Eating Weeds: Cleavers Coffee

One of the world’s most beloved beverages comes from a species of plant found in the fourth largest family of flowering plants. Rubiaceae, also known as the coffee or bedstraw family, consists of around 13,500 species, placing it behind just Asteraceae, Orchidaceae, and Fabaceae for the most number of species. Coffea arabica, and other species in the genus Coffea, are grown for their fruits which are used to make coffee. This makes Rubiaceae one of the most economically important plant families. A family this size is bound to be home to a weed or two, and in fact, one of the most widespread and obnoxious weeds is also a member of Rubiaceae.

Galium aparine, known commonly by a slew of names including cleavers, occurs naturally across large portions of Europe, Asia, North Africa, and possibly even parts of North America. It has been introduced as a weed in many locations across North America, South America, Australia, New Zealand, Japan, and parts of Africa. It is of particular concern in agricultural settings where its lengthy, sprawling branches and sticky leaves get tangled up in harvesting equipment, while its tiny, prickly fruits get mixed in with seeds of similar size like canola.

Galium aparine

Sticky willy, as it is also known, is an annual plant that, in some cases, can have two generations per year – one in the spring (having germinated the previous fall) and one in the summer. Its stems are square, though not as sharply square as plants in the mint family, and can grow to around six feet long. They are weak, brittle, and don’t stand upright on their own; instead they are found scrambling across the ground or, when given the opportunity, climbing up the lengths of other plants in order to reach the sunlight. Leaves occur in whorls of six to eight and are simple and slender with entire margins. Flowers are produced at leaf axils along the lengths of the branches and are tiny, four-petaled, star-shaped, and greenish white. Fruits are borne in pairs and are round, single-seeded, indehiscent nutlets. The stems, leaves, and fruits are covered in stiff, hooked hairs or trichomes, earning it other names like catchweed bedstraw, grip grass, stickyweed, and velcro plant.

flowers and immature fruit on Galium aparine

Galium aparine is a climbing plant, but unlike other climbing plants, it doesn’t twine up things or produce structures like tendrils to hold itself up. Instead, its ability to climb is made possible by its abundant bristly hairs. A paper published in Proceedings of the Royal Society B (2011) investigates the way G. aparine climbs up other plants using the hairs on its leaves. A close inspection of the leaves reveals that the trichomes on the top of the leaf (the adaxial leaf surface) differ significantly from those found on the bottom of the leaf (the abaxial leaf surface). Adaxial trichomes curve towards the tip of the leaf, are hardened mainly at the tip, and are evenly distributed across the leaf surface. Abaxial trichomes curve towards the leaf base, are hardened throughout, and are found only on the midrib and leaf margins.

Having different types of hairs on their upper and lower leaf surfaces gives cleavers an advantage when it comes to climbing up neighboring plants. The authors of the paper describe the technique as a “ratchet mechanism.” When the upper surface of their leaf makes contact with the lower surface of another plant’s leaf, the flexible, outwardly hooked trichomes inhibit it from slipping further below the leaf and allow it to easily slide out from underneath it. When the lower surface of their leaf makes contact with the upper surface of another plant’s leaf, the stiff, inwardly hooked trichomes keep it attached to the leaf even if the other leaf starts to slip away and allows it to advance further across the leaf for better attachment and coverage. Using this ratchet mechanism, cleavers climb up the leaves of other plants, keeping their leaves above the other plant’s leaves, which gives them better access to sunlight. The basal stems of cleavers are highly flexible, which keeps them from breaking as the plant sways in the wind, tightly attached to their “host” plant.

fruits of Galium aparine

The hooked trichomes on the tiny fruits of cleavers readily attach to the fur and clothing of passing animals. The nutlets easily break free from the plants and can be transported long distances. They can also be harvested and made into a lightly caffeinated tea. Harvesting the fruit takes time and patience. I spent at least 20 minutes trying to harvest enough fruits for one small cup of cleavers coffee. The fruits don’t ripen evenly, and while I tried to pick mostly ripe fruits, I ended up with a selection of fruits in various stages of ripeness.

To make cleavers coffee, first toast the seeds for a few minutes in a pan heated to medium high, stirring them frequently. Next, grind them with a mortar and pestle and place the grinds in a strainer. Proceed as you would if you were making tea from loose leaf tea.

The toasted fruits and resulting tea should smell similar to coffee. The smell must not be strong, because my poor sense of smell didn’t really pick up on it. The taste is coffee-like, but I thought it was more similar to black tea. Sierra tried it and called it “a tea version of coffee.” If the fruits were easier to collect, I could see myself making this more often, but who has the time?

The leaves and stems of Galium aparine are also edible, and the plant is said to be a particular favorite of geese and chickens, bringing about yet another common name, goosegrass. In the book Weeds, Gareth Richards discusses the plant’s edibility: “It’s edible for humans but not that pleasant to eat; most culinary and medicinal uses center around infusing the plant in liquids.” Cooking with the leaves or turning them into some sort of spring tonic is something I’ll consider for a future post about eating cleavers.

More Eating Weeds Posts on Awkward Botany

Weeds of Boise: Hellstrip on Jefferson Street

Growing plants in urban areas comes with a variety of challenges. Soil conditions aren’t always ideal; shade thrown by buildings and other structures can be difficult to work around; paved surfaces lead to compaction and, among other things, can increase temperatures in the immediate area; and in locations where water is limited, keeping plants hydrated is a constant concern. One location that tends to be especially difficult for gardeners is the hellstrip – the section of ground between a roadway and a sidewalk. Much can be said about gardening in hellstrips, so much that there is even a book about it called Hellstrip Gardening by Evelyn Hadden, which I spent several posts reviewing a few years back.

The difficulty of maintaining a hellstrip (and perhaps questions about who is responsible for maintaining it in the first place) can result in it being a piece of property frequently subject to neglect. In urban areas, neglected land is the perfect place for weeds to take up residence. The conditions in a hellstrip being what they are – hot, dry, frequently trampled, and often polluted – also gives weeds a chance to show what they can do. It’s a wonder that any plant can survive in such conditions, but the wild flora of our cities consists of some pretty tough plants, and a hellstrip is an excellent location to familiarize yourself with some of these plants.

On a walk with Kōura, I came across a weedy hellstrip on Jefferson Street in downtown Boise. Many of the classic hellstrip challenges are present there – it’s surrounded by paved surfaces, there is lots of foot traffic in the area, parking is permitted on the roadside, urban infrastructure (street signs, parking meters, stoplights) is present within the strip. It’s clear that at one point the area was being maintained as irrigation is installed and there are remnants of turfgrass. Three honey locusts were also planted in the strip, one of which has clearly died. Now that maintenance seems to have ceased, weeds have become the dominant flora in this hellstrip. What follows are a few photos and a list of the weeds I’ve identified so far. Like all posts in the Weeds of Boise series, this list may be updated as I continue to check back in on this location.

shepherd’s purse (Capsella bursa-pastoris) and prickly lettuce (Lactuca serriola)
dandelion (Taraxacum officinale)
salsify (Tragopogon dubius)
seed head of salsify
knotweed (Poylgonum sp.)
prickly lettuce (Lactuca serriola)
mallow (Malva neglecta)
orchard grass (Dactylis glomerata)
  • Bromus tectorum (cheatgrass)
  • Capsella bursa-pastoris (shepherd’s purse)
  • Dactylis glomerata (orchard grass)
  • Epilobium brachycarpum (tall willowherb)
  • Lactuca serriola (prickly lettuce)
  • Malva neglecta (dwarf mallow)
  • Polygonum sp. (knotweed)
  • Salsola sp. (Russian thistle)
  • Taraxacum officinale (dandelion)
  • Tragopogon dubius (salsify)
  • Trifolium repens (white clover)
  • Vulpia myuros (rattail fescue)

Are there unkept hellstrips in your neighborhood? If so, what weeds have you seen taking up residence there?

Flowers Strips Bring All the Pollinators to the Yard

The longer I garden the more I gravitate towards creating habitats for creatures that rely on plants for survival. I’ve always been more interested in functional gardens rather than gardens that are simply “plants as furniture” (as Sierra likes to say) – a manicured, weed-free lawn, a few shrubs shaped into gumdrops, sterile flowers for color – and that interest has grown into a way of life. A garden should be more than just something nice to look at, and for those of us who’ve embraced the “messy ecosystems” approach, what’s considered “nice to look at” has shifted dramatically.

Thankfully, I’m not alone in this thinking. Gardens focused on pollinators, birds, habitats, native plants, etc. seem to be gaining in popularity. The question is, is it making a difference? At least one study, referred to below, seems to suggest that it is. And as more gardens like these are planted and more studies like this are done, perhaps we will get a clearer picture of their impact.

In 2017, eight 1000 square meter flower strips were planted in Munich, Germany. The sites had previously been lawn or “roadside greenery,” according to the report published in the Journal of Hymenoptera Research (2020). An additional flower strip, planted in 2015, was included in the study. Over the next year, an inventory of the number of bee species found in these nine flower strips was taken and compared both to the number of bee species that had been recorded in Munich since 1795 (324 species) and the number of bee species recorded in the 20 years prior to the planting of the flower strips (232 species).

In just a year’s time, these newly planted flower strips quickly attracted a surprising number of bees. The researchers identified 68 different species (which is 21% and 29% of the two categories of previously recorded species). As they had expected, most of the bees they identified were common, non-threatened, generalist species; however, they were surprised to also find several species that specialize on pollen from specific groups of plants. Future studies are needed to determine whether or not such flower strips help increase the populations of pollinators in the city, but it seems clear that they are a simple way to increase the amount of food for pollinators, if nothing else.

But perhaps these results shouldn’t be that surprising. Urban areas are not necessarily the biodiversity wastelands that the term “concrete jungle” seems to imply. Though fragmented and not always ideal, plenty of wildlife habitat can be found within a city. In his book, Pollinators and Pollination, Jeff Ollerton lists a number of studies that have been carried out in cities across the world documenting an impressive number of pollinating insects living within their borders [see this report in Conservation Biology (2017), for example]. As Ollerton writes, these studies “show that urbanization does not mean the total loss of pollinator diversity, and may in fact enhance it.” After all, “many of us city dwellers see every day, nature finds a home, a habitat, a place to thrive, wherever it will.”

In a chapter entitled, “The Significance of Gardens,” Ollerton continues to explore the ways in which cities can host a wide variety of flower visiting insects and birds. “Planted patches” don’t necessarily need to be managed as pollinator gardens in order to provide resources for these creatures, nor do all of the plants need to be native to the region to be effective. Rather, diversity in flower structure and timing seems to be key; “floral diversity always correlates with pollinator diversity regardless of the origin of the plants,” Ollerton writes in reference to pollination studies performed in British cities. The more “planted patches,” the better, as “a large and continuous floral display in gardens is the only way to maximize pollinator abundance and diversity.” Add to that, “if you allow some areas to become unmanaged, provide other suitable nesting sites or areas for food plants, and other resources that they need, a thriving oasis for pollinators can be created in any plot.”

ground nesting bee emerging from burrow

Bees and other pollinating insects are finding ways to live within our cities. There is no need to go to the lengths that I like to go in order to help them out. Simply adding a few more flowering plants to your yard, balcony, or patio can do the trick. Eliminating or limiting the use of pesticides and creating spaces for nesting sites are among other things you can do. Learning about specific pollinators and their needs doesn’t hurt either. The continued existence of these creatures is critical to life on earth, and this is one important issue where even simple actions can make a real difference.


Check out the linktree for various ways to follow and support Awkward Botany.

Weeds of Boise: Vacant Lot on West Kootenai Street

Every urban area is bound to have its share of vacant lots. These are sites that for whatever reason have been left undeveloped or were at one point developed but whose structures have since been removed. The maintenance on these lots can vary depending on who has ownership of them. Some are regularly mowed and/or treated with herbicide, while others go untouched for long periods of time. Even when there is some weed management occurring, vacant lots are locations where the urban wild flora dominates. Typically no one is coming in and removing weeds in an effort to cultivate something else, and so weeds run the show.

As with any piece of land populated by a diverse suite of wild plants, vacant lots are dynamic ecosystems, which you can read all about in the book Natural History of Vacant Lots by Matthew Vessel and Herbert Wong. The impact of humans can be seen in pretty much any ecosystem, but there are few places where that impact is more apparent than in a vacant lot. In lots located in bustling urban centers, human activity is constant. As Vessel and Wong write, “numerous ecosystem interactions are affected when humans intervene by spraying herbicides or insecticides, by trampling, by physically altering the area, or by depositing garbage and waste products.” These activities “can abruptly alter the availability and types of small habitats; this will in turn affect animal as well as plant diversity and population dynamics.” The dynamic nature of these sites is a reason why vacant lots are excellent places to familiarize yourself with the wild urban flora.

Kōura relaxing in a vacant lot

On our morning walks, Kōura and I have been visiting a small vacant lot on West Kootenai Street. We have watched as early spring weeds have come and gone, summer weeds have sprouted and taken off, perennial weeds have woken up for the year, and grass (much of which appears to have been intentionally planted) has grown tall and then been mowed with some regularity. Someone besides us is looking after this vacant lot, and it’s interesting to see how the plant community is responding. As Vessel and Wong note, “attempts to control weedy plants by mowing, cultivating, or spraying often initiate the beginning of a new cycle of growth.” For plants that are adapted to regular disturbance, measly attempts by humans to keep them in check are only minor setbacks in their path to ultimate dominance.

What follows are a few photos of some of the plants we’ve seen at the vacant lot on Kootenai Street, as well as an inventory of what can be found there. This list is not exhaustive and, as with other Weeds of Boise posts, will continue to be updated as I identify more species at this location.

dandelion (Taraxacum officinale)
grape hyacinth (Muscari armeniacum)
henbit (Lamium amplexicaule)
wild barley (Hordeum murinum) backed by cheatgrass (Bromus tectorum)
narrowleaf plantain (Plantago lanceolata) and broadleaf plantain (Plantago major)
perrennial sweet pea (Lathyrus latifolius) surrounded by redstem filaree (Erodium cicutarium)
whitetop (Lepidium sp.)
white clover (Trifolium repens)
  • Bromus tectorum (cheatgrass)
  • Capsella bursa-pastoris (shepherd’s purse)
  • Ceratocephala testiculata (bur buttercup)
  • Descurainia sophia (flixweed)
  • Draba verna (spring draba)
  • Erodium cicutarium (redstem filaree)
  • Geum urbanum (wood avens)
  • Holosteum umbellatum (jagged chickweed)
  • Hordeum murinum (wild barley)
  • Lactuca serriola (prickly lettuce)
  • Lamium amplexicaule (henbit)
  • Lathyrus latifolius (perennial sweet pea)
  • Lepidium sp. (whitetop)
  • Malva neglecta (dwarf mallow)
  • Muscari armeniacum (grape hyacinth)
  • Plantago lanceolata (narrowleaf plantain)
  • Plantago major (broadleaf plantain)
  • Poa bulbosa (bulbous bluegrass)
  • Poa pratensis (Kentucky bluegrass)
  • Rumex crispus (curly dock)
  • Taraxacum officinale (dandelion)
  • Tragopogon dubius (salsify)
  • Trifolium repens (white clover)
  • Veronica sp. (speedwell)

If you live in an urban area, chances are good there is a vacant lot near you. What have you found growing in your neighborhood vacant lot? Feel free to share in the comment section below.

Dispersal by Open Sesame!

In certain instances, “open sesame” might be something you exclaim to magically open the door to a cave full of treasure, but for the sesame plant, open sesame is a way of life. In sesame’s case, seeds are the treasure, which are kept inside a four-chambered capsule. In order for the next generation of plants to have a chance at life, the seeds must be set free. Sesame’s story is similar to the stories of numerous other plant species whose seeds are born in dehiscent fruits. But in this instance, the process of opening those fruits is fairly unique.

Sesamum indicum is a domesticated plant with a 5000 plus year history of cultivation. It shares a genus with about 20 other species – most of which occur in sub-Saharan Africa – and belongs to the family Pedaliaceae – the sesame family. Sesame was first domesticated in India and is now grown in many other parts of the world. It is an annual plant that is drought and heat-tolerant and can be grown in poor soils and locations where many other crops might struggle. However, the best yields are achieved on farms with fertile soils and adequate moisture.

image credit: wikimedia commons

Depending on the variety and growing conditions, sesame can reach up to 5 feet tall and can be unbranched or highly branched. Its broad lance-shaped leaves are generally arranged directly across from each other on the stem. The flowers are tubular, similar in appearance to foxglove, and are typically self-pollinated and short-lived. They come in shades of white, pink, blue, and purple and continue to open throughout the growing season as the plant grows taller, even as fruits formed earlier mature. The fruits are deeply-grooved capsules with at least four separate chambers called locules. Rows of tiny, flat, teardrop shaped seeds are produced in each chamber. The seeds are prized for their high oil content and are also used in numerous other ways, both processed and fresh. One of my favorite uses for sesame seeds is tahini, which is one of the main ingredients in hummus.

The fruits of sesame are dehiscent, which means they naturally split open upon reaching maturity. Compare this to indehiscent fruits like acorns, which must either rot or be chewed open by an animal in order to free the seeds. Dehiscence is also called shattering, and in many domesticated crop plants, shattering is something that humans have selected against. If fruits dehisce before they can be harvested, seeds fall to the ground and are lost. Selecting varieties that hold on to their seed long enough to be harvested was imperative for crops like beans, peas, and grains. In domesticated sesame, the shattering trait persists and yield losses are often high.

Most of the world’s sesame crop is harvested by hand. The plants are cut, tied into bundles, and left to dry. Once dry, they are held upside down and beaten in order to collect the seeds from their dehisced capsules. When harvested this way, naturally shattering capsules may be preferred. But in places like the United States and Australia, where mechanical harvesting is desired, it has been necessary to develop new, indehiscent varieties that can be harvested using a combine without losing all the seed in the process. Developing varieties with shatter-resistant seed pods, has been challenging. In early trials, seed pods were too tough and passed through threshers without opening. Additional threshing damaged the seeds and caused the harvest to go rancid. Mechanically harvested varieties of sesame exist today, and improvements in these non-shattering varieties continue to be made.

In order to develop these new varieties, breeders have had to gain an understanding of the mechanisms behind dehiscence and the genes involved in this process. This research has helped us appreciate the unique way that the capsules of the sesame plant dehisce. As in the seed bearing parts of many other plant species, the capsules of sesame exhibit hygroscopic movements. That is, their movements are driven by changes in humidity. The simplest form of hygroscopic movement is bending, which can be seen in the opening and closing of pine cone scales. A more complex movement can be seen in the seed pods of many species in the pea family, which both bend and twist as they split open. In both of these examples, water is evaporating from the plant part in question. As it dries it bends and/or twists, thereby releasing its contents.

dehisced capsules of sesame (Sesamum indicum); photo credit: wikimedia commons (Dinesh Valke)

The cylindrical nature and cellular composition of sesame fruits leads to an even more complex form of hygroscopic movement. Initially, the capsule splits at the top, creating an opening to each of the four locules. The walls of each locule bend outward, then split and twist as the seed falls from the capsule. In a study published in Frontiers in Plant Science (2016), researchers found that differences in the capsule’s inner endocarp layer and outer mesocarp layer are what help lead to this interesting movement. The endocarp layer is composed of both transvere (i.e. circumferential) and longitudinal fiber cells, while the mesocarp is made up of soft parenchyma cells. The thicknesses of these two layers gradually changes along the length of the capsule. As the mesocarp dries, the capsule initially splits open and starts bending outwards, but as it does, resistance from the fiber cells in the endocarp layer causes further bending and twisting (see Figure 1 in the report for an illustration). As the researchers write, “the non-uniform relative thickness of the layers promotes a graded bi-axial bending, leading to the complex capsule opening movement.”

All this considered, a rock rolling away from the entrance of a cave after giving the command, “Open sesame!” almost seems simpler than the “open sesame” experienced by the fruit of the sesame plant.

See Also: Seed Shattering Lost – The Story of Foxtail Millet

Meet Erigeron linearis

Erigeron is a genus of herbaceous, flowering plants consisting of between 390 and 460 species and is a member of the aster/sunflower family (Asteraceae). Plants in this genus are annuals, biennials, or perennials and are mainly found in temperate regions around the world. At least 163 species occur in the contiguous United States. Erigeron diversity is particularly high in western states; however, each state is home to at least one Erigeron species.

A common name for plants in this genus is fleabane. This name comes from an outdated belief that the plants can be used to repel or poison fleas, flies, gnats, and other tiny insects, a belief for which there is no evidence. In Ancient Greek, the name Erigeron is said to mean something akin to “old man in the early morning,” likely referring to the appearance of the seed heads which look like little tufts of white hair. Some Erigeron species are also commonly referred to as daisies.

desert yellow fleabane (Erigeron linearis)

One species of Erigeron that I would like you to meet is Erigeron linearis. While most of the plants in this genus have flowers that are white, pink, or various shades of purple, E. linearis is a yellow-flowered species, hence the common name, desert yellow fleabane. Another common name for this plant is narrow leaved fleabane, a reference to its linear leaves. E. linearis is a small plant with a prominent taproot that reaches up to 20 centimeters tall and forms a leafy, rounded mat or cushion of whitish or gray-green, alternately arranged leaves. The white appearance is due to numerous, fine, appressed hairs on the leaves and stems. Flower stalks are produced in abundance in late spring through early summer and are mostly leafless. They reach above the mound of leaves and are each topped with at least one flower head, which nods at first, but then straightens out as the flowers open. Each flower head is about 2 centimeters wide and is typical of plants in the sunflower family, with a cluster of deep yellow disc florets in the center, surrounded by ray florets that are lighter in color. Both disc and ray florets are fertile; however, the disc florets have both “male” (stamens) and “female” (pistils) flower parts, while the ray florets have only “female” parts. The involucre, which sits at the base of the flowers, is egg-shaped or hemispheric and made up of a series of tiny, fuzzy bracts called phyllaries.

the flower head of desert yellow fleabane (Erigeron linearis)

The fruit of Erigeron linearis is called a cypsela, an achene-like fruit that is characteristic of plants in the sunflower family. The fruits are miniscule and topped with a pappus composed of short outer bristles and longer, pale, inner bristles. The two types of pappus bristles (or double pappus) must be the reason for the scientific name this species was originally given in 1834, Diplopappus linearis. While the seeds of more than 80% of flowering plant species found in dryland regions exhibit some form of dormancy, a study published in Plant Biology (2019), found that E. linearis is one of the few species with non-dormant seeds. This means that for those of us interested in growing plants native to the Intermountain West, E. linearis is a pretty easy one to grow and is a great addition to water-wise gardens, pollinator gardens, and rock gardens.

Erigeron linearis seedling

Erigeron linearis is distributed across several western states and into Canada. It is found in northern California, eastern Oregon and Washington, southern British Columbia, across Idaho and east into southern Montana, western Wyoming and northwestern Utah. It is found at low to moderate elevations in open, rocky foothills, grasslands, sagebrush steppe, and juniper woodlands. It prefers well-drained soils and full sun. It is one of many interesting plants found on lithosols (also known as orthents), which are shallow, poorly develop soils consisting of partially weathered rock fragments. In the book Sagebrush Country, Ronald Taylor calls lithosols “the rock gardens of the sagebrush steppe,” and refers to E. linearis and other members of its genus as “some of the more colorful components of the lithosol gardens.” E. linearis is a food source for pronghorn, mule deer, and greater sage-grouse, and the flowers are visited by several species of bees and butterflies. The plant is also a larval host for sagebrush checkerspots.

desert yellow fleabane (Erigeron linearis)

Additional Resources:

Weeds of Boise: iNaturalist Observations

So far, the lists of weeds at each of the Weeds of Boise sites look pretty similar, with several weed species showing up at nearly every site and other species only occasionally making an appearance. This isn’t a surprise really. The flora of any region typically has several species that are dominant, along with species that occur less frequently. Wild urban flora – or in other words, the naturalized weeds in urban areas – may follow a similar pattern. My unscientific and infrequent surveys, all of which have been pretty close to where I live, aren’t yet representative of the Boise area as a whole. However, something like iNaturalist might help with that. For this reason, I took a look at iNaturalist observations to get a better idea as to which species dominate the wild urban flora of Boise, Idaho.

iNaturalist is a website and app that allows users to identify, map, and share observations of living things with the rest of the world. It has been in use for over a decade and is easily one of the most popular community science, biodiversity mapping, and identification apps around. Even though it is not the primary mission of iNaturalist, the information gathered from user observations is frequently used in scientific research and conservation efforts. With over 80 million observations worldwide, iNaturalist offers a pretty decent picture of the plants, animals, fungi, and other living things found in just about any given location. You don’t even need to a registered user to browse the observations and find out what has been spotted near you or across the globe.

In order to come up with a list of weeds that have been observed in Boise by iNaturalist users, I entered “Boise City Metropolitan Area, ID, USA” into the Location field. It is possible to narrow your search to individual neighborhoods or even broaden your search to include a larger area. Clicking on the map allows you to see the area represented in your search. For my purposes, I figured that the number of observations would change if the area covered was either smaller or larger, but the list of weed species would largely remain the same. After you select your search area, you can filter out the results. Clicking on the plant icon limits the search to plants. At first I selected only introduced plants, but that seemed to eliminate a few of the plants that I would consider weeds, so instead I scanned through the entire list of plants and made a list of each of the weed species and how many times each had been observed.

There are of course limitations to using iNaturalist to create species lists, the main one being that you are relying on decisions made by iNaturalist users when it comes to what gets reported. In my case, in which I’m looking for a list of weed species found in Boise, I know there are plenty of weeds that iNaturalist users either aren’t noticing or aren’t bothering to report. The reported observations are also not likely to match the frequency at which they occur in the environment. Still, it’s interesting to see what gets reported and how often. It’s also interesting to see reports of things that I haven’t seen before. By clicking on individual observations, you can see where those observations were made, which means I know where I can go to find species I haven’t yet encountered.

What follows is a list of the top 25 weeds in the Boise area based on the number of iNaturalist observations, along with photos of some of the most reported weeds. A few of the species on the list, like cornflower, straddle the line between weed and desirable plant. I included them anyway because they are known to be naturalized outside of garden borders, even though some of the reported observations may have been intentionally planted within garden borders.

bittersweet nightshade (Solanum dulcamara)
pink-flowered field bindweed (Convolvulus arvensis)
great mullein (Verbascum thapsus)

Top 25 Weeds in the Boise City Metropolitan Area According to iNaturalist Observations (as of September 21, 2021)

  1. great mullein (Verbascum thapsus) – 110 
  2. common dandelion (Taraxacum officinale) – 98
  3. redstem stork’s-bill (Erodium cicutarium) – 83
  4. chicory (Cichorium intybus) – 62
  5. heart-podded hoary cress (Lepidium draba) – 61
  6. cornflower (Centaurea cyanus) – 58
  7. rush skeletonweed (Chondrilla juncea) – 56
  8. purple loosestrife (Lythrum salicaria) – 49
  9. bittersweet nightshade (Solanum dulcamara) – 47
  10. alfalfa (Medicago sativa) – 46
  11. common soapwort (Saponaria officinalis) – 43
  12. dwarf mallow (Malva neglecta) – 42
  13. donkey tail (Euphorbia myrsinites) – 40 
  14. poison hemlock (Conium maculatum) – 39
  15. field bindweed (Convolvulus arvensis) – 39 
  16. bulbous meadow-grass (Poa bulbosa) – 39
  17. yellow salsify (Tragopogon dubius) – 38
  18. crested wheatgrass (Agropyron cristatum) – 37 
  19. cheatgrass (Bromus tectorum) – 36
  20. moth mullein (Verbascum blattaria) – 36 
  21. hound’s-tongue (Cynoglossum officinale) – 31
  22. Virginia creeper (Parthenocissus quinquefolia) – 30
  23. catnip (Nepeta cataria) – 29
  24. white clover (Trifolium repens) – 29
  25. yellow iris (Iris pseudacorus) – 28
Virginia creeper (Parthenocissus quinquefolia)
catnip (Nepeta cataria)
common soapwort (Saponaria officinalis)

Awkward Botanical Sketches #5: Leaves of Yellowstone Edition

Earlier this month, I met up with Eric LoPresti and others at Yellowstone National Park to help take a census of Abronia ammophila, a rare plant endemic to the park and commonly referred to as Yellowstone sand verbena. Abronia (a.k.a. the sand-verbenas) is a small genus of plants in the family Nyctaginaceae that is native to western North America. Several species in the genus have fairly limited distributions, and as the common name implies, members of this genus generally occur in sandy soils. A. ammophila is no exception. A report written by Jennifer Whipple and published in 2002 described it as “restricted to stabilized sandy sites that lie primarily just above the maximum splash zone along the shoreline of [Yellowstone Lake].” Despite the large size of the lake, A. ammophila is not widespread. Most individuals are found along the north shore of the lake, and even there it has been declining. According to Whipple’s report, “Yellowstone sand verbena has been extirpated from a significant portion of its original range along the shoreline of the lake due largely to human influences.”

Like other sand verbenas, A. ammophila has sticky leaves to which sand particles easily adhere, a phenomenon known as psammophory and an act that may help in defense against herbivory. The plant grows prostrate across the sand and produces attractive, small, white, trumpet-shaped flowers in groups of up to 20 that open wide when light levels are low, such as in the evening and in times of heavy cloud cover. The flowers are self-fertile, but insects may also play a role in pollination. It is imperative that questions surrounding its pollination biology, seed dispersal, and other factors regarding its life history are answered in order to halt any further decline of the species and ensure its survival for generations to come.

While in Yellowstone, I enjoyed looking at the all plants, several of which were new to me. I decided to sketch a few of the leaves that I found common around our campsite. I was particularly interested in discolored, diseased, drought-stressed, and chewed-on leaves, since they are more interesting to sketch and color. While I was at it, I attempted to draw a Yellowstone sand verbena seedling as well.

wild strawberry (Fragaria sp.)
Richardson’s geranium (Geranium richardsonii)
lodgepole pine (Pinus contorta)
veiny dock (Rumex venosus)
cinquefoil (Potentilla sp.)
seedling of Yellowstone sand verbena (Abronia ammophila)

More Awkward Botanical Sketches

Book Review: In Defense of Plants

Many of us who are plant obsessed didn’t connect with plants right away. It took time. There was a journey we had to go on that would ultimately bring us to the point where plants are now the main thing we think about. After all, plants aren’t the easiest things to relate to. Not immediately anyway. Some of us have to work up to it. Once there, it’s pretty much impossible to go back to our former lives. What was once just a background of green hues is now a rich cast of characters, each with their own name, unique features, and distinct story to tell. Essentially, we went through what Matt Candeias refers to as our ” green revolution.” Candeias – author and host of the long-running blog and podcast, In Defense of Plants – shares his story of learning to love plants and offers a convincing arguement for why you should love them too in his new book, aptly titled, In Defense of Plants.

It’s hard to picture Candeias as anything but a plant lover. If you’ve been following his work, you’ll know he makes it a point to put plants at center stage. It seems that much of the popular content available about plants focuses on the usefulness of plants as they pertain to humans. In many cases it can be easier to find out how to grow a certain plant species than to learn about where it’s from and what it’s like in the wild. Candeias let’s the plants speak for themselves by giving them a voice through his blog, podcast, and now his book. Through the stories he shares we get a peek into the way Candeias sees plants, with the hope being that others might also “be bitten by the botanical bug.”

One of the first plants that captured the attention of Candeias was perennial blue lupine (Lupinus perennis). While assisting with a habitat restoration project at a sand and gravel quarry, Candeias was tasked with improving the establishment of lupine, which is the host plant for the caterpillars of an endangered species of butterfly called Karner blue. The work he did at the quarry and the botanical research that went into it helped Candeias realize that plant’s aren’t at all boring, but are “incredibly interesting organisms worthy of respect and admiration” and that “plants can be both surprisingly relatable and incredibly alien all at once.” His “green revolution” had begun.

The seeds of lupine are dispersed ballistically. As the seed pods dry, tension builds. Then, as Matt Candeias writes in In Defense of Plants, “with an audible pop, the pods eventually explode, catapulting the seeds out into the environment.”

In each chapter of In Defense of Plants we get a peak into the experiences that brought Candeias to where he is now as he discovers the wonder of plants. His personal stories help introduce the main topic of each chapter. Topics include plant sex, plant dispersal, plant defenses, carnivorous plants, and parasitic plants. From countless possible examples, Candeias selects a few of his favorite plant species to help illustrate each topic. Along the way, the reader is presented with various other interesting plant-related facts as Candeias discusses the behaviors of some of the world’s most fascinating plants. In the chapter on dispersal, for example, unlikely agents of seed dispersal (like catfish!) are introduced, as well as phenomena like geocarpy, in which plants are essentially planting themselves.

Carnivorous plants provide an excellent gateway into convincing people who claim to have no interest plants that they actually do. It’s difficult to deny the impressive nature of a meat-eating plant. In the carnivorous plant chapter, Candeias introduces us to the various ways such plants capture and consume their prey, and even wonders if some of these plants should be considered omnivores. After all, certain butterworts digest pollen that falls onto their sticky leaves, and some bladderworts suck in plenty of algae and possibly gain nutrients from the act. If capturing insects inside leaves modified to look like pitchers or on leaves covered in digestive enzyme-producing glands doesn’t impress you, consider the carnivorous actions of corkscrew plants, which drill their leaves into the soil to go after soil-dwelling organisms like protozoans and worms.

Parasitic plants should also excite a reluctant plant lover. These are plants that take all or most of what they need to survive from another plant or host organism. Mistletoes are one of the more familiar parasitic plants, and Candeias describes several, including one that lives almost entirely within the stems of cacti. In fact, “you would never know a cactus had been infected until the mistletoe living within decides to flower,” at which point the flowers push their way out through the sides of the cactus. Dodder is another fairly common, highly specialized, and easy to identify parasitic plant. It basically looks like “a tangled pile of orange spaghetti tossed over the surrounding vegetation.” Orchids, a favorite of Candeias, are known for being mycoheterotrophs, which essentially means they parasitize fungi. Their seeds come unequipped with the energy stores needed to get going, so they borrow resources from mycorrhizal fungi in order to get their start. Years pass before the orchid can offer anything in return.

Datura is a genus of plants that produces toxic compounds like scopolamine and atropine. In his book, In Defense of Plants, Matt Candeias warns, “it would only take a small amount of these chemicals to completely ruin your week and slightly more to put you in a grave.”

After spending more than 200 pages celebrating plants and their amazing abilities and diversity, it’s fitting that Candeias spends the final chapter of his book mourning some of the ways the actions of humans threaten the existence of so many plants. He remarks how unfortunate it is that “plants with their unseeing, unhearing, unfeeling ways of life usually occupy the lowest rung of importance in our society.” Many of us barely notice the loss, yet “plants are the foundation of functioning ecosystems.” Due to that fact, “destroying plant communities causes disastrous ripples that reverberate throughout the entire biosphere of our planet.” Everything suffers when plants are lost. Fortunately, the book doesn’t end on this dark note. Candeias’s overall message is hopeful. When we learn to understand, appreciate, and care about plants, we will want to do everything we can to protect and restore them. With any luck, after reading this book, you too will want to offer your time, energy, and resources in defense of plants.

Listen to Matt talk about his new book on this episode of his podcast.

More Book Reviews on Awkward Botany

Tea Time: Linden Flower Tea

Lindens make great trees for urban areas. A few species and hybrids in particular are commonly planted in parks, yards, and along the streets of cities across the northern hemisphere and have been for decades – centuries even. They cast dense shade, are tolerant of a variety of climates and soil conditions, and are generally easy to maintain. For much of the year as you move throughout the city you live in, you likely pass by dozens of lindens without thinking twice about them. They are ubiquitous, conventional, ordinary, common. Unless they’re in bloom. For a few weeks in early to mid-summer, flowering lindens produce an impossibly sweet fragrance that can’t be ignored. Along with the scent comes the sound of hundreds of buzzing bees collecting pollen and nectar from the pendulous blooms.

Lindens are trees and shrubs in the family Malvaceae and genus Tilia. Around 30 or so species are found in temperate regions across the northern hemisphere, mostly in Europe and Asia. Depending on who you ask, there are between one and three species native to North America. Tilia caroliniana and Tilia heterophylla are considered by some to be varieties of Tilia americana, or American basswood, which is distributed across central and eastern United States and north into parts of Canada. Another common name for linden is lime because words used to refer to the tree in older languages were similar to the word lime. The name basswood comes from the tree’s fibrous inner bark, known as bast.

Linden leaves are generally heart-shaped and asymmetrical with serrate margins. Small clusters of little yellow to white flowers form at the end of a slender stem attached to a narrow, ribbon-like, yellow-green bract. The bract aids in seed dispersal by helping the fruits float on the wind away from the parent tree in a manner similar to the samaras of maple trees. The fruits are small, round, hardened drupes that resemble little peas. The fragrant, nectar-rich flowers are not only favored by beekeepers for honey production, but also have a long history of being harvested for making tea (i.e. tisane). Linden flower tea is said to have a number of medicinal uses and health benefits, all of which I take with a grain of salt. This series of posts isn’t meant to be an investigation into the health claims of plants, but instead an opportunity for me – out of sheer curiosity – to try making tea out of a variety of different plants . If medicinal uses interest you, I encourage you to seek out credible, peer-reviewed sources.

I made linden flower tea from flowers I collected from Tilia cordata, commonly known as littleleaf linden. It was an easy one to find due to its popularity as an urban tree. The natural distribution of littleleaf linden extends from Britain across Europe and into western Asia. Its triangular-ovate shaped leaves are 4-10 centimeters long, glossy green on top, and pale green on the bottom with tufts of orange hairs along the leaf veins, concentrated at the base of the leaf where the leaf blade meets the petiole. The tree can reach up to 21 meters tall and has an oval or rounded-pyramidal shape, though many trees in urban areas are cultivars and can be smaller and more compact.

I harvested the flowers – bracts and all – in late June. It’s advised that they not be harvested directly after a rain (or after being hit by sprinklers), and that they are harvested when the flowers are newly opened. I presume this is because the flowers are at their freshest at this point and will be the best for making tea. I layed the flowers out to dry on a clean kitchen towel on top of a metal cake rack. It only takes 2 or 3 days for them to dry. After drying I removed and saved all the flowers and threw out the bracts and stems, but apparently you can use the entire inflorescence if you’d like.

There are several linden flower tea recipes online. I went with 3 cups of boiling water poured over 1 tablespoon dried linden flowers, covered and steeped for 15 minutes. The resulting tea was an appealing pastel yellow color. I tried it plain as well as sweetened with a little bit of honey. I preferred it sweetened, but unsweetened wasn’t too bad, just a little bitter. It has a floral taste and pleasant smell. Sierra said it tasted earthy, like something she wasn’t supposed to be drinking. Despite that odd review, she said she liked it. Since several sources discussed the calming, sleep-inducing effects of the tea, I made sure to drink it in the evening when it would be normal for me to be feeling sleepy. I suggest you do the same.

More Tea Time Posts on Awkward Botany