Awkward Botanical Sketches #4: Boise Goathead Fest Edition

Covid-19 be damned, Boise Goathead Fest is happening in 2020. However, since we’re in the middle of a pandemic and the number of infections in Idaho have been far greater than we’d like them to be, this beloved, summertime event (now in its third year) is going to look quite a bit different this time around. No giant bicycle parade snaking through downtown Boise, no big gathering in the park to celebrate bicycles and recogonize all who helped pull goatheads across the Treasure Valley, and (I have to assume) no bike sumo. But we’re still going to decorate our bikes and ourselves like a noxious weed and go for a bike ride, and even though we won’t all be able to gather together in one spot, the sentiment will undoubtedly be the same.

I’m a big fan of the Goathead Fest, and not simply because I love bicycles and bike-culture. In fact, it’s mostly because a plant – while despised by all who ride bikes in this area – takes centerstage in the celebration. Not too many plants get this kind of attention. And sure, it may only find itself in the spotlight because of its bad behavior, but at least it has people paying more mind to green things.

In anticipation of this year’s Goathead Fest, I decided to make a few attempts at drawing Tribulus terrestris. Goathead art has played a big part in the festivities since year one, and this year is no exception. In a normal year, all of the artwork would be displayed together in Cecil D. Andrus Park. This year, pieces of art will be displayed around town for us all to happen upon as we embark on our socially distanced bike rides. However, you won’t see any of my artwork out there (for good reason). Maybe someday (one can dream, I guess). Until then, I’ll include a few of my awkward attempts below.

the flower of Tribulus terrestris

an attempt to color the flower of Tribulus terrestris

goathead nutlets #1

goathead nutlets #2

Tribulus terrestris leaf rubbing

Goathead Monster #1

Goathead Monster #2

More Awkward Botanical Sketches: 

Book Review: The Gyroscope of Life

Gyroscopes are entertaining toys and incredibly useful tools. They retain their balance and resist changes to their orientation as long as their flywheel is spinning. As the flywheel slows or stops, the gyroscope wobbles out of control and ultimately quits. Considering their design and function, it’s easy to find parallels between gyroscopes and living systems. Consistent energy inputs keep living things alive. Changes can bring imbalance; major disruptions can lead to death. There is a reason we often describe the natural world as a sort of balancing act. It is the work of an ecologist to make sense of this balancing act. The better we understand it, the more equipped we are to protect it and operate responsibly within it.

It is through this lens that David Parrish writes about the biological world in The Gyroscope of Life, a book that Parrish refers to as “a love song to the field of biology.” Parrish has spent much of his life observing and studying the natural world and, as professor emeritus of Crop and Soil Environmental Sciences at Virginia Tech, undoubtedly shared much of what he presents in his book with countless students over the years. The Gyroscope of Life reads like part memoir and part last lecture, and is the work of someone who has an obvious passion for science and nature.

Parrish spends the first few chapters of his book writing mostly about his life and how he came to be a biologist. He acknowledges his privelege – “born male, white, and American in an era where each of those attributes provided me major advantages” –  having essentially been placed on third base from the start, “well down the third base line.” An aspiring zoologist turned botanist, he spent his early years in graduate school studying seeds and seed dormancy. It’s a topic that obviously interests him, as several pages of the book are spent considering what’s going on inside of a seed. “Seeds provide the widest-spread examples of suspended life,”  Parrish says. Are they alive or dead or neither?

Two additional, major life events play a prominent role in the arc of Parrish’s book. One being his break from organized religion and the other his battle with advanced prostate cancer. He grew up in an orthodox Christian home with a very literal understanding of the Bible. His education put him at odds with what he was taught growing up about (among other things) the age of the earth and its creation. Eventually he came to understand that science and religion “exist in separate non-overlapping spheres – the physical and the metaphysical.” He doesn’t necessarily see science and religion as being inherently at odds with each other, but his understanding of science makes it difficult to “find resonance in religion” due to the “cacophony of dissonance” it offers.

In addressing his prostate cancer, Parrish underwent an operation that gave him a newfound perspective on gender. Freed from “testosterone poisoning,” he was able to more fully consider sex and gender from a biological perspective, which he says he had been doing for decades prior to the operation. He spends a good portion of the book “demystifying sex and gender.” One compelling example he offers involves avocado flowers, which actually change gender over time, a phenomenon known as synchronous dichogamy.

avocado flowers (Persea americana) via wikimedia commons

Over the course of its pages, The Gyroscope of Life covers a significant number of topics in the fields of biology and ecology. It’s a relatively short book, but as it careens through such wide-ranging material, it does so in an approachable and suprisingly succint manner. Parrish’s sense of humor, which doesn’t waver despite how bleak the discussion sometimes gets, helps carry the story along and keeps things interesting. Parrish covers evolution (“[Biologists] argue that, if evolution didn’t happen, it should.”), taxonomy (“the name for naming things”) and sytematics, ecological niches (“[humans] are essentially living niche-free and ecosystemless”), domestication, and so much more. The last chapter is spent discussing agroecosystems (“the organisms and abiotic environment that interact in a human-managed agricultural setting”), a topic he spent much of his career studying.

The underlying message of this book, as I see it, is a simultaneous celebration for life on earth and a concern for the direction things are going considering how humans have managed things. Parrish has some admonition for humans in light of how we’ve treated our home planet, but he isn’t too heavy-handed about it. Overall, reading the book felt like sitting in on a lecture given by a friendly and dynamic professor who has obviously given a lot of thought to what he has to say.

Check out the following video to see David Parrish describe the book in his own words.

More Book Reviews on Awkward Botany:

The Hidden Flowers of Viola

Violas keep a secret hidden below their foliage. Sometimes they even bury it shallowly in the soil near their roots. I suppose it’s not a secret really, just something out of sight. There isn’t a reason to show it off, after all. Showy flowers are showy for the sole purpose of attracting pollinators. If pollinators are unnecessary, there is no reason for showy flowers, or to even show your flowers at all. That’s the story behind the cleistogamous flowers of violas. They are a secret only because unless you know to look for them, you would have no idea they were there at all.

Cleistogamy means closed marriage, and it describes a self-pollinating flower whose petals remain sealed shut. The opposite of cleistogamy is chasmogamy (open marriage). Most of the flowers we are familiar with are chasmogamous. They open and expose their sex parts in order to allow for cross-pollination (self-pollination can also occur in such flowers). Violas have chasmogamous flowers too. They are the familiar five-petaled flowers raised up on slender stalks above the green foliage. Cross-pollination occurs in these flowers, and seed-bearing fruits are the result. Perhaps as a way to ensure reproduction, violas also produce cleistogamous flowers, buried below their leaves.

an illustration of the cleistogamous flower of Viola sylvatica opened to reveal its sex parts — via wikimedia commons

Flowers are expensive things to make, especially when the goal is to attract pollinators. Colorful petals, nectar, nutritious pollen, and other features that help advertise to potential pollinators all require significant resources. All this effort is worth it when it results in the ample production of viable seeds, but what if it doesn’t? Having a method for self-pollination ensures that reproduction will proceed in the absence of pollinators or in the event that floral visitors don’t get the job done. A downside, of course, is that a seed produced via self-pollination is essentially a clone of the parent plant. There will be no mixing of genes with other individuals. This isn’t necessarily bad, at least in the short term, but it has its downsides. A good strategy is a mixture of both cross- and self-pollination – a strategy that violas employ.

The cleistogamous flowers of violas generally appear in the summer or fall, after the chasmogamous flowers have done their thing. The fruits they form split open when mature and deposit their seeds directly below the parent plant. Some are also carried away by ants and dispersed to new locations. Seeds produced in these hidden flowers are generally superior and more abundant compared to those produced by their showy counterparts. People who find violas to be a troublesome lawn weed – expanding far and wide to the exclusion of turfgrass – have these hidden flowers to blame.

That being said, there is a defense for violas. In the book The Living Landscape by Rick Darke and Doug Tallamy, Tallamy writes: “Plants such as the common blue violet (Viola sororia), long dismissed by gardeners as a weed, can be reconstituted as desirable components of the herbaceous layer when their ecosystem functionality is re-evaluated. Violets are the sole larval food source for fritillary butterflies. Eliminating violets eliminates fritillaries, but finding ways to incorporate violets in garden design supports fritillaries.”

sweet violet (Viola odorata)

In my search for the cleistogamous flowers of viola, I dug up a sweet violet (Viola odorata). I was too late to catch it in bloom, but the product of its flowers – round, purple, fuzzy fruits – were revealed as I uprooted the plant. Some of the fruits were already opening, exposing shiny, light brown seeds with prominent, white elaiosomes, there to tempt ants into aiding in their dispersal. I may have missed getting to see what John Eastman calls “violet’s most important flowers,” but the product of these flowers was certainly worth the effort.

Fruits formed from the cleistogamous flowers of sweet violet (Viola odorata)

Up close and personal with the fruit of a cleistogamous flower

The seeds (elaiosomes included) produced by the cleistogamous flower of sweet violet (Viola odorata)

See Also: