into seven categories: Heritage and Heirloom Plant Varieties, Forgotten Vegetables, The Lost Crops of the Incas, Oriental Vegetables, Perennial Pleasures, Unusual Herbs, and Weeds and Wildings.

This is the portion of the book that plant geeks are likely to find the most compelling. It is also where the reader learns where the title of the book comes from – “jade pearls” is another common name for Chinese artichoke (Stachys affinis), and “alien eyeballs” is Cooper’s name for toothache plant (Acmella oleracea). I have tried a few of the plants that Cooper includes, and I was intrigued by many others, but for whatever reason the two that stood out to me as the ones I should try this year were Hamburg parsley (Petroselinum crispum var. tuberosum) and oca (Oxalis tuberosa).

Tubers of oca (Oxalis tuberosa) - photo credit: wikimedia commons

Tubers of oca (Oxalis tuberosa) – photo credit: wikimedia commons

In the final chapter, Cooper offers – among other things – warnings about invasive species (“our responsibility is to ensure that the plants we encourage in our gardens stay in our gardens and are not allowed to escape into our local environment”), import restrictions (“be a good citizen and know what is allowed in your country [and I would add state/province], what isn’t, and why”), and wild harvesting (“act sustainably when foraging”). She then includes several pages of books and websites regarding unusual edibles and a long list of suppliers where seeds and plants can be acquired. Cooper is based in the U.K., so her list of suppliers is centered in that region, but a little bit of searching on the internet and asking around in various social media, etc. should help you develop a decent list for your region. International trades or purchases are an option, but as Cooper advises, follow the rules that are in place for moving plant material around.

Bottom line: find some interesting things to grow this year, experiment with things you’ve never tried – even things that aren’t said to grow well in your area – and if you’re having trouble deciding what to try or you just want to learn more about some interesting plants, check out Emma Cooper’s book.

Also, check out Emma Cooper’s blog and now defunct podcast (the last few episodes of which explore the content of this book).

Are you interested in writing a book review for Awkward Botany or helping out in some other way? If so, go here.

Texas State Flower

The state flower of Texas blooms in early spring. At least most of them do anyway. Some don’t bloom until late spring and others bloom in the summer. The reason for the staggered bloom times is that the state flower of Texas is not one species but six. All are affectionately referred to as bluebonnets and all are revered by Texans.

As the story goes, at the beginning of the 20th century the Texas legislature set out to determine which flower should represent their state. One suggestion was the cotton boll, since cotton was a major agricultural crop at the time. Another suggestion was a cactus flower, because cacti are common in Texas, are long-lived, and have very attractive flowers. A group of Texas women who were part of the National Society of Colonial Dames of America made their pitch for Lupinus subcarnosus, commonly known as buffalo clover or bluebonnet. Ultimately, the nomination from the women’s group won out, and bluebonnets became an official state symbol.

The debate didn’t end there though. Many people thought that the legislature had selected the wrong bluebonnet, and that the state flower should be Lupinus texensis instead. Commonly known as Texas bluebonnet, L. texensis is bigger, bolder, and more abundant than the comparatively diminutive L. subcarnosus. This debate continued for 70 years until finally the legislature decided to solve the issue by including L. texensis “and any other variety of bluebonnet not heretofore recorded” as the state flower of Texas.

Lupinus texensis - Texas bluebonnet

Lupinus texensis (Texas bluebonnet) bravely growing in Idaho

According to Mr. Smarty Plants, the list of Texas state flowers includes (in addition to the two already mentioned)  L. perennis, L. havardii, L. plattensis, and L. concinnus. Most on this list are annuals, and all are in the family Fabaceae – the pea family. Plants in this family are known for their ability to convert atmospheric nitrogen into plant available nitrogen with the help of a soil dwelling bacteria called rhizobia. The genus Lupinus includes over 200 species, most of which are found in North and South America. Others occur in North Africa and the Mediterranean. Plants in this genus are popular in flower gardens, and there are dozens of commercially available hybrids and cultivars.

L. subcarnosus is sometimes referred to as sandy land bluebonnet and occurs mainly in sandy fields and along roadsides. L. texensis is a Texas endemic; its native range includes the prairies and open fields of north and south central Texas. It is now found throughout Texas and bordering states due to heavy roadside plantings. L. perennis is the most widespread Texas bluebonnet, occurring throughout the eastern portion of the U.S. growing in sand hills, woodland clearings, and along roadsides. L. havardii is the largest of the Texas bluebonnets. It has a narrow range, and is found in a variety of soil types.  L. plattensis is a perennial species and occurs in the sandy dunes of the Texas panhandle. L. concinnus is the smallest of the Texas bluebonnets and is found mainly in sandy, desert areas as well as some grasslands.

Lupinus concinnus (...) - photo credit: www.eol.org

Lupinus concinnus (Nipomo Mesa lupine) – photo credit: www.eol.org

A legend surrounds the rare pink bluebonnet.

A legend surrounds the rare pink bluebonnet

Read more about Texas bluebonnets here and here.

“I want us to know our world. If I lived in north Georgia on up through the Appalachians, I would be just as crazy about the mountain laurel as I am about bluebonnets.” – Lady Bird Johnson