Spring Weeds in the Mustard Family

Is there a plant family that consists of more weedy species than the mustard family? Asteraceae and Poaceae, for sure. Fabaceae or Lamiaceae, perhaps. Regardless, Brassicaceae is replete with dozens of species – mostly annual – that are skilled at taking advantage of the disturbed environments that humans are in the habit of creating.

It helps that the mustard family is so large: 372 genera and over 4,000 species distributed across the globe. Around 55 genera are said to occur in North America. Most of the plants in this family are herbaceous; few are shrubs. Foliage is aromatic, especially when crushed. Flowers are particularly distinctive. Each flower has four petals – in some species petals are divided, giving the impression that there are more than four – arranged in the shape of a cross or “X.” Flowers are often small, have 4 tall stamens and 2 short stamens, and commonly come in white, yellow, pink, or purple. They are arranged on a raceme, which is typically either tall and straight or compact and flat-topped.

Fruits in the mustard family are capsules with two compartments separated by a clear membrane. The capsules may be at least three times longer than they are wide, in which case they are referred to as a silique; or they may be less than three times longer than they are wide and referred to as a silicle. This is a curious distinction, and it doesn’t tell you all that much. It’s more important to understand that the capsules of mustards can come in various sizes and shapes, and that some can be long and narrow while others are short and either round or angular.

mustard seeds via wikimedia commons

Despite the size or shape of the capsule, enclosed are numerous seeds – sometimes dozens. Surely one of the reasons why plants in the mustard family are so successful at proliferating is their ability to produce thousands, even tens of thousands, of seeds per plant. The seeds are typically tiny; and while they may not make it very far from the parent plant, they are numerous. Depending on the species, they can also remain viable for years, affording them the opportunity to sprout whenever conditions are right. You may have heard the biblical verse about faith the size of a mustard seed giving one the ability to move mountains. Size seems irrelevant here, so how about faith as tough, resilient, opportunistic, and resourceful as a mustard seed? If a mountain can be moved, mustards might be the one to do it.

While it isn’t the scope of this post, it’s worth mentioning the chemical compounds present in mustards that give them the flavors and health benefits we enjoy as well as the toxicity that can harm us and any other organisms that dare consume them. Glucosinolates, which are present in various concentrations depending on the species, are a defining characteristic of plants in the mustard family. They contribute to the spicy-ness of things like horseradish, radish, and condiment mustard while also acting as a natural insecticide, deterring herbivory.

And now on to the cast of characters:

Whitetop (Lepidium spp.)

Garlic mustard (Alliaria petiolata) – a noxious weed in many parts of North America – is fortunately not an issue in southwestern Idaho, otherwise it would be first on the list. Instead, we deal with whitetop – a noxious weed in Idaho and several other states. As the common name suggests, individual plants – up to two feet tall – are topped with a dense cluster of tiny, white flowers. Seed production in this group isn’t as abundant as other mustards; instead, the tour de force are their rhizomes. Whitetop is a perennial plant that spreads aggressively via underground stems as well as root fragments and can easily form expansive, dense patches, outcompeting other plants in the area.

Another common name for this group is hoary cress on account of their gray-green, fuzzy foliage. They are further distinguished by the shape of their seed pods: lens-podded hoary cress (L. chalepense), heart-podded hoary cress (L. draba), and globe-podded hoary cress (L. applelianum).

white top (Lepidium sp.)

white top (Lepidium sp.)

Tansymustard (Descurainia spp.)

There are two species of tansymustard (also known as flixweed) that occur in my part of the world, one is native and the other is introduced from Europe. They are indistinguishable to my untrained eye. If I have seen them side by side, I wouldn’t have known it. They are both annuals and can be as short as a few inches to over two feet tall. They have highly dissected, fern-like leaves and tiny, pale yellow or green-yellow flowers. The seed pods are very skinny and around an inch long. Each pod can hold 40 seeds, and a large plant can produce over 75,000 seeds. They are quick to take advantage of disturbed soil and come up in abundance after a fire. I’m not sure what it is about this year, but they have been particularly prolific this spring.

tansymustard (Descurainia sp.)

tansymustard (Descurainia sp.)

Blue Mustard (Chorispora tenella)

Also known as musk mustard or crossflower, this sticky, stinky, annual plant apparently makes cow’s milk taste funny; however some people still enjoy eating it. It can get to about a foot and a half tall, and is adorned with pretty, little, blue-purple flowers. The pointy seed pods split crosswise rather than lengthwise, an uncommon trait in mustards.

blue mustard (Chorispora tenella)

blue mustard (Chorispora tenella)

Desert Madwort (Alyssum desertorum)

Like tansymustard, this species is very similar in appearance to another closely related species, Alyssum alyssoides (commonly known as pale madwort or yellow alyssum). Both are annuals under a foot tall, covered in tiny hairs, with minuscule yellow flowers, and numerous round seed pods. They are adapted to dry, neglected sites.

yellow alyssum (Alyssum dessertorum)

Annual Honesty (Lunaria annua)

If you don’t recognize this plant when it’s flowering, you will when its seed pods ripen. They are thin, round discs up to three inches across. Eventually, the outer layers of the seed pods fall away, and translucent membranes remain, sometimes with seeds still attached. This trait has earned this species common names like money plant and silver dollar. The plants are attractive, reach up to three feet tall, and produce showy, purple flowers, which explains why they are popular ornamentals. However, like other mustards, the proficiency with which they reproduce in abundance via seeds, means they also easily migrate into natural areas and neglected sites.

annual honesty (Lunaria annua)

Hairy Bittercress (Cardamine hirsuta)

This little, quick-growing, fast-spreading annual is a common nuisance in greenhouses and nurseries. On stalks above compact rosettes are borne clusters of white flowers that, as Ken Thompson writes in The Book of Weeds, “are so tiny they are almost invisible.” The slender seed pods burst open at maturity, sending minuscule seeds flying. Brush your hand over a patch of mature hairy bittercress and you will be bombarded.

hairy bittercress (Cardamine hirsuta)

And the list goes on…

I’ve observed several other weedy species in this family recently, but to keep the length of this post reasonable I will just list them here: shepherd’s purse (Capsella bursa-pastoris), clasping pepperweed (Lepidium perfoliatum), spring draba (Draba verna), tumble mustard (Sisymbrium altissimum), and pennycress (Thlaspi arvense). This list only scracthes the surface; there are many other weeds in the mustard family. All deserve to be mentioned, so perhaps another time.

See Also: In Defense of Plants – One Mustard, Many Flavors

Advertisements

Awkward Botanical Sketches #1

At the beginning of the year I unveiled my plan to share some of my sketches with you as I learn how to draw. This is to make up for not writing quite as many posts so that I can spend time working on some other projects. It also serves as a great motivator to actually draw, which isn’t something I do very often. Turns out that if you want to get better at something, you actually have to do it.

To help me in my quest, I collected a few books. Some are instructional and others simply feature inspirational artwork. I’ve included links to a few of these books with my drawings below. If you have any books you would like to recommend, particularly a book that has helped you learn to draw, please let me know in the comment section below.

And now on to my dumb drawings…

My first drawing in Drawing Nature by Jill Bliss

Drawing of a hibiscus flower with help from Illustration School: Let’s Draw Plants and Small Creatures by Sachiko Umoto

A sketch inspired by Carcassonne: Over Hill and Dale

Sketch of an old tree inspired by a drawing in Clare Walker Leslie’s book, Drawn to Nature

Sketch of agave in bloom inspired by an image on the back of some guy’s shirt at Treefort Music Fest

Sketch of a tiny tuft of grass I was trying to identify. It’s still a bit of a mystery.

A Few Fun Facts About Pollen

Sexual reproduction in vascular plants requires producing and transporting pollen grains – the male gametophytes or sperm cells of a plant. These reproductive cells must make their way to the egg cells in or order to form seeds – plants in embryo. The movement of pollen is something we can all observe. It’s happening all around us on a regular basis. Any time a seed-bearing plant (also known as a spermatophyte) develops mature cones or flowers, pollen is on the move. Pollen is a ubiquitous and enduring substance and a fascinating subject of study. In case you don’t believe me, here are a few fun facts.

Bee covered in pollen – photo credit: wikimedia commons

Pollen is as diverse as the species that produce it. Pollen grains are measured in micrometers and are so tiny that the only reason we can see them with the naked eye is because they are often found en masse. Yet they are incredibly diverse in size, shape, and texture, and each plant species produces its own unique looking pollen. With the help of a good microscope, plants can even be identified simply by looking at their pollen. See images of the pollen grains of dozens of plant species here and here.

Pollen helps us answer questions about the past. Because pollen grains are so characteristic and because their outer coating (known as exine) is so durable and long-lasting, studying pollen found in sediments and sedimentary rocks helps us discover all sorts of things about deep time. The study of pollen and other particulates is called palynology. Numerous disciplines look to palynology to help them answer questions and solve mysteries. Its even used in forensics to help solve crimes. Criminals should be aware that brushing up against a plant in bloom may provide damning evidence.

Pollen oddities. While all pollen is different, some plants produce particularly unique pollen. The pollen grains of plants in the orchid and milkweed families, for example, are formed into united masses called pollinia. Each pollinium is picked up by pollinators and transferred to the stigmas of flowers as a single unit. A number of other species produce other types of compound pollen grains. The pollen grains of pines and other conifers are winged, and the pollen grains of seagrass species, like Zostera spp., are filamentous and said to hold the record for longest pollen grains.

The pollinia of milkweed (Asclepias spp.) look like the helicopter-esque fruits of maple trees. photo credit: wikimedia commons

Pollen tube oddities. In flowering plants, when pollen grains reach the stigma of a compatible flower, a vegetative cell within the grain forms a tube in order to transport the regenerative cells into the ovule. This tube varies in length depending on the length of the flower’s style. Because corn flowers produce such long styles (also know as corn silk), corn pollen grains hold the record for longest pollen tube, which can measure 12 inches or more. Species found in the mallow, gourd, and bellflower families produce multiple pollen tubes per pollen grain. Hence, their pollen is said to be polysiphonous.

Pollen is transported in myriad ways. Plants have diverse ways of getting their pollen grains where they need to be. Anemophilous plants rely on wind and gravity. They produce large quantities of light-weight pollen grains that are easily dislodged. Most of this pollen won’t make it, but enough of it will to make this strategy worth it. Hydrophilous plants use water and, like wind pollinated plants, may produce lots of pollen due to the unpredictably of this method. Some hydrophilous plants transport their pollen on the surface of the water, while others are completely submerged during pollination.

Employing animals to move pollen is a familiar strategy. Entomophily (insect pollination) is the most common, but there is also ornithophily (bird pollination) and chiropterophily (bat pollination), among others. Plants that rely on animals for pollination generally produce pollen grains that are sticky and nutritious. They attract animals using showy flowers, fragrance, and nectar. The bodies of pollinating insects have modifications that allow them to collect and transport pollen. Certain bees, like honey bees and bumblebees, have pollen baskets on their hind legs, while other bees have modified hairs called scopae on certain parts of their bodies.

Pollen is edible. Some animals – both pollinating and non-pollinating – use pollen as a food source. Animals that eat pollen are palynivores. Bees, of course, eat pollen, but lots of other insects do, too. Even some spiders, which are generally thought of as carnivores, have been observed eating pollen that gets trapped in their webs.

Pollen is thought to be highly nutritious for humans as well, and so, along with being taken as a supplement, it is used in all sorts of food products. To collect pollen, beekeepers install pollen traps on their beehives that strip incoming worker bees of their booty. Pollen from various wind pollinated plants, like cattails and pine trees, are also collected for human consumption. For example, a Korean dessert called dasik is made using pine pollen.

pine pollen – photo credit: wikimedia commons

Pollen makes many people sick. Hay fever is a pretty common condition and is caused by an allergy to wind-borne pollen. This condition is also known as pollinosis or allergic rhinitis. Not all flowering plants are to blame though, so here is a list of some of the main culprits. Because so many people suffer from hay fever, pollen counts are often included in weather reports. Learn more about what those counts mean here.

Related Posts: 

Lettuce Gone Wild, part two

The lettuce we eat is a close relative to the lettuce we weed out of our gardens. Last week we discussed the potential that wild relatives may have for improving cultivated lettuce. But if wild lettuce can be crossed with cultivated lettuce to create new cultivars, can cultivated lettuce cross with wild lettuce to make it more weedy?

Because so many of our crops are closely related to some of the weeds found along with them or the plants growing in nearby natural areas, the creation of crop-wild hybrids has long been a concern. This concern is heightened in the age of transgenic crops (also known as GMOs), for fear that hybrids between weeds and such crops could create super weeds – fast spreading or highly adapted weeds resistant to traditional control methods such as certain herbicides. To reduce this risk, extensive research is necessary before such crops are released for commercial use.

flowers of prickly lettuce (Lactuca serriola)

There are no commercially available, genetically modified varieties of cultivated lettuce, so this is not a concern when it comes to crop-wild hybrids; however, due to how prevalent weedy species like prickly lettuce (Lactuca serriola) are, hybridization with cultivated lettuce is still a concern. So, it is important to understand what the consequences might be when hybridization occurs.

In a paper published in Journal of Applied Ecology in 2005, Hooftman et al. examined a group of second-generation hybrids (L. sativa x L. serriola), and found that the hybrids behaved and appeared very similarly to non-hybrid prickly lettuce. They also found that the seeds produced by the hybrids had a significantly higher germination rate than non-hybrid plants. This is an example of hybrid vigor. Thus, “if hybridization does occur, this could lead to better performing and thus potentially more invasive (hybrid) genotypes.” However, the authors cautioned that “better performing genotypes do not automatically result in higher invasiveness,” and that much depends on the conditions they are found in, the level of human disturbance, etc.

Another thing to consider is that hybrids are not stable. In an article published in Nature Reviews Genetics in 2003, Stewart et al. adress the “misunderstanding that can arise through the confusion of hybridization and … introgression.” It is wrong to assume that hybrids between crops and wild relatives will automatically lead to super weeds. For this to occur, repeated crosses with parental lines (also known as backcrossing) must occur, and “backcross generations to the wild relative must progress to the point at which the transgene [or other gene(s) in question] is incorporated into the genome of the wild relative.” That is what is meant by “introgression.” This may happen quickly or over many generations or it may never happen at all. Each case is different.

prickly leaf of prickly lettuce (Lactuca serriola)

In a paper published in Journal of Applied Ecology in 2007, Hooftman et al. observe the breakdown of crop-wild lettuce hybrids. They note that “fitness surplus through [hybrid vigor] will often be reduced over few generations,” which is what was seen in the hybrids they observed. One possible reason why this occurs is that lettuce is predominantly a self-crossing species; outcrossing is rare, occurring 1 – 5% of the time thanks to pollinating insects. But that doesn’t mean that a stable, aggressive genotype could never develop. Again, much depends on environmental conditions, as well as rates of outcrossing and other factors relating to population dynamics.

A significant expansion of prickly lettuce across parts of Europe led some to hypothesize that crop-wild hybrids were partly to blame. In a paper published in Molecular Ecology in 2012 Uwimana et al. ran population genetic analyses on extensive data sets to determine the role that hybridization had in the expansion. They concluded that, at a level of only 7% in wild habitats, crop-wild hybrids were not having a significant impact. They observed greater fitness in the hybrids, as has been observed in other studies (including the one above), but they acknowledged the instability of hybrids, especially in self-pollinating annuals like lettuce.

seed head of prickly lettuce (Lactuca serriola)

It is more likely that the expansion of prickly lettuce in Europe is due to “the expansion of favorable habitat as a result of climate warming and anthropogenic habitat disturbance and to seed dispersal because of transportation of goods.” Uwimana et al. did warn, however, that “the occurrence of 7% crop-wild hybrids among natural L. serriola populations is relatively high [for a predominantly self-pollinating species] and reveals a potential [for] transgene movement from crop to wild relatives [in] self-pollinating crops.”

Charles Darwin and the Phylogeny of State Flowers and State Trees

This is a guest post by Rachel Rodman. Photos by Daniel Murphy.

———————

Every U.S. state has its own set of symbols: an official flower, an official tree, and an official bird. Collectively, these organisms form the stuff of trivia and are traditionally presented in the form of a list.

But, lists…well. As charming as lists can sometimes be, lists are rarely very satisfying.

So I decided to try something different.

I am not, of course, the first person to be unhappy with the eclectic, disordered nature of many biological assemblages. In the 18th century, Linnaeus developed a classification system in order to make sense of that untidiness. Kingdom, Phylum, Class, and so on.

In the 19th century, Darwin set biodiversity into an even more satisfying intellectual framework, outlining a model that linked organisms via descent from a series of common ancestors. And, as early as 1837, he experimented with a tree-like structure, in order to diagram these relationships.

Following Darwin’s lead, I’ve worked to reframe the state flowers and state trees in terms of their evolutionary history (*see the methods section below). And today, in honor of Darwin’s 209th birthday, I am delighted to present the results to you.

Let’s start with the state flowers.

In this tree, Maine’s “white pine cone and tassel” forms the outgroup. Among all the state “flowers,” it is the only gymnosperm—and therefore, in fact, not actually a flower.

Notice, also, that the number of branches in this tree is 39—not 50. Most of this stems from the untidy fact that there is no requirement for each state to select a unique flower. Nebraska and Kentucky, for example, share the goldenrod; North Carolina and Virginia share the dogwood.

With the branch labeled “Rose,” I’ve compressed the tree further. The state flowers of Georgia, Iowa, North Dakota, New York, and Oklahoma are all roses of various sorts; with my data set (*see methods below), however, I was unable to disentangle them. So I kept all five grouped.

This is a rich tree with many intriguing juxtapositions. Several clades, in particular, link geographical regions that are not normally regarded as having a connection. Texas’ bluebonnet, for example, forms a clade with Vermont’s red clover. So, similarly, do New Hampshire’s purple lilac and Wyoming’s Indian paintbrush.

Texas bluebonnet (Lupinus texensis) – the state flower of Texas

The second tree—the tree of state trees—is similarly rewarding. This tree is evenly divided between angiosperms (19 species) and gymnosperms (17 species).

Iowa’s state tree is simply the “oak”—no particular species was singled out. To indicate Iowa’s selection, I set “IA” next to the node representing the common ancestor of the three particular oak species: white oak, red oak, and live oak, which were selected as symbols by other states.

Arkansas’ and North Carolina’s state tree, similarly, is the “pine,”—no particular species specified. I’ve indicated their choice in just the same way, setting “AR” and “NC” next to the node representing the common ancestor of the eight particular pine species chosen to represent other states.

In this tree of trees, as with the tree of flowers, several clades link geographical regions that are not usually linked—at least not politically. Consider, for example, the pairing of New Hampshire’s white birch with Texas’ tree, the pecan.

Another phylogenetic pairing also intrigued me: Pennsylvania’s eastern hemlock and Washington’s western hemlock. It evokes, I think, a pleasing coast-to-coast symmetry: two states, linked via an east-west cross-country bridge, over a distance of 2,500 miles

The corky bark of bur oak (Quercus macrocarpa). Oak is the state tree of Iowa.

In this post, I’ve presented the U.S. state flowers and U.S. state trees in evolutionary framework. The point in doing that was not to denigrate any of the small, human stories that lie behind these symbols—all of the various economic, historical, and legislative vagaries, which led each state to select these particular plants to represent them. (Even more importantly, I have no wish to downplay the interesting nature of any of the environmental factors that led particular plants to flourish and predominate in some states and not others.)

The point, instead, was to suggest that these stories can coexist and be simultaneously appreciated alongside a much larger one: the many million year story of plant evolution.

With Darwin’s big idea—descent with modification—the eclectic gains depth and meaning. And trivia become a story—a grand story, which can be traced back, divergence point by divergence point: rosids from asterids (~120 mya); eudicots from monocots (~160 mya); angiosperms from gymnosperms (~300 mya), and so on and so on.

So today, on Darwin’s 209th, here, I hope, is one of the takeaways:

An evolutionary framework really does make everything—absolutely everything: U.S. state symbols included—more fun, more colorful, more momentous, and more intellectually satisfying.

Thanks, Darwin.

*Methods:

To build these two trees, I relied on a data set from TimeTree.org, a website maintained by a team at Temple University. At the “Load a List of Species” option at the bottom of the page, I uploaded two lists of species in .txt format; each time, TimeTree generated a phylogenetic tree, which served as a preliminary outline.

Later, once I’d refined my outlines, I used the “Get Divergence Time For a Pair of Taxa” feature at the top of the page in order to search for divergence time estimates. As I reconstructed my trees in LibreOffice, I used these estimates to make my branch lengths proportional.

———————

Rachel Rodman has a Ph.D. in Arabidopsis genetics and presently aspires to recontextualize all of history, literature, and popular culture in the form of a phylogenetic tree. Won’t you help her?

Dischidia and Its Self-contained Watering System

This is a guest post by Jeremiah Sandler.

———————

I was doing some sunday reading in a plant biology textbook, a section about leaves. It was highlighting leaf-specific adaptations and other cool leaf specializations. I came across a paragraph about a “flower-pot” leaf, and my mind was so blown after reading it I had to literally stand up.

It reads:

Some leaves of the Dischidia [genus], an epiphyte from Australasia, develop into urnlike pouches that become the home of ant colonies. The ants carry in soil and add nitrogeneous wastes, while moisture collects in the leaves through condensation of the water vapor coming from the mesophyll through stomata. This creates a good growing medium for roots, which develop adventitiously from the same node as the leaf and grow down into the soil contained in the urnlike pouch. In other words, this extraordinary plant not only reproduces itself by conventional means but also, with the aid of ants, provides its own fertilized growing medium and flower pots and then produces special roots, which “exploit” the situation.

Naturally I had to look up images of this plant because that’s amazing.

Illustration of Dischidia major (image credit: wikimedia commons)

Dischidia major – cross section of “flower-pot” leaf (photo credit: eol.org)

Dischidia vidalii– cross section of “flower-pot” leaf (photo credit: eol.org)

In shorter words, the plant grows modified leaves that form a little cavity, within which ants live. The ants incidentally carry soil into the cavity, while fertilizing that soil with their waste. The stomata are located on the insides of these cavities, which expel water from the leaves, where it then waters the soil that is located inside the leaves. Not to mention, the outside of those cavities are photosynthesizing all the while.

So, with the help of ants, an epiphytic Dischidia has evolved leaves to bring the soil to itself up in the trees, where it fertilizes and waters itself? SAY WHAT?! That is so damn cool.


Resources:

Botany in Popular Culture: Laura Veirs

I love music for its ability to conjure up emotions, create a mood, and inspire action. The music of Laura Veirs has always inspired me to get out into nature and be more observant of the wild things around me. Her music is rich with emotions, and I feel those, too. However, when I think of her music, I can’t escape images of the natural world and the creatures that inhabit it.

Found within her nature-centric lyrics are, of course, numerous botanical references. After all, plants and their actions make excellent subject matter for all types of art. And with that in mind, Veirs asks rhetorically in the song Rapture, “Doesn’t the tree write great poetry?”

When it comes to botanical references, the song that jumps first to mind is Lonely Angel Dust, starting off right away with these lyrics: “The rose is not afraid to blossom / though it knows its petals must fall / and with its petals fall seeds into soil / Why toil to contain it all? / Why toil at all?” Plants produce seeds in abundance, as mentioned in Shadow Blues: “Thousand seeds from a flower blowing through the night.” And, as in Where Are You Driving?, they’re seeking a suitable spot to plant themselves: “Through clouds of dandelions / seeds sailing out on the wind / hoping you’ll be the one to plant yourself on in.”

 

Flowers come up often in the songs of Laura Veirs. In White Cherry, “cherry trees take to bloom.” In Nightingale, “her heart a field in bloom.” In Make Something Good, “an organ pipe in a cathedral / that stays in tune through a thousand blooms.” In Sun is King, “innocent as a summer flower.” In Cast a Hook, “with watery cheeks down flowered lanes.” In Life Is Good Blues, “Messages you sent to Mars came from a crown of flowers.” Grass and weeds get a few mentions, too. In Summer Is the Champion, “let’s get dizzy in the grass.” In Life Is Good Blues, “tender green like the shoots of spring / unfurling on the lawn.”

Trees are the real stars, though. Veirs makes frequent references to trees and their various parts. This makes sense, as trees are real forces of nature. So much happens in, on, and around them, and images of the natural world can feel barren without them. First there is their enormousness, as in Black Butterfly, “evergreen boughs above me tower / were singing quiet stories about forgiveness, ” and Don’t Lose Yourself, “we slept in the shadow of a cedar tree.” Then there is their old age, as in Where Are You Driving?, “tangled up in the gnarled tree,” and When You Give Your Heart, “falling through the old oak tree.” There is also their utility, mentioned in Make Something Good, “I wanted to make something sweet / the blood inside a maple tree / the sunlight trapped inside the wood / make something good.” And then, of course, there is the fruit they bear, as in July Flame, “sweet summer peach / high up in the branch / just out of my reach,” and then in Wandering Kind, “a strange July / a storm came down / from the North and pulled out the salt / and it tore out the leaves from the pear tree / my canopy.”

Many of Veirs songs create scenes and tell stories of being in the wilderness among rivers, lakes, mountains, and caves. Chimney Sweeping Man, for example, is a “forest resident” who “walks[s] quiet through the forest like a tiny, quiet forest mouse.” In Snow Camping, Veirs tells a story about sleeping in a snow cave in the forest, where “a thousand snowflakes hovered,” “a distant songbird [was] singing,” and “the weighted trees” were her “only home.” But sometimes those forests burn, which is captured in Drink Deep: “Now the raging of the forest fires end / and all the mammals fled / I smell in the charred darkness / a little green / a little red.” Later in the song: “the fire closed his eyes / tipped his flame hat and slipped through the dire rye / we wandered romantic / we scattered dark branches / with singing green stars as our guide.”

Nature can also be empowering, and Veirs often refers to things in the natural world as metaphors or similes for the human experience. In Cast a Hook, Veirs adamantly asserts, “I’m not dead, not numb, not withering / like a fallen leaf who keeps her green.” This line comes up again in Saltbreakers: “You cannot burn me up / I’m a fallen leaf who keeps her green.” In Lake Swimming, Veirs addresses change and how some of life’s changes may wound us but we can still shine – “shucking free our deadened selves / like snakes and corn do / … / Old butterfly / I’ll dance with you / though our wings may crumble / we can float like ash / broken but the edges still shine.”

 

The botanical references Veirs makes in her songs are not the only things that excite me. Birds, insects, mammals, fish, and worms all find a place in Veirs’ lyrics. This is why, after more than a decade of listening to her songs, I find myself coming back to them again and again. There is a sort of kinship we feel for each other when we share in common a love of the natural world. I find that in the music of Laura Veirs.

More Botany in Popular Culture Posts: