Winter Interest in the Lower Boise Foothills

The Boise Foothills, a hilly landscape largely dominated by shrubs and grasses, are a picturesque setting any time of the year. They are particularly beautiful in the spring when a wide array of spring flowering plants are in bloom, and then again in late summer and early fall when a smaller selection of plants flower. But even when there aren’t flowers to see, plants and other features in the Foothills continue to offer interest. Their beauty may be more subtle and not as immediately striking as certain flowers can be, but they catch the eye nonetheless. Appeal can be found in things like gnarled, dead sagebrush branches, lichen covered rocks, and fading seed heads. Because the lower Boise Foothills in particular have endured a long history of plant introductions, an abundance of weeds and invasive plants residing among the natives also provide interest.

This winter has been another mild one. I was hoping for more snow, less rain, and deeper freezes. Mild, wet conditions make exploring the Foothills difficult and ill-advised. Rather than frozen and/or snow covered, the trails are thick with mud. Walking on them in this state is too destructive. Avoiding trails and walking instead on trail side vegetation is even more destructive, and so Foothills hiking is put on hold until the ground freezes or the trails dry out. This means I haven’t gotten into the Foothills as much as I would like. Still, I managed to get a few photos of some of the interesting things the lower Boise Foothills have to offer during the winter. What follows is a selection of those photos.

snow melting on the fruit of an introduced rose (Rosa sp.)

fading seed heads of hoary tansyaster (Machaeranthera canescens)

samaras of box elder (Acer negundo)

snow on seed heads of yarrow (Achillea millefolium)

gall on introduced rose (Rosa sp.)

sunflower seed heads (Helianthus annuus)

sunflower seed head in the snow (Helianthus annuus)

snow falling in the lower Boise Foothills

fading seed heads of salsify (Tragopogon dubius)

lichen on dead box elder log

seed head of curlycup gumweed (Grindelia squarrosa)

lichen and moss on rock in the snow

fruits of poison ivy (Toxicodendron radicans)

See Also: Weeds and Wildflowers of the Boise Foothills (June 2015)

———————-

The first issue of our new zine, Dispersal Stories, is available now. It’s an ode to traveling plants. You can find it in our Etsy Shop

Pine Cones Are Like Hangars for Pine Tree Seeds

Over the past year I’ve written about the making of pine tar and the drinking of pine needle tea. But why stop there? Pines are a fascinating group of plants, worthy of myriad more posts, and so my exploration into the genus continues with pine cones and the seeds they bear.

Pines are conifers and, more broadly, gymnosperms. They are distinct from angiosperms (i.e. flowering plants), with the most obvious distinction being that they don’t make flowers. Since they are flowerless, they are also fruitless, as fruits are seed-bearing structures formed from the ovary or ovaries of flowering plants. Pines do make seeds though, and, as in angiosperms, pollen is transported from a “male” organ to a “female” organ in order for seeds to form. Rather than being housed in a fruit, the seeds are essentially left out in the open, which is why the term “naked seeds” is frequently used in reference to gymnosperms.

seed cone of Scots pine (Pinus sylvestris ‘Glauca Nana’)

In the case of pines and other conifers, the seeds may be naked, but they’re not necessarily homeless. They have the protection of cones, which is where the female reproductive organs are located. Male, pollen cones are separate structures and are smaller and less persistent than the cones that house the seeds. A cone, also known as a strobilus, is a modified branch. A series of scales grow in a spiral formation along the length of the branch, giving the cone its shape. On the inside of these scales is where the seeds form, two per scale. First they are egg cells, and then, after pollination and a period of maturation, they become seeds. The scales protect them throughout the process and then release them when the time is right.

With more than 120 species in the genus Pinus, there is great diversity in the size, shape, and appearance of pine cones. While at first glance they don’t appear all that different from one another, the cones of each species have unique characteristics that can help one identify the pine they fell from without ever having to see the tree. Pine cones are also distinct from the cones of other conifers. For one, pine cones take at least two or, in some cases, three years to reach maturity, whereas the cones of other conifers develop viable seeds in a single year. Pine cones are also known to remain on the tree for several years even after the seeds are mature – in some species up to 10 years or more – and they don’t always part with their seeds easily. Lodgepole pines (Pinus contorta) require high temperatures to melt the resin that holds their scales closed, the cones of jack pine (P. banksiana) generally only open in the presence of fire, and the seeds of whitebark pine (P. albicaulis) are extracted with the aid of birds (like Clark’s nutcracker) and other animals.

immature seed cone of lodgepole pine (Pinus contorta)

Every pine cone is special in its own right, but some stand out in particular. The largest and heaviest pine cones are found on Coulter pine (P. coulteri), measuring up to 15 inches long and weighing as much as 11 pounds with scales that come to a sharp point. It’s understandable why the falling cones of this species are frequently referred to as widowmakers. Longer cones, but perhaps less dangerous, are found on sugar pine (P. lambertiana). The tallest trees in the genus, the cones of sugar pine consistently reach 10 to 20 inches long and sometimes longer.

Pine tree seeds are a food source for numerous animals, including humans. Most are so small they aren’t worth bothering with, however, several species have seeds that are quite large and worth harvesting. Most commercially grown pine nuts come from stone pine (P. pinea) and Korean pine (P. koraiensis). In North America, a wild source for pine nuts is found in the pinyon pines, which have a long history of being harvested and eaten by humans.

immature seed cone of ponderosa pine (Pinus ponderosa)

The seeds of many pines come equipped with little wings called samaras, which aid them in their dispersal. Upon maturity, pine cone scales open and release the seeds. Like little airplanes leaving the hangar, the seeds take flight. Wind dispersal is not an effective means of dispersal for all pines though. A study published in Oikos found that seeds weighing more than 90 milligrams are not dispersed as well by wind as lighter seeds are. When it comes to long distance dispersal, heavier seeds are more dependent on animals like birds and rodents, and some pines rely exclusively on their services. The author of the study, Craig Benkman, notes that “bird-dispersed pines have proportionately thinner seed coats than wind-dispersed pines,” which he points out in reference to Japanese stone pine (P. pumila) and limber pine (P. flexilis), whose seeds weigh around 90 milligrams yet rely mostly on birds for dispersal. Benkman suspects that the seeds of these two species “would probably weigh over 100 milligrams if they had seed coats of comparable thickness as wind-dispersed seeds.”

Whitebark pine, as mentioned above, holds tightly to its seeds. Hungry animals must pry them out, which they do. Pine seeds are highly nutritious and supplement the diets of a wide range of wildlife. Some of the animals that eat the seeds also cache them for later. Clark’s nutcrackers are particularly diligent hoarders, harvesting thousands more seeds than they can possibly consume and depositing them in small numbers in locations suitable for sprouting.

Even large seeds that naturally fall from their cones have a chance to be dispersed further. As the seeds become concentrated at the base of the tree, ground-foraging rodents gather them up and cache them in another location, which Benkman refers to as secondary seed dispersal.

Particularly in pine species with wind dispersed seeds, what the weather is like helps determine when the hangar door will open to release the flying seeds. When it is wet and rainy, the scales of pine cones close up. The seeds wouldn’t get very far in the rain anyway, so why bother? When warm, dry conditions return, the scales open back up and the seeds are free to fly again. You can even watch this in action in the comfort of your own home by following the instructions layed out in this “seasonal science project.”

immature seed cones of limber pine (Pinus flexilis)

mature seed cones of limber pine (Pinus flexilis)

Further Reading:

———————

Photos of pine cones were taken at Idaho Botanical Garden in Boise, Idaho

A Few Snags Near Ketchum and Stanley

A couple of weeks ago, Sierra and I were in Ketchum, Idaho taking a much needed mid-October vacation. The weather was great, and the fall color was incredible, so heading out on multiple hikes was a no-brainer. On our hikes, I found myself increasingly drawn to all of the snags. Forested areas like those found in the Sawtooth National Forest are bound to have a significant amount of standing dead trees. After all, trees don’t live forever; just like any other living being, they die – some of old age, some of disease or lightning strike or any number of other reasons. But death for a tree does not spell the end of its life giving powers. In the case of snags, it’s really just the beginning.

Death might come quick for a tree, but its rate of decomposition is slow. Fungi move in to begin the process and are joined by myriad insects, mosses, lichens, and bacteria. The insects provide food for birds, like woodpeckers and sapsuckers who hammer out holes in the standing trunk. As primary cavity nesters, they also nest in some of these holes. Secondary cavity nesters make a home in these holes as well. This includes a whole suite of birds, mammals, amphibians, and reptiles. Without the habitat provided by snags, many of these animals would disappear from the forest.

Eventually snags fall, and as the rotting continues, so does the dead tree’s contribution to new life. It’s at this point that snags become nurse logs or nurse stumps, providing habitat and nutrients for all sorts of plants, fungi, and other organisms.

Unfortunately I can’t bring a you a complete representation of the many snags of Sawtooth National Forest. You’ll have to visit sometime to see them all for yourself. Instead, what follows is a small sampling of a few of the snags we saw near Ketchum and Stanley.

new cavities in new snag

old cavities in old snag

knobby snag with lichens

lone snag on hillside

double-trunked snag

fallen snag

snags are more alive than you might think

just look at those cavities

For more snag and nurse log fun, check out the following episodes of Boise Biophilia:

———————

This will be the last post for a few weeks as I will be taking a break to finish working on a related project. I hope to be back sometime in December with more posts, as well as the unveiling of what I have been working on. In the meantime, you can stay updated by following Awkward Botany on Twitter or Facebook.

Drought Tolerant Plants: Yellowhorn

A drought tolerant garden doesn’t have to be treeless. While the pickings are slim, there is a selection of trees that, once established, are well adapted to deal with extended bouts of little to no water. One such tree is yellowhorn, a species that demands to be considered for any waterwise landscape. Yellowhorn is rare in cultivation – and also restricted in its natural distribution – but perhaps that will change as word gets around about this beautiful and resilient tree.

Xanthoceras sorbifolium is native to several provinces in northern China and has been cultivated in a number of places outside of China since at least the 1800’s. Its ethnobotanical value is well understood in China. Its leaves, flowers, and seeds are edible and medicinal, and the high oil content of its seeds make them useful for the production of biofuels. Researchers are also investigating the use of yellowhorn for ecological restoration in arid habitats where desertification is a concern.

yellowhorn in bloom

Yellowhorn is the only species in the genus Xanthoceras, but is one in a long list of trees and shrubs in the Sapindaceae family – a family that now includes maples and horse chestnuts. It is considered both a large shrub and a small, multi-stemmed tree. It reaches a maximum height of about 25 feet, but arrives there at a relatively slow pace. It tolerates a variety of soil types, but like most other drought tolerant plants, it prefers soils that don’t become waterlogged easily. Its leaves are long, glossy green, and compound, consisting of 9 – 17 leaflets. The leaves persist late into the year and turn yellow in the fall. However, late spring, when the tree is covered in flowers, is when this tree puts on its real show.

Large white flowers with yellow-green centers that turn maroon or red-orange as they age are produced on racemes at the ends of branches. Small, yellow, hornlike appendages between each of the five petals of the flowers are what gives the tree its common name. Flowering lasts for a couple weeks, after which fruits form, which are about 2.5 inches wide, tough, leathery, and somewhat pear shaped. In my experience, most of the fruits are eaten by squirrels long before they get a chance to reach maturity. The ones the squirrels don’t get will persist on the tree, harden, and eventually split open to reveal several large, dark, round seeds nestled in chambers within the fruit.

To truly appreciate this tree, it must be seen in person, especially in bloom. At that point you will demand to have one (or more) in your garden. The seeds are said to be delicious, so you should give them a try if you can beat the squirrels to them. For a more thorough overview of yellowhorn, check out this article from Temperate Climate Permaculture, and for more photos of yellowhorn in bloom, check out this post from Rotary Botanical Gardens.

Squirrel nesting in yellowhorn, getting ready to go after more fruits.

All photos in this post were taken at Idaho Botanical Garden in Boise, Idaho.

———————

More Drought Tolerant Plants Posts:

Idaho’s Native Milkweeds (Updated)

As David Epstein said in an interview on Longform Podcast, “Any time you write about science, somethings is going to be wrong; the problem is you don’t know what it is yet, so you better be ready to update your beliefs as you learn more.” Thanks to the newly published Guide to the Native Milkweeds of Idaho by Cecilia Lynn Kinter, lead botanist for Idaho Department of Fish and Game, I’ve been made aware of some things I got wrong in the first version of this post. I appreciate being corrected though, because I want to get things right. What follows is an updated version of the original post. The most substantial change is that there are actually five milkweed species native to Idaho rather than six. Be sure to check out Kinter’s free guide to learn more about this remarkable group of plants.

———————

Concern for monarch butterflies has resulted in increased interest in milkweeds. Understandably so, as they are the host plants and food source for the larval stage of these migrating butterflies. But milkweeds are an impressive group of plants in their own right, and their ecological role extends far beyond a single charismatic insect. Work to save the monarch butterfly, which requires halting milkweed losses and restoring milkweed populations, will in turn provide habitat for countless other organisms. A patch of milkweed teems with life, and our pursuits to protect a single caterpillar invite us to explore that.

Asclepias – also known as the milkweeds – is a genus consisting of around 140 species, 72 of which are native to the United States and Canada. Alaska and Hawaii are the only states in the U.S. that don’t have a native species of milkweed. The ranges of some species native to the United States extend down into Mexico where there are numerous other milkweed species. Central America and South America are also home to many distinct milkweed species. Asclepias species found in southern Africa are considered by many to actually belong in the genus Gomphocarpus.

The habitats milkweeds occupy are about as diverse as the genus itself – from wetlands to prairies, from deserts to forests, and practically anywhere in between. Some species occupy disturbed and/or neglected sites like roadsides, agricultural fields, and vacant lots. For this reason they are frequently viewed as a weed; however, such populations are easily managed, and with such an important ecological role to play, they don’t deserve to be vilified in this way.

Milkweed species are not distributed across the United States evenly. Texas and Arizona are home to the highest diversity with 37 and 29 species respectively. Idaho, my home state, is on the low end with five native species. The most abundant species found in Idaho is Asclepias speciosa, commonly known as showy milkweed.

showy milkweed (Asclepias speciosa)

Showy milkweed is distributed from central U.S. westward and can be found in all western states. It occurs throughout Idaho and is easily the best place to look for monarch caterpillars. In fact, the monarch butterfly is Idaho’s state insect, thanks in part to the abundance of showy milkweed, which is frequently found growing in large colonies due to its ability to reproduce vegetatively via adventitious shoots produced on lateral roots or underground stems. Only a handful of milkweed species reproduce this way. Showy milkweed reaches up to five feet tall and has large ovate, gray-green leaves. Like all milkweed species except one (Asclepias tuberosa), its stems and leaves contain milky, latex sap. In early summer, the stems are topped with large umbrella-shaped inflorescences composed of pale pink to pink-purple flowers.

The flowers of milkweed deserve a close examination. Right away you will notice unique features not seen on most other flowers. The petals of milkweed flowers bend backwards, which would otherwise allow easy access to the flower’s sex parts if it wasn’t for a series of hoods and horns protecting them. Collectively, these hoods and horns are called the corona, which houses glands that produce abundant nectar and has a series of slits where the anthers are exposed. The pollen grains of milkweed are contained in waxy sacs called pollinia. Two pollinia are connected together by a corpusculum giving this structure a wishbone appearance. An insect visiting the flower for nectar slips its leg into the slit, and the pollen sacs become attached with the help of the corpusculum. When the insect leaves, the pollen sacs follow. Pollination is successful when the pollen sacs are inadvertently deposited on the stigmas of another flower.

Milkweed flowers are not self-fertile, so they require assistance by insects to sexually reproduce. They are not picky about who does it either, and their profuse nectar draws in all kinds of insects including bees, butterflies, moths, beetles, wasps, and ants. Certain insects – like bumble bees and other large bees – are more efficient pollinators than others. Once pollinated, seeds are formed inside a pod-like fruit called a follicle. The follicles of showy milkweed can be around 5 inches long and house dozens to hundreds of seeds. When the follicle matures, it splits open to release the seeds, which are small, brown, papery disks with a tuft of soft, white, silky hair attached. The seeds of showy milkweed go airborne in late summer.

follicles forming on showy milkweed (Asclepias speciosa)

Whorled or narrowleaf milkweed (Asclepias fascicularis) occurs across western and southern Idaho. Its distribution continues into neighboring states. It is adapted to dry locations, but can be found in a variety of habitats. Like showy milkweed, it spreads rhizomatously as well as by seed. It’s a whispy plant that reaches one to three feet tall and occasionally taller. It has long, narrow leaves and produces tight clusters of greenish-white to pink-purple flowers. Its seed pods are long and slender and its seeds are about 1/4 inch long.

flowers of narrowleaf milkweed (Asclepias fascicularis)

seeds escaping from the follicle of narrowleaf milkweed (Asclepias fascicularis)

Swamp or rose milkweed (Asclepias incarnata) is more common east of Idaho, but occurs occasionally in southwestern Idaho. As its common name suggests, it prefers moist soils and is found in wetlands, wet meadows, and along streambanks. It can spread rhizomatously, but generally doesn’t spread very far. It reaches up to four feet tall, has deep green, lance-shaped leaves, and produces attractive, fragrant, pink to mauve, dome-shaped flower heads at the tops of its stems. Its seed pods are narrow and around 3 inches long.

swamp milkweed (Asclepias incarnata)

Asclepias cryptoceras ssp. davisii, or Davis’s milkweed, is a low-growing, drought-adapted, diminutive species that occurs in southwestern Idaho. It has round or oval-shaped leaves and produces flowers on a short stalk. The flowers have white or cream-colored petals and pink-purple hoods. The range of Asclepias cryptoceras – commonly known as pallid milkweed or jewel milkweed – extends beyond Idaho’s borders into Oregon and Nevada, creeping north into Washington and south into California. Another subspecies – cryptoceras – can be found in Nevada, Utah, and their bordering states.

Davis’s milkweed (Asclepias cryptoceras ssp. davisii)

The final species is rare in Idaho, as Idaho sits at the top of its native range. Asclepias asperula ssp. asperula, or spider milkweed, has a single documented location in Franklin County (southeastern Idaho). Keep your eyes peeled though, because this plant may occur elsewhere, either in Franklin County or neighboring counties. It grows up to two feet tall with an upright or sprawling habit and produces clusters of white to green-yellow flowers with maroon highlights. Its common name comes from the crab spiders frequently found hunting in its flower heads.

A sixth species, horsetail milkweed (Asclepias subverticillata), has been falsely reported in Idaho. Collections previously labeled as A. subverticillata have been determined to actually be the similar looking A. fascicularis.

Selections from the Boise Biophilia Archives

For a little over a year now, I’ve been doing a tiny radio show with a friend of mine named Casey O’leary. The show is called Boise Biophilia and airs weekly on Radio Boise. On the show we each take about a minute to talk about something biology or ecology related that listeners in our local area can relate to. Our goal is to encourage listeners to get outside and explore the natural world. It’s fascinating after all! After the shows air, I post them on our website and Soundcloud page for all to hear.

We are not professional broadcasters by any means. Heck, I’m not a huge fan of talking in general, much less when a microphone is involved and a recording is being made. But Casey and I both love spreading the word about nerdy nature topics, and Casey’s enthusiasm for the project helps keep me involved. We’ve recorded nearly 70 episodes so far and are thrilled to know that they are out there in the world for people to experience. What follows is a sampling of some of the episodes we have recorded over the last 16 months. Some of our topics and comments are inside baseball for people living in the Treasure Valley, but there’s plenty there for outsiders to enjoy as well.

Something you will surely note upon your first listen is the scattering of interesting sound effects and off the wall edits in each of the episodes. Those come thanks to Speedy of Radio Boise who helps us edit our show. Without Speedy, the show wouldn’t be nearly as fun to listen to, so we are grateful for the work he does.

Boise Biophilia logo designed by Sierra Laverty

In this episode, Casey and I explore the world of leaf litter. Where do all the leaves go after they fall? Who are the players involved in decomposition, and what are they up to out there?

 

In this episode, Casey gets into our region’s complicated system of water rights, while I dive into something equally complex and intense – life inside of a sagebrush gall.

 

In this episode, I talk about dead bees and other insects trapped and dangling from milkweed flowers, and Casey discusses goatheads (a.k.a. puncture vine or Tribulus terrestris) in honor of Boise’s nascent summer celebration, Goathead Fest.

 

As much as I love plants, I have to admit that some of our best episodes are insect themed. Their lives are so dramatic, and this episode illustrates that.

 

The insect drama continues in this episode in which I describe how ant lions capture and consume their prey. Since we recorded this around Halloween, Casey offers a particularly spooky bit about garlic.

 

If you follow Awkward Botany, you know that one of my favorite topics is weeds. In this episode, I cover tumbleweeds, an iconic western weed that has been known to do some real damage. Casey introduces us to Canada geese, which are similar to weeds in their, at times, overabundance and ability to spawn strong opinions in the people they share space with.

 

In this episode, I explain the phenomenon of marcescence, and Casey gives some great advice about growing onions from seed.

 

And finally, in the spring you can’t get by without talking about bulbs at some point. This episode is an introduction to geophytes. Casey breaks down the basics, while I list some specific geophytes native to our Boise Foothills.

 

Field Trip: Orton Botanical Garden

In the inaugural year of this blog, I wrote a short post about a visit to Plantasia Cactus Gardens, a botanical garden in Twin Falls, Idaho that specializes in cold hardy cactus and other succulents. I finally made a return visit all these years later (thanks to a co-worker who organized the trip). Back in 2013, the garden was private but open to the public by appointment. Today, the garden is still open by appointment but is now a 501(c)(3) non-profit organization with a new name: Orton Botanical Garden.

With the name change and non-profit status comes a new mission statement. The garden has been an impressive display of cold hardy cactus and succulents along with native and drought-tolerant plants for many years now. It has also long been a resource for educating visitors on the importance of these plants, as well as the importance of water conservation through water efficient landscaping. So the mission statement isn’t necessarily a new direction, but rather an affirmation of what this garden has done so well for years. Few gardens are doing cold hardy, drought-tolerant plants at the level that Orton Botanical Garden is.

Many of the plants at Orton Botanical Garden are made available to the public for purchase through an annual plant sale in May, as well as through an online store. This is another great service because sourcing some of these plants is not easy, and this one of the few places they can be found for sale.

Wherever you live in the world, this is a garden that should be on your bucket list. Even at a mere 5 acres in size, one could easily spend hours exploring it, and each visit reveals something new. What follows is just a small sampling of the things you will find there.

Toroweap hedgehog (Echinocereus coccineus var. toroweapensis)

scarlet hedgehog (Echinocereus coccineus var. coccineus)

White Sands kingcup cactus (Echinocereus triglochidiatus var. triglochidiatus)

Orcutt’s foxtail cactus (Escobaria orcuttii var. koenigii)

a peak down a shallow gully flanked by cholla (Cylindropuntia spp.)

Colorado hookless cactus (Sclerocactus glaucus)

Fremont’s mahonia (Mahonia fremontii)

close up of Fremont’s mahonia (Mahonia fremontii)

spiny pillow (Ptilotrichum spinosum)

hairstreak on cliff fendlerbush (Fendlera rupicola)

Utah sweetvetch (Hedysarum boreale)

Several species of buckwheats were in bloom, including this Railroad Canyon buckwheat (Eriogonum soliceps).

There were also quite a few penstemon species blooming, like this sidebells penstemon (Penstemon secundiflorus).

More Awkward Botany Field Trips: