To Fruit or Not to Fruit – The Story of Mast Seeding

Perennial plants that are able to reproduce multiple times during their lifetime don’t always yield the same amount of seeds each time they reproduce. For some of these plants, there is a stark difference between high-yield years and low-yield years, with low-yield years outnumbering the occasional high-yield years. In years when yields are high, fruit production can seem excessive. This phenomenon is called masting, or mast seeding, and it takes place at the population level. That is, during a mast year, virtually all individuals in a population of a certain species synchronously produce a bumper crop of seeds.

Plants of many types can be masting species. Bitterroot milkvetch (Astragalus scaphoides) and a tussock grass known as Chionochloa pallens are masting species, for example. However, this behavior is most commonly observed in trees, notably nut producing trees like oaks, beeches, and pecans. As you might imagine, the boom and bust cycles of mast seeding plant populations can have dramatic ecological effects. Animals that eat acorns, for example, are greeted with a veritable buffet in a mast year, which can increase their rate of reproduction for a spell. Then, in years when acorns are scarce, the populations of those animals can plummet.

How and why masting happens is not well understood. It is particularly baffling because masting populations can cover considerably large geographic areas. How do trees covering several square miles all “know” that this is the year to really go for it? While a number of possible explanations have been explored, there is still much to learn, especially since so many different species growing in such varied environments exhibit this behavior.

A popular explanation for mast seeding is predator satiation. The fruits and seeds of plants are important food sources for many animals. When a population of plants produces fruit in an unusually high abundance, its predators won’t possibly be able to eat them all. At least a few seeds will be left behind and can sprout and grow into new plants. By satiating their predators they help ensure the survival of future generations. However, even if a plant species has evolved to behave this way, it still doesn’t explain how all the plants in a particular population seem to know when it’s time for another mast year.

Predator satiation is an example of an economy of scale, which essentially means that individual plants benefit when the population acts as a whole. Another economy of scale that helps explain masting is pollen coupling. This has to do with the timing of flowering in cross pollinating species. If individuals flower out of sync with one another, the opportunities for cross pollination are limited. However, if individuals in a population flower simultaneously, more flowers will be pollinated which leads to increased fruit and seed production.  For this to happen, there are at least two factors that come into play. First, the plants have to have enough resources to flower. Making flowers is expensive, and if the resources to do so (like carbon, nitrogen, and water) aren’t available, it won’t happen. Second, weather conditions have to work in their favor. Timing of flowering depends, not only on daylength, but on temperature, rainfall, and other local weather conditions. If individuals across a population aren’t experiencing similar weather, the timing of their flowering may be off.

pollen-producing (male) flowers of pecan (Carya illinoinensis) — via wikimedia commons; Clemson University

Resource matching and resource budgeting are other proposed explanations for masting. Since plants can only use the resources available to them for things like growth and reproduction, they vary each year in how much growing or reproducing they do. Theoretically, if plants in a population are all going to flower in the same year, they all have to have access to a similar amount of resources. Often, the year following a mast year, there is a significant drop in fruit production, as though the plants have used up all of their available resources for reproduction and are taking a break. Some hypothesize that masting is a result of resource storage, and that plants save up resources for several years until they have what they need for yet another big year.

Another thing to consider is how plant hormones might play a role in masting. Gene expression and environmental cues both result in hormonal responses in plants. As Bogdziewicz, et al. write in Ecology Letters (2020), “if hormones and the genes that control them are hypersensitive to an environmental signal, masting can be at least partially independent of resource- and pollen-based mechanisms.” This and other potential explanations for masting are, at this point, largely theoretical. In their paper, Bogdziewicz, et al. propose a number of ways that theoretical predictions can be experimentally tested. If the “research agenda” outlined in their paper is carried out, they believe it will “take the biology of masting from a largely observational field of ecology to one rooted in mechanistic understanding.”

In her book, Braiding Sweetgrass, Robin Wall Kimmerer proposes an additional explanation for the mechanisms behind masting – the trees are talking to one another. Not in the way that you and I might converse, but rather by sending signals through the air via pheromones and underground via complex fungal networks. There is already evidence for this behavior when it comes to plants defending themselves from predators and in sharing resources, so why not in planning when to reproduce? As Kimmerer writes regarding masting, “the trees act not as individuals, but somehow as a collective.” The question now is how.

seedlings of European beech (Fagus sylvatica), a mast-seeding species — via wikimedia commons; user: Beentree

Additional Resources:

Winter Trees and Shrubs: Northern Catalpa

The names of plants often contain clues that can either help with identification or that tell something about the plant’s history or use. The name, catalpa, is said to be derived from the Muscogee word, katałpa, meaning “winged head,” presumably referring to the tree’s winged seeds. Or maybe, as one writer speculates, it refers to the large, heart-shaped, floppy leaves that can make it look like the tree is “ready to take flight.” Or perhaps it’s a reference to the fluted, fused petals of the tree’s large, tubular flowers. I suppose it could mean any number of things, but I’m sticking with its seeds, which are packed by the dozens in the tree’s long, slender, bean-like fruits. The seeds are flat, pale brown, and equipped with paper thin, fringed appendages on either side that assist in wind dispersal – wings, in other words.

winged seeds of northern catalpa (Catalpa speciosa)

Catalpa speciosa, or northern catalpa, is a relatively fast growing, short-lived tree native to the Midwest and one of only two species in the genus Catalpa found in the United States. Its distribution prior to the arrival of Europeans appears to have been restricted to a portion of the central Mississippi River valley, extending west into Arkansas, east into Tennessee, and north into Illinois and Indiana. It has since been widely planted outside of its native range, naturalizing in areas across the Midwest and eastern US. Early colonizers planted northern catalpa for use as fence posts, railroad ties, and firewood. Its popularity as an ornamental tree is not what it once was a century ago, but it is still occasionally planted in urban areas as a shade tree. Its messiness – littering the ground below with large leaves, flowers, and seed capsules – and its tendency to spread outside of cultivation into natural areas are reasons why it has fallen out of favor with some people.

The oval to heart-shaped, 8 to 12 inch long leaves with long petioles rotting on the ground below the tree are one sure sign that you’ve encountered a catalpa in the winter time. The leaves are some of the first to fall at the end of the growing season, briefly turning an unmemorable yellow before dropping.

leaf of northern catalpa (Catalpa speciosa) in the winter with soft hairs on the underside still visible

The leaf arrangement on northern catalpa is whorled and sometimes opposite. The twigs are easy to identify due to several unique features. They are stout, round, and grayish brown with prominent lenticels. The leaf scars are large, rounded, and raised up on the twig, looking a bit like little suction cups. They are arranged in whorls of three, with one scar considerably smaller than the other two. A series of bundle traces inside the scar form an ellipse. The leaf buds are tiny compared to the scar and are protected by loose, pointed, brown bud scales. Northern catalpa twigs lack a terminal bud. In the winter, seed capsules or the stalk of an old inflorescence often remain attached to the terminal end of the twig. The pith inside of the twig is thick, white, and solid.

twig of northern catalpa (Catalpa speciosa)

pith inside twig of northern catalpa (Catalpa speciosa)

Another common name for Catalpa speciosa is cigar tree, a name that comes from its up to 18 inch long, cigar-like seed capsules that hang from the otherwise naked tree throughout the winter. The sturdy, cylindrical pod starts out green in the summer and turns dark brown by late fall. Seed pods that haven’t fallen or already split open will dehisce in the spring time, releasing their papery seeds to the wind.

fruits of northern catalpa (Catalpa speciosa) hanging from the tree in the winter

The young bark of northern catalpa is thin and easily damaged. As it matures, it becomes furrowed with either scaly ridges or blocky plates. Mature trees are generally twisted at the base but otherwise grow straight, reaching 30 to 60 feet tall (sometimes taller) with an open-rounded to narrow-oval crown.

maturing bark of northern catalpa (Catalpa speciosa)

Northern catalpa is one of the last trees to leaf out in the spring. In late spring or early summer, 10 inch long clusters of white, tubular flowers are produced at the tips of stems. Before the flowers open, they look a bit like popped popcorn, reminding me of a song from my childhood (which I will reluctantly leave right here). The margins of its trumpet-shaped petals are ruffled and there is yellow, orange, and/or purple spotting or streaking on the inside of the tubes.

flower of northern catalpa (Catalpa speciosa) just before it opens

More Winter Trees and Shrubs on Awkward Botany:

Winter Trees and Shrubs: Netleaf Hackberry

Boise, Idaho is frequently referred to as the City of Trees despite being located in a semiarid region of the Intermountain West known as the sagebrush steppe where few trees naturally grow. It earns this moniker partly because the name Boise is derived from the river that runs through it (the Boise River), which was named La Rivere Boisse, or The Wooded River, by early French trappers. Although it flows through a largely treeless landscape, The Wooded River was an apt name on account of the wide expanse of cottonwoods and willows that grew along its banks. The fervent efforts of early colonizers to plant trees in large numbers across their new city also helped Boise earn the title, City of Trees. Today, residents continue the legacy of planting trees, ensuring that the city will remain wooded for decades to come.

As is likely the case for most urban areas, the majority of trees being planted in Boise are not native to the region. After all, very few tree species are. However, apart from the trees that flank the Boise River, there is one tree in particular that naturally occurs in the area. Celtis reticulata, commonly known as netleaf hackberry, can be found scattered across the Boise Foothills amongst shrubs, bunchgrasses, and wildflowers, taking advantage of deep pockets of moisture found in rocky outcrops and draws.

The western edge of netleaf hackberry’s range extends to the northwest of Boise into Washington, west into Oregon, and down into California. The majority of its range is found south of Idaho, across the Southwest and into northern Mexico, then east into the prairie regions of Kansas and Oklahoma. Previously placed in the elm family, it is now considered a member of the family Cannabaceae (along with hemp and hops). It’s a relatively small, broad tree (sometimes a shrub) with a semi-rounded crown. It grows slowly, is long-lived, and generally has a gnarled, hardened, twisted look to it. It’s a tough tree that has clearly been through a lot.

The leaves of Celtis reticulata are rough, leathery, and oval to lance shaped with serrate or entire leaf margins. Their undersides have a distinct net-like pattern that gives the tree its common name. A very small insect called a hackberry psyllid lays its eggs inside the leaf buds of netleaf hackberries in the spring. Its larvae develop inside the leaf, feeding on the sugars produced during photosynthesis, and causing nipple galls to form in the leaves. It’s not uncommon to see a netleaf hackberry with warty-looking galls on just about every leaf. Luckily, the tree doesn’t seem to be bothered by this.

fallen leaves of netleaf hackberry (Celtis reticulata) with nipple galls

The fruit of netleaf hackberry is a pea-sized drupe that hangs at the end of a pedicel that is 1/4 to 1/2 inch long. Its skin is red-orange to purple-brown, and its flesh is thin with a large seed in the center. The fruits, along with a few random leaves, persist on the tree throughout the winter and provide food for dozens of species of birds and a variety of mammals.

persistent fruit of netleaf hackberry (Celtis reticulata)

Celtis reticulata is alternately branched. Its twigs are slender, zig-zagging, and often curved back towards the trunk. They are reddish-brown with several pale lenticels and have sparse, fine, short hairs that are hard to see without a hand lens. The leaf scars are small, half-round, and raised up from the twig. They have three bundle scars that form a triangle. The buds are triangle-shaped with fuzzy bud scales that are slightly lighter in color than the twig. The twigs are topped with a subterminal bud, and the pith (the inner portion of the twig) is either chambered or diaphragmed and difficult to see clearly without a hand lens. 

twigs of netleaf hackberry (Celtis reticulata)

The young bark of netleaf hackberry is generally smooth and grey, developing shallow, orange-tinged furrows as it gets older. Mature bark is warty like its cousin, Celtis occidentals, and develops thick, grey, corky ridges. Due to its slow growth, the bark can be retained long enough that it becomes habitat for extensive lichen colonies.

bark of young netleaf hackberry (Celtis reticulata)

bark of mature netleaf hackberry (Celtis reticulata)

Netleaf hackberry is one of the last trees to leaf out in the spring, presumably preserving as much moisture as possible as it prepares to enter another scorching hot, bone-dry summer typical of the western states. Its flowers open around the same time and are miniscule and without petals. Their oversized mustache-shaped, fuzzy, white stigmas provide some entertainment for those of us who take the time to lean in for a closer look.

spring flowers of netleaf hackberry (Celtis reticulata)

More Winter Trees and Shrubs on Awkward Botany:

———————

Photos of netleaf hackberry taken at Idaho Botanical Garden in Boise, Idaho.

Winter Trees and Shrubs: Eastern Redbud

Botanizing doesn’t have to end when the leaves fall off the trees and the ground goes frozen. Plants may stop actively growing during this time, but they are still there. Some die back to the soil level and spend the entire winter underground, leaving behind brown, brittle shells of their former selves. Others, particularly those with woody stems, maintain their form (although many of them leafless) as they bide their time while daylength dips and rises again, bringing with it the promise of warmer weather. Plants that leave us with something to look at during the winter can still be identified. Without foliage or flowers to offer us clues, we rely instead on branches, bark, and buds to identify woody species. In some cases, such features may even be more helpful in determining a certain species than their flowers and foliage ever were. Either way, it’s a fun challenge and one worth accepting if you’re willing to brave the cold, hand lens and field guides in tow.

In this series of posts I’ll be looking closely at woody plants in winter, examining the twigs, buds, bark, and any other features I come across that can help us identify them. Species by species, I will learn the ropes of winter plant identification and then pass my findings along to you. We’ll begin with Cercis canadensis, an understory tree commonly known as eastern redbud.

Eastern redbud is distributed across central and eastern North America, south of southern Michigan and into central Mexico. It is also commonly grown as an ornamental tree outside of its native range, and a number of cultivars have been developed for this purpose. Mature trees reach up to 30 feet and have short trunks with wide, rounded crowns. Its leaves are entire, round or heart-shaped, and turn golden-yellow in the fall. Gathered below the tree in winter, the leaves maintain their shape and are a light orange-brown color.

fallen leaf of eastern redbud (Cercis canadensis)

Eastern redbud is alternately branched with slender, zig-zagging twigs that are dark reddish-brown scattered with several tiny, light-colored lenticels. Older sections of branches are more grey in color. Leaf scars (the marks left on twigs after leaves fall) are a rounded triangle shape and slightly raised with thin ridges along each side. The top edge of the leaf scar is fringed, which I found impossible to see without magnification. Leaf buds are egg-shaped and 2-3 mm in length with wine-red bud scales that are glabrous (smooth) with slightly white, ciliate margins. Descriptions say there are actually two buds – one stalked and one sessile. If the second bud is there, it’s miniscule and obscured by the leaf scar. I haven’t actually been able to see one. Twigs lack a terminal bud or have a tiny subterminal bud that points off to one side. The pith of the twigs is rounded and pale pink. Use sharp pruners or a razor blade to cut the twig in half lengthwise to see it.

twig and buds of eastern redbud (Cercis canadensis)

Bark is helpful in identifying woody plants any time of year, but is especially worth looking at during the winter when branches have gone bare. The bark of young eastern redbud is grey with orange, furrowed streaks running lengthwise along the trunk. In mature trees, the bark is gray, scaly, and peels to reveal reddish-brown below.

bark of young eastern redbud (Cercis canadensis)

bark of mature eastern redbud (Cercis canadensis)

Eastern redbud is in the bean family (Fabaceae) and its flowers and fruits are characteristic of plants in this family. Fruits can persist on the tree throughout the winter and are another way to identify the tree during the off-season. Seed pods are flat, dark red- or orange-brown, and up to 2.5 inches long with four to ten seeds inside. The seeds are flat, round, about 5 millimeters long, and ranging in color from orange-brown to black.

persistent fruits of eastern redbud (Cercis canadensis)

seeds of eastern redbud (Cercis canadensis)

Eastern redbud flowers in early spring before it has leafed out. Clusters of bright pink flowers form on old branches rather than new stems and twigs. Sometimes flowers even burst right out of the main trunk. This unique trait is called cauliflory.

cauliflory on eastern redbud (Cercis canadensis)

———————

Photos of eastern redbud taken at Idaho Botanical Garden in Boise, Idaho.

Tea Time: Lemon Balm Tea

Cooler weather has me thinking about hot tea again. This time around I decided to go with something I’ve already tried and know that I like. Despite the fact that lemon balm can be quite abundant and readily available, I don’t really drink it that often. Yet, considering claims made regarding its calming nature, this is definitely the year to have it.

lemon balm (Melissa officinalis)

Melissa officinalis is an herbaceous perennial native to the Mediterranean Basin and beyond. It has been widely planted outside of its native range and has become naturalized – some might say weedy – in many parts of the world. It self-sows easily and also spreads readily via stolons and/or rhizomes. It isn’t picky about soil type and grows well in both sun and part shade. Lemon balm is in the mint family and acts in a similarly aggresive way to some of its relatives, but luckily isn’t nearly as tenacious as mint in its tendency to dominate a garden bed.

The leaves of lemon balm have a wrinkled appearance, are triangular or wedge-shaped with toothed margins, and are arranged oppositely on square stems up to three feet tall. Small, white or pale yellow (sometimes pale pink) flowers are inconspicuous and produced in the axils of leaves. They are often sparse enough to be hardly noticeable. This plant’s aesthetic appeal is all about its pleasant and prolific green foliage. Yet, despite the simplicity of its flowers, lemon balm is known for being attractive to bees and is often propagated specifically to feed honeybees. In fact, the genus name Melissa apparently means honeybee in Ancient Greek.

lemon balm flower

The leaves of lemon balm can be consumed fresh or dried and have a number of other uses besides tea. They have a sweet, lemon-like scent and, like so many other herbs with a long history of human use, have a wide array of medicinal claims associated with them. Many sources agree on lemon balm’s ability to calm the nerves, reduce stress and anxiety, and fight off insomnia. According to The Herb Society of America’s Essential Guide to Growing and Cooking with Herbs, lemon balm “has been used as a relaxing agent and as an aid to restful, nightmare-free sleep.” Sounds like I could use more lemon balm in my life.

dried lemon balm leaves

Lemon balm tea can be made with either fresh or dried leaves, but fresh leaves seem to make a more flavorful tea. I had only tried tea made from dried leaves until recently and have decided that I prefer fresh leaves. Simply harvest a few leaves, cut or tear them apart to release the lemony flavor, place them in a cup, and cover them in hot water. Some recipes (like this one) suggest adding honey, while others mix lemon balm with additional herbs known for their lemon-like flavor or relaxing nature (lemon thyme and lemon verbena, for example). Sierra was immediately taken by lemon balm tea when she tried it – in contrast to her experience with violet leaf tea – and even said it was right up there with her preferred black teas. I’m not surprised, as it is one of my favorite teas as well.

lemon balm tea made with freshly harvested leaves

More Tea Time Posts on Awkward Botany:

Weeds of Boise: Ahavath Beth Israel Synagogue Garden

Anyone who has maintained a garden or small farm knows that with all the work it takes to keep up on the garden itself, outlying areas can quickly become overtaken by weeds. Low on the list of priorities, areas outside of our garden borders are ideal locations for wild urban vegetation to thrive. Pulling all the weeds within the garden is a big enough task as it is; thus, weeds out of our reach are left to their own devices, occasionally getting mown down by a string trimmer or brush mower (if time allows), but otherwise living largely unscathed. And so, places such as these are excellent for familiarizing oneself with our wild urban flora.

I found an example of this scenario at the Ahavath Beth Israel Synagogue Garden in Boise, Idaho. This community garden is a partnership between Congregation Ahavath Beth Israel (CABI) and Global Gardens, providing refugees in the area an opportunity to grow food for their families and participate in community activities.

When I visited this site, it was clear that the weeds on the edge of the garden had been mowed down at some point. New plants had popped up after the fact while others were in the process of recovering from the “haircut” and putting on new, shrubbier growth. The mowing and the fact that it was late in the summer made identifying remnants of earlier weeds too difficult to bother. Most of the weeds that I did find were either summer annuals or perennials. A visit in the spring would reveal an entirely different cast of characters.

I stayed on the border of the garden, not wanting to invade anyone’s plot or snoop around too much. The point of the visit was to highlight weeds found outside of the borders of a garden anyway. I would imagine that, since the garden is used to grow annual fruits and vegetables, most of the weeds in the beds would be annuals as well. Longer-lived weeds don’t generally tolerate regular disturbance and instead find refuge in unkept areas outside of cultivation.

Below are a few photos from the site along with a preliminary list of the weeds that I found.

salsify (Tragopogon dubius)

puncture vine (Tribulus terrestris)

field bindweed (Convolvulus arvensis)

Siberian elm (Ulmus pumila)

common mallow (Malva neglecta)

black medic (Medicago lupulina)

Weeds found at the Ahavath Beth Israel Synagogue Garden:

  • Amaranthus spp. (pigweed)
  • Bassia scoparia (kochia)
  • Chenopodium album (lamb’s quarters)
  • Chondrilla juncea (rush skeletonweed)
  • Convolvulus arvensis (field bindweed)
  • Conyza canadensis (horseweed)
  • Digitaria sanguinalis (crabgrass)
  • Epilobium brachycarpum (tall annual willowherb)
  • Euphorbia maculata (spotted spurge)
  • Hordeum jubatum (foxtail barley)
  • Lactuca serriola (prickly lettuce)
  • Malva neglecta (common mallow)
  • Medicago lupulina (black medic)
  • Oenothera biennis (common evening-primrose)
  • Plantago lanceolata (narrowleaf plantain)
  • Polygonum aviculare (prostrate knotweed)
  • Rumex crispus (curly dock)
  • Setaria sp. (foxtail)
  • Sonchus sp. (sow thistle)
  • Taraxacum officinale (dandelion)
  • Tragopogon dubius (salsify)
  • Trifolium pratense (red clover)
  • Ulmus pumila (Siberian elm)
  • Verbena bracteata (prostrate vervain)

Like all posts in the Weeds of Boise series, this will be updated as I identify and photograph more of the weeds found in this location.

Flowers Growing Out of Flowers (Things Are Getting Weird Out There)

I’m sure that anyone living through the events of 2020 would agree, these are truly wild times. So, when I stumbled across some purple coneflowers that appeared to be growing flowers out of flowers, I thought to myself, “Of course! Why not!?!” The world is upside down. Anything is possible.

As it turns out, however, this phenomenon occurs more frequently than I was aware. But it’s not necessarily a good thing, particularly if you’re concerned about plant health. We’ll get to that in a minute. First, what’s going on with these flowers?

Flowers in the aster family are unique. They have the appearance of being a single flower but are actually a cluster of two types of much smaller flowers all packed in together. Purple coneflower (Echinacea purpurea) is a great example of this. Its flower heads are composed of dozens of disc flowers surrounded by a series of ray flowers. The minuscule disc flowers form the cone-like center of the inflorescence. The petals that surround the cone are individual ray flowers. This tight cluster of many small flowers (or florets) is known as a composite. Sunflowers are another example of this type of inflorescence.

Flowers are distinct organs. Not only are they the reproductive structures of flowering plants, but unlike the rest of the plant, they exhibit determinate growth. Flowers are, after all, plant shoots that have been “told” to stop growing like other shoots and instead modify themselves into reproductive organs and other associated structures. Unlike other shoots, which continue to grow (or at least have the potential to), a flower (and the fruit it produces) is the end result for this reproductive shoot. This is what is meant by determinate growth. However, sometimes things go awry, and the modified shoots and leaves that make up a flower don’t develop as expected, producing some bizarre looking structures as a result.

An example of this is a double flower. Plants with double flowers have mutations in their genes that cause disruptions during floral development. This means that their stamens and carpels (the reproductive organs of the flowers) don’t develop properly. Instead, they become additional petals or flowers, resulting in a flower composed of petals upon petals upon petals – a look that some people like, but that have virtually nothing to offer the pollinators that typically visit them. Because of their ornamental value, double-flowered varieties of numerous species – including purple coneflower – can be found in the horticultural trade.

double-flowered purple coneflower

Genetic mutations are one way that odd looking flowers come about. It is not the cause, however, of the freak flowers that I recently came across. What I witnessed was something called phyllody and was the result of an infection most likely introduced to the plant by a leafhopper or some other sap-sucking insect. Phyllody, which has a variety of causes, is a disruption in plant hormones that leads to leaves growing in place of flower parts. As a result, the flowers become sterile and green in color. In the case of purple coneflower, leafy structures are produced atop shoots arising from the middle of ray and/or disc florets. In other species, shoots aren’t visible and instead the inflorescence is just a cluster of leaves. In a sense, the reproductive shoot has returned to indeterminate growth, having switched back to shoot and leaf production.

Phyllody can have either biotic or abiotic causes. Biotic meaning infection by plant pathogens – including certain viruses, bacteria, and fungi – or damage by insects. Abiotic factors like hot weather and lack of water can result in a temporary case of phyllody in some plants. Phyllody plus a number of other symptoms made it clear that the purple coneflower I encountered had a fairly common disease known as aster yellows. This condition is caused by a bacterial parasite called a phytoplasma, and is introduced to the plant via a sap-sucking insect. It then spreads throughout the plant, infecting all parts. The phyllody was a dead give away, but even the flowers that weren’t alien-looking were discolored. The typical vibrant purple of the ray flowers was instead a faded pink color. The flowers that had advanced phyllody – along with the rest of the plant – were turning yellow-green.

This inflorescence isn’t exhibiting phyllody yet, but the purple color in the ray flowers is quickly fading.

Hundreds of plant species are susceptible to aster yellows, and not just those in the aster family. Once a plant is infected with aster yellows, it has it for good and will never grow or reproduce properly. For this reason, it is best to remove infected plants from the garden to avoid spreading the infection to other plants. As cool as the flowers may look, infected plants just aren’t worth saving.

Further Reading: 

Awkward Botanical Sketches #4: Boise Goathead Fest Edition

Covid-19 be damned, Boise Goathead Fest is happening in 2020. However, since we’re in the middle of a pandemic and the number of infections in Idaho have been far greater than we’d like them to be, this beloved, summertime event (now in its third year) is going to look quite a bit different this time around. No giant bicycle parade snaking through downtown Boise, no big gathering in the park to celebrate bicycles and recogonize all who helped pull goatheads across the Treasure Valley, and (I have to assume) no bike sumo. But we’re still going to decorate our bikes and ourselves like a noxious weed and go for a bike ride, and even though we won’t all be able to gather together in one spot, the sentiment will undoubtedly be the same.

I’m a big fan of the Goathead Fest, and not simply because I love bicycles and bike-culture. In fact, it’s mostly because a plant – while despised by all who ride bikes in this area – takes centerstage in the celebration. Not too many plants get this kind of attention. And sure, it may only find itself in the spotlight because of its bad behavior, but at least it has people paying more mind to green things.

In anticipation of this year’s Goathead Fest, I decided to make a few attempts at drawing Tribulus terrestris. Goathead art has played a big part in the festivities since year one, and this year is no exception. In a normal year, all of the artwork would be displayed together in Cecil D. Andrus Park. This year, pieces of art will be displayed around town for us all to happen upon as we embark on our socially distanced bike rides. However, you won’t see any of my artwork out there (for good reason). Maybe someday (one can dream, I guess). Until then, I’ll include a few of my awkward attempts below.

the flower of Tribulus terrestris

an attempt to color the flower of Tribulus terrestris

goathead nutlets #1

goathead nutlets #2

Tribulus terrestris leaf rubbing

Goathead Monster #1

Goathead Monster #2

More Awkward Botanical Sketches: 

The Hidden Flowers of Viola

Violas keep a secret hidden below their foliage. Sometimes they even bury it shallowly in the soil near their roots. I suppose it’s not a secret really, just something out of sight. There isn’t a reason to show it off, after all. Showy flowers are showy for the sole purpose of attracting pollinators. If pollinators are unnecessary, there is no reason for showy flowers, or to even show your flowers at all. That’s the story behind the cleistogamous flowers of violas. They are a secret only because unless you know to look for them, you would have no idea they were there at all.

Cleistogamy means closed marriage, and it describes a self-pollinating flower whose petals remain sealed shut. The opposite of cleistogamy is chasmogamy (open marriage). Most of the flowers we are familiar with are chasmogamous. They open and expose their sex parts in order to allow for cross-pollination (self-pollination can also occur in such flowers). Violas have chasmogamous flowers too. They are the familiar five-petaled flowers raised up on slender stalks above the green foliage. Cross-pollination occurs in these flowers, and seed-bearing fruits are the result. Perhaps as a way to ensure reproduction, violas also produce cleistogamous flowers, buried below their leaves.

an illustration of the cleistogamous flower of Viola sylvatica opened to reveal its sex parts — via wikimedia commons

Flowers are expensive things to make, especially when the goal is to attract pollinators. Colorful petals, nectar, nutritious pollen, and other features that help advertise to potential pollinators all require significant resources. All this effort is worth it when it results in the ample production of viable seeds, but what if it doesn’t? Having a method for self-pollination ensures that reproduction will proceed in the absence of pollinators or in the event that floral visitors don’t get the job done. A downside, of course, is that a seed produced via self-pollination is essentially a clone of the parent plant. There will be no mixing of genes with other individuals. This isn’t necessarily bad, at least in the short term, but it has its downsides. A good strategy is a mixture of both cross- and self-pollination – a strategy that violas employ.

The cleistogamous flowers of violas generally appear in the summer or fall, after the chasmogamous flowers have done their thing. The fruits they form split open when mature and deposit their seeds directly below the parent plant. Some are also carried away by ants and dispersed to new locations. Seeds produced in these hidden flowers are generally superior and more abundant compared to those produced by their showy counterparts. People who find violas to be a troublesome lawn weed – expanding far and wide to the exclusion of turfgrass – have these hidden flowers to blame.

That being said, there is a defense for violas. In the book The Living Landscape by Rick Darke and Doug Tallamy, Tallamy writes: “Plants such as the common blue violet (Viola sororia), long dismissed by gardeners as a weed, can be reconstituted as desirable components of the herbaceous layer when their ecosystem functionality is re-evaluated. Violets are the sole larval food source for fritillary butterflies. Eliminating violets eliminates fritillaries, but finding ways to incorporate violets in garden design supports fritillaries.”

sweet violet (Viola odorata)

In my search for the cleistogamous flowers of viola, I dug up a sweet violet (Viola odorata). I was too late to catch it in bloom, but the product of its flowers – round, purple, fuzzy fruits – were revealed as I uprooted the plant. Some of the fruits were already opening, exposing shiny, light brown seeds with prominent, white elaiosomes, there to tempt ants into aiding in their dispersal. I may have missed getting to see what John Eastman calls “violet’s most important flowers,” but the product of these flowers was certainly worth the effort.

Fruits formed from the cleistogamous flowers of sweet violet (Viola odorata)

Up close and personal with the fruit of a cleistogamous flower

The seeds (elaiosomes included) produced by the cleistogamous flower of sweet violet (Viola odorata)

See Also:

Tea Time: Violet Leaf Tea

The genus Viola is large and widespread. Its flowers are easily recognizable and obviously popular. A significant number of Viola species, hybrids, and cultivars are commercially available and commonly planted in flower beds and container gardens. Certain species have even become weeds – vicious lawn invaders in some people’s opinion. Violets (or pansies in some cases) are also edible. Their leaves and/or flowers can be used in salads, drinks, and desserts. One way to use the leaves is to make tea, so that’s what I did.

I imagine you can make tea from any Viola species, but after some searching I found that two species frequently mentioned are Viola odorata and Viola sororia – two very similar looking plants, one from the Old World and the other from the New World.

sweet violet (Viola odorata)

Viola odorata – commonly known as sweet violet, wood violet, or English violet – is distributed across Europe and into Asia and has been widely introduced outside of its natural range. It has round, oval, or heart-shaped leaves with toothed margins that grow from the base of the plant, giving it a groundcover-type habit. Its flowers range from dark purple to white and are borne atop a single stem that curves downward at the top like a shepherd’s crook. It has no leafy, upright stems, and it spreads horizontally via stolons and rhizomes. The flowers are distinctly fragrant and have a long history of being used in perfumes.

One way to get a good whiff of these flowers is to try a trick described in the book The Reason for Flowers by Stephen Buchmann:

Go into a garden or any natural area and select one or more flowers you want to investigate…. Select a small, thoroughly washed and dried glass jar with a tight-fitting lid. Place just one type of flower in the jar. Set your jar in a warm, sunny place such as a windowsill and come back in an hour or two. Carefully open the lid and sniff…. If you’ve selected a blossom with even the faintest scent, you should be able to smell it now, since the fragrance molecules have concentrated inside the jar.

sweet violet flowers inside glass jar

Viola sororia – native to eastern North America –  is also commonly planted outside of its native range. It’s clearly a favorite, having earned the distinction of state flower in four U.S. states. Known as the common blue violet (or myriad other commons names), it looks and acts a lot like sweet violet. I distinguish them by their flowers, which are wider and rounder (chunkier, perhaps) than sweet violet flowers, and their leaves, which are generally more heart-shaped. Feel free to correct me. If, like me, you’re having trouble identifying violets, keep in mind that Viola species are highly variable and notorious hybridizers, so don’t beat yourself up over it. It’s their fault, not yours.

common blue violet (Viola sororia)

Violets bloom when the air is cool and the days are short. They are among the earliest plants to flower after the new year and among the latest plants flowering as the year comes to a close. In his entry on violets in The Book of Forest and Thicket, John Eastman refers to these early bloomers as “this low, blue flame in the woods.” They are like “a pilot light that ignites the entire burst of resurrection we call spring.” I can’t really picture spring without them. I find their unique flowers so intriguing that I fixate on them whenever I see them. And once I learned that I could make a tea out of their leaves, I had to try it.

I used the leaves of Viola odorata (or what I, with my amateur skills, identified as V. odorata). I picked several of what looked to be young leaves and left them to dry in the sun for several days. Later, I chopped them up and brewed a tea according to the instructions found on this website, which suggests using one tablespoon of dried leaves in sixteen ounces of water. Apparently, a little goes a long way, and I probably could have used fewer leaves than I did.

dried, chopped up leaves of sweet violet (Viola odorata) for making tea

The tea has a nice green color and smells a bit like grass to me. It may even taste like grass. I found it fairly bitter. Sierra didn’t like it and called it musty. I enjoyed it, but would likely enjoy it more if I hadn’t made it quite so strong. The aforementioned website also recommends combining violet leaf with other things like mint, dandelion, clover, and/or chamomile. I imagine a combination of ingredients could be better than just violet leaf on its own. Another site warns that “some of the wild violets have an unpleasant soapy flavor,” so that’s something to keep in mind when selecting your leaves for tea and other things. Either way, violet leaf tea is an experience worth having.

See Also: Pine Needle Teas