The Flight of the Dandelion

The common dandelion (Taraxacum officinale) comes with a collection of traits that make it a very successful weed. Nearly everything about it screams success, from its asexually produced seeds to its ability to resprout from a root fragment. Evolution has been kind to this plant, and up until the recent chemical warfare we’ve subjected it to, humans have treated it pretty well too (both intentionally and unintentionally).

One feature that has served the dandelion particularly well is its wind-dispersed seeds. Dandelions have a highly-evolved pappus – a parachute-like bristle of hairs attached to its fruit by a thin stalk. The slightest breath or puff of wind will send this apparatus flying. Once airborne, a dandelion’s seed can travel up to a kilometer or more away from its mother plant, thereby expanding its territory with ease.

Such a low-growing plant achieving this kind of distance is impressive. Even more impressive is that it manages to do this with a pappus that is 90% empty space. Would you leap from a plane with only 10% of a parachute?

Dandelion flight was investigated by researchers at the University of Edinburgh, who used a wind tunnel along with long-exposure photography and high-speed imaging to observe the floating pappus. Their research was presented in a letter published in an issue of Nature in October 2018. Upon close examination, they observed a stable air bubble floating above the pappus as it flew. This ring-shaped air bubble – or vortex – which is unattached to the pappus is known as a separated vortex ring. While this type of vortex ring had been considered theoretically, this marked the first time one had been observed in nature.

Seeing this type of air bubble associated with the dandelion’s pappus intrigued the researchers. About a 100 filaments make up the parachute portion of the pappus. They are arranged around the stalk, leaving heaps of blank space in between. The air bubble observed was not what was expected for such a porous object. However, the researchers found that the filaments were interacting with each other in flight, reducing the porosity of the pappus. In their words, “Neighboring filaments interact strongly with one another because of the thick boundary layer around each filament, which causes a considerable reduction in air flow through the pappus.”

The pappus acts as a circular disk even though it is not one, and its limited porosity allows just enough air movement through the filaments that it maintains this unique vortex. “This suggests,” the researchers write, “that evolution has tuned the pappus porosity to eliminate vortex shedding as the seed flies.” Fine-tuned porosity and the resultant unattached air bubble stabilizes the floating fruit “into an equilibrium orientation that minimizes [its] terminal velocity, allowing [it] to make maximal use of updrafts.” The result is stable, long distance flight.

Wind-dispersed seeds come in two main forms: winged and plumed. Winged seeds are common in trees and large shrubs. They benefit from the height of the tree which allows them to attain stable flight. While such seeds have the ability to travel long distances, their success is limited on shorter plants. In this case, plumed seeds, like those of the dandelion, are the way to go. As the researchers demonstrated, successful flight can be achieved by bristles in place of wings. The tiny seeds of dandelions seen floating by on a summer breeze are not tumbling through the air haphazardly; rather, they are flying steadily, on their way to spoil the dreams of a perfect lawn.

Further Reading (and Watching):

Advertisements

Selections from the Boise Biophilia Archives

For a little over a year now, I’ve been doing a tiny radio show with a friend of mine named Casey O’leary. The show is called Boise Biophilia and airs weekly on Radio Boise. On the show we each take about a minute to talk about something biology or ecology related that listeners in our local area can relate to. Our goal is to encourage listeners to get outside and explore the natural world. It’s fascinating after all! After the shows air, I post them on our website and Soundcloud page for all to hear.

We are not professional broadcasters by any means. Heck, I’m not a huge fan of talking in general, much less when a microphone is involved and a recording is being made. But Casey and I both love spreading the word about nerdy nature topics, and Casey’s enthusiasm for the project helps keep me involved. We’ve recorded nearly 70 episodes so far and are thrilled to know that they are out there in the world for people to experience. What follows is a sampling of some of the episodes we have recorded over the last 16 months. Some of our topics and comments are inside baseball for people living in the Treasure Valley, but there’s plenty there for outsiders to enjoy as well.

Something you will surely note upon your first listen is the scattering of interesting sound effects and off the wall edits in each of the episodes. Those come thanks to Speedy of Radio Boise who helps us edit our show. Without Speedy, the show wouldn’t be nearly as fun to listen to, so we are grateful for the work he does.

Boise Biophilia logo designed by Sierra Laverty

In this episode, Casey and I explore the world of leaf litter. Where do all the leaves go after they fall? Who are the players involved in decomposition, and what are they up to out there?

 

In this episode, Casey gets into our region’s complicated system of water rights, while I dive into something equally complex and intense – life inside of a sagebrush gall.

 

In this episode, I talk about dead bees and other insects trapped and dangling from milkweed flowers, and Casey discusses goatheads (a.k.a. puncture vine or Tribulus terrestris) in honor of Boise’s nascent summer celebration, Goathead Fest.

 

As much as I love plants, I have to admit that some of our best episodes are insect themed. Their lives are so dramatic, and this episode illustrates that.

 

The insect drama continues in this episode in which I describe how ant lions capture and consume their prey. Since we recorded this around Halloween, Casey offers a particularly spooky bit about garlic.

 

If you follow Awkward Botany, you know that one of my favorite topics is weeds. In this episode, I cover tumbleweeds, an iconic western weed that has been known to do some real damage. Casey introduces us to Canada geese, which are similar to weeds in their, at times, overabundance and ability to spawn strong opinions in the people they share space with.

 

In this episode, I explain the phenomenon of marcescence, and Casey gives some great advice about growing onions from seed.

 

And finally, in the spring you can’t get by without talking about bulbs at some point. This episode is an introduction to geophytes. Casey breaks down the basics, while I list some specific geophytes native to our Boise Foothills.

 

Investigating the Soil Seed Bank

Near the top of the world, deep inside a snow-covered mountain located on a Norwegian island, a vault houses nearly a million packets of seeds sent in from around the world. The purpose of the Svalbard Global Seed Vault is to maintain collections of crop seeds to ensure that these important species and varieties are not lost to neglect or catastrophe. In this way, our food supply is made more secure, buffered against the unpredictability of the future. Seed banks like this can be found around the world and are essential resources for plant conservation. While some, like Svalbard, are in the business of preserving crop species, others, like the Millennium Seed Bank, are focused on preserving seeds of plants found in the wild.

Svalbard Global Seed Vault via wikimedida commons

Outside of human-built seed banks, many plants maintain their own seed banks in the soil where they grow. This is the soil seed bank, a term that refers to either a collection of seeds from numerous plant species or, simply, the seeds of a single species. All seed bearing plants pass through a period as a seed waiting for the chance to germinate. Some do this quickly, as soon as the opportunity arises, while others wait, sometimes for many years, before germinating. Plants whose seeds germinate quickly, generally do not maintain a seed bank. However, seeds that don’t germinate right away and become incorporated in the soil make up what is known as a persistent soil seed bank.

A seed is a tiny plant encased in a protective layer. Germination is not the birth of a plant; rather, the plant was born when the seed was formed. The dispersal of seeds is both a spatial and temporal phenomenon. First the seed gets to where its going via wind, water, gravity, animal assistance, or some other means. Then it waits for a good opportunity to sprout. A seed lying in wait in the soil seed bank is an example of dispersal through time. Years can pass before the seed germinates, and when it does, the plant joins the above ground plant community.

Because seeds are living plants, seeds found in the soil seed bank are members of a plant community, even though they are virtually invisible and hard to account for. Often, the above ground plant community does not represent the population of seeds found in the soil below. Conversely, seeds in a seed bank may not be representative of the plants growing above them. This is because, as mentioned earlier, not all plant species maintain soil seed banks, and those that do have differences in how long their seeds remain viable. Depending on which stage of ecological succession the plant community is in, the collection of seeds below and the plants growing above can look quite different.

Soil seed banks are difficult to study. The only way to know what is truly there is to dig up the soil and either extract all the seeds or encourage them to germinate. Thanks to ecologists like Ken Thompson, who have studied seed banks extensively for many years, there is still a lot we can say about them. First, for the seeds of a plant to persist in the soil, they must become incorporated. Few seeds can bury themselves, so those with traits that make it easy for them to slip down through the soil will have a greater chance of being buried. Thompson’s studies have shown that “persistent seeds tend to be small and compact, while short-lived seeds are normally larger and either flattened or elongate.” Persistent seeds generally weigh less than 3 milligrams and tend to lack appendages like awns that can prevent them from working their way into the soil.

The seeds of moth mullein (Verbascum blattaria) are tiny and compact and known to persist in the soil for decades as revealed in Dr. Beal’s seed viability experiment. (photo credit: wikimedia commons)

Slipping into cracks in the soil is a major way seeds move through the soil profile, but it isn’t the only way. In a study published in New Phytologist, Thompson suggests that “the association between small seeds and possession of a seed bank owes much to the activities of earthworms,” who ingest seeds at the surface and deposit them underground. Later, they may even bring them back up the same way. Ants also play a role in seed burial, as well as humans and their various activities. Some seeds, like those of Avena fatua and Erodium spp., have specialized appendages that actually help work the seeds into the soil.

Not remaining on the soil surface keeps seeds from either germinating, being eating, or being transported away to another site. Avoiding these things, they become part of the soil seed bank. But burial is only part of the story. In an article published in Functional Ecology, Thompson et al. state that burial is “an essential prelude to persistence,” but other factors like “germination requirements, dormancy mechanisms, and resistance to pathogens also contribute to persistence.” If a buried seed rots away or germinates too early, its days as a member of the soil seed bank are cut short.

The seeds of redstem filare (Erodium circutarium) have long awns that start out straight, then coil up, straighten out, and coil up again with changes in humidity. This action helps drill the seeds into the soil. (photo credit: wikimedia commons)

Soil seed banks can be found wherever plants are found – from natural areas to agricultural fields, and even in our own backyards. Thompson and others carried out a study of the soil seed banks of backyard gardens in Sheffield, UK. They collected 6 soil cores each (down to 10 centimeters deep) from 56 different gardens, and grew out the seeds found in each core to identify them. Most of the seeds recovered were from species known to have persistent seed banks, and to no surprise, the seed banks were dominated by short-lived, weedy species. The seeds were also found to be fairly evenly distributed throughout the soil cores. On this note, Thompson et al. remarked that due to “the highly disturbed nature of most gardens, regular cultivation probably ensures that seeds rapidly become distributed throughout the top 10 centimeters of soil.”

Like the seed banks we build to preserve plant species for the future, soil seed banks are an essential long-term survival strategy for many plant species. They are also an important consideration when it comes to managing weeds, which is something we will get into in a future post.

Eating Weeds: Blue Mustard

Spring is here, and it’s time to start eating weeds again. One of the earliest edible weeds to emerge in the spring is Chorispora tenella, commonly known by many names including blue mustard, crossflower, and musk mustard. Introduced to North America from Russia and southwestern Asia, this annual mustard has become commonplace in disturbed areas, and is particularly fond of sunny, dry spots with poor soil. It can become problematic in agricultural areas, but to those who enjoy eating it, seeing it in large quantities isn’t necessarily viewed as a problem.

rosettes of blue mustard (Chorispora tenella)

The plant starts off as a rosette. Identifying it can be challenging because the shape of the leaves and leaf margins can be so variable. Leaves can either be lance-shaped with a rounded tip or more of an egg shape. Leaf margins are usually wavy and can be deeply lobed to mildly lobed or not lobed at all. Leaves are semi-succulent and usually covered sparsely in sticky hairs, a condition that botanists refer to as glandular.

A leafy flower stalk rises from the rosette and reaches between 6 and 18 inches tall. Like all plants in the mustard family, the flowers are four-petaled and cross-shaped. They are about a half inch across and pale purple to blue in color. Soon they turn into long, slender seed pods that break apart into several two-seeded sections. Splitting apart crosswise like a pill capsule rather than lengthwise is an unusual trait for a plant in the mustard family.

blue mustard (Chorispora tenella)

Multiple sources comment on the smell of the plant. Weeds of North America calls it “ill-scented.” Its Wikipedia entry refers to it as having “a strong scent which is generally considered unpleasant.” The blog Hunger and Thirst comments on its “wet dish rag” smell, and Southwest Colorado Wildflowers claims that its “peculiar odor” is akin to warm, melting crayons. Weeds of the West says it has a “disagreeable odor,” and warns of the funny tasting milk that results when cows eat it. All this to say that the plant is notorious for smelling bad; however, I have yet to detect the smell. My sense of smell isn’t my greatest strength, which probably explains why I’m not picking up the scent. It could also be because I haven’t encountered it growing in large enough quantities in a single location. Maybe I’m just not getting a strong enough whiff.

Regardless of its smell, for those of us inclined to eat weeds, the scent doesn’t seem to turn us away. The entire plant is edible, but the leaves are probably the part most commonly consumed. The leaves are thick and have a mushroom-like taste to them. They also have a radish or horseradish spiciness akin to arugula, a fellow member of the mustard family. I haven’t found them to be particularly spicy, but I think the spiciness depends on what stage the plant is in when the leaves are harvested. I have only eaten the leaves of very young plants.

The leaves are great in salads and sandwiches, and can also be sauteed, steamed, or fried. I borrowed Backyard Forager’s idea and tried them in finger sandwiches, because who can resist tiny sandwiches? I added cucumber to mine and thought they were delicious. If you’re new to eating weeds, blue mustard is a pretty safe bet to start with – a gateway weed, if you will.

blue mustard and cucumber finger sandwiches

For more information about blue mustard, go here.

Eating Weeds 2018:

Tiny Plants: Idahoa

This is a post I wrote three years ago as a guest writer for a blog called Closet Botanist. That blog has since dissolved, hence the re-post.

This year, we returned to the location in the Boise Foothills where I encountered the plant that inspired this post. I found what might be seedlings of the tiny plant. If that’s the case, the phenology is a bit delayed compared to three years ago. I’ll check again in a week or so. Until then, meet Idahoa.

———————

I have taken a real liking to tiny plants. So many of the plants we regularly interact with are relatively big. Large trees loom above us. Tall shrubs greet us at eye level. Flowering perennials come up around our knees or higher. But how often do we get down low and observe the plants that hug the ground or that reach just a few centimeters above it? Turf grass is ubiquitous and groundcovers are common, but among such low growing plants (or plants kept low), even more diminutive species lurk.

It was a hunt for a tiny plant that sent me down a certain trail in the Boise Foothills earlier this spring. Listening to a talk by a local botanist at an Idaho Native Plant Society meeting, I learned about Idahoa scapigera. A genus named after Idaho!? I was immediately intrigued. Polecat Gulch was the place to see it, so off I went.

Commonly known as oldstem idahoa, flatpod, or Scapose scalepod, Idahoa scapigera is the only species in its genus. It is an annual plant in the mustard family, which means it is related to other small, annual mustard species like Draba verna. It is native to far western North America and is distributed from British Columbia down to California and east into Montana. It occurs in a variety of habitat types found in meadows, mountains, and foothills.

Idahoa scapigera is truly tiny. Before it flowers, it forms a basal rosette of leaves that max out at about 3 centimeters long. Next it sends up several skinny flower stalks that reach maybe 10 centimeters high (some are much shorter). One single flower is born atop each stalk. Its petite petals are white and are cupped by red to purple sepals. Its fruit is a flat round or oblong disk held vertically as though it is ready to give neighboring fruits a high five. Happening upon a patch of these plants in fruit is a real joy.

Which brings me to my hunt. It was the morning of March 20th (the first day of Spring) when I headed down the Polecat Gulch trail in search of Idahoa, among other things. The trail forms a loop around the gulch and is about 6 miles long with options for shortening the loop by taking trails that cut through the middle. I have yet to make it all the way around. Stopping every 10 yards to look at plants, insects, and other things makes for slow hiking.

I was about a half mile – 1 hour or more – into the hike when Idahoa entered my view. A group of them were growing on the upslope side of the trail, greeting me just below waist level. Many of them had already finished flowering and had fresh green fruits topping their thin stalks. At this location they are a late winter/early spring ephemeral. I made a mental note of the site and decided to return when the fruits had matured. Next year, I will head out earlier in hopes of catching more of them in flower.

On the way to Idahoa, I noted numerous other small, green things growing in the sandy soil. It turns out there are countless other tiny plants to see and explore. It got me thinking about all the small things that go unnoticed right underneath our feet or outside of our view. I resolved to move slower and get down lower to observe the wonders I’ve been overlooking all this time.

Further Reading:

Poisonous Plants: Red Squill

Humans have been at war with rats since time immemorial. Ridding ourselves of their nuisance behavior is increasingly unlikely, and in fact, some scientists believe that, following human extinction, rats will be poised to take our place as the most dominant species on earth. Despite being thwarted repeatedly, we make tireless attempts to control rat populations. One major weapon in our arsenal is poison, and one of the most popular rat poisons was derived from a plant with a formidable bulb.

Urginea maritima (known synonymously as Drimia maritima, among other Latin names) is a geophyte native to the Mediterranean Basin, where it survives the hot, dry summer months by going dormant, waiting things out underground. Growth occurs in the cooler months, its bulb expanding annually before it finally flowers late one year after reaching at least 6 years old. Its flower stalk rises to as tall as 2 meters, extending heavenward from a bulb that can weigh as much as a kilogram. Its inflorescence is long, narrow, and loaded with small flowers that are generally white, but sometimes pink or red.

The oversized bulb of Urginea maritima — via wikimedia commons

Urginea maritima is commonly known as red squill or white squill (and sometimes simply, squill). Other common names include sea onion, sea squill, and giant squill. It is related the squill referred to in the Harry Potter universe, which is known botanically as Scilla. However, plants in the genus Scilla are much more dimunutive and generally flower in the spring rather than the fall. Like red squill, Scilla species are known to be poisonous; however, they don’t have the reputation for producing deadly rat poison that red squill does.

Like so many poisonous plants, red squill has a long history of being used medicinally to treat all sorts of ailments. As with any folk remedy or natural medicine, a doctor should be consulted before attempting to treat oneself or others. A 1995 report tells of a woman who ate red squill bulbs to treat her arthritic pain. She exhibited symptoms characteristic of ingesting cardiac glycosides – the toxic compound found in red squill – including nausea, vomiting, and seizures. She died 30 hours after eating the bulbs.

red squill (Urginea maritima) — via wikimedia commons

Toxic compounds are found throughout the plant, but are particularly concentrated in the bulb (especially its core) and the roots. Toxicity is at its highest during summer dormancy and when the plant is flowering and fruiting. The compound used to poison rats is called scilliroside. Bulbs are harvested in the summer, chopped up, and dried. The chips are then ground down to a powder and added to rat bait. Results are highly variable, so to increase its effectiveness, a concentrate can be made by isolating the toxic compound using solvents.

Red squill was introduced to southern California in the 1940’s as a potential agricultural crop. The region’s Mediterranean climate and the plant’s drought tolerance made it ideal for the area. The bulbs can be grown for manufacturing rat poison, and the flowers harvested for the cut flower industry. Breeding efforts have been made to produce highly toxic varieties of red squill for rat poison production.

the flowers of red squill (Urginea maritima) — via wikimedia commons

Around the time red squill was being evaluated as an agricultural crop, studies were done not only on its toxicity to rats, but to other animals as well. A 1949 article details trials of a red squill derived poison called Silmurine. It was fed to rats as well as a selection of farm animals.  Results of the study where “not wholly satisfactory” when it came to poisoning rats. Silmurine was less effective on Rattus rattus than it was on Rattus norvegicus. Thankfully, however, it was found to be relatively safe for the domestic animals it was administered to. Most puked it up or avoided it. Two humans accidentally became part of the study when they inadvertently inhaled the poison powder. Ten hours later they experienced headaches, vomiting, and diarrhea, “followed by lethargy and loss of appetite,” but “no prolonged effects.”

Vomiting is key. Ingesting scilliroside induces vomiting, which helps expel the poison. However, rodents can’t vomit (surprisingly), which is why the poison is generally effective on them.

Today, squill is available as an ornamental plant for the adventurous gardener. For more about that, check out this video featuring a squill farmer:

More Poisonous Plants posts on Awkward Botany:

Podcast Review: Botanical Mystery Tour

My interest is piqued any time plants are featured or plugged in popular culture. Hence my ongoing series of posts, Botany in Popular Culture, featuring Futurama, Saga of the Swamp Thing, etc. Plants just don’t get enough airtime, so it must be celebrated when they do. Which is why I was excited to learn about Chicago Botanic Garden‘s new podcast, Botanical Mystery Tour, in which the plants referenced in pop culture take center stage.

The hosts, as they state in each episode’s introduction, “dive into the botany hidden in our favorite stories.” To help with the discussion, they bring in experts that work at Chicago Botanic Garden to explore the science (and fiction) behind the plant references. In addition to discussing pop culture and the related science, the guests share details about the work they do at the Garden and some of the research they are working on.

In the first episode, Jasmine and Erica ask Paul CaraDonna about the drone bees featured in an episode of Black Mirror. Since many bee species are in decline, will we have to resort to employing robot bees to pollinate plants that rely on bee-assisted pollination? A great discussion about native bees and colony collapse disorder ensues.

(But maybe the idea of autonomous drone insects isn’t too far-fetched…)

In episode two, the hosts ask why humans are so obsessed with corpse flowers. Thousands of people flock to botanical gardens to see these humongous, stinky flowers on the rare occasions they are in bloom, so what is so appealing about Amorphophallus titanum? Patti Vitt joins the discussion to share details about this fascinating plant.

A corpse flower in bloom is a brief and uncommon occurrence, reminiscent of the Sumatran Century Flower in The Simpsons and the 40 Year Orchid in Dennis the Menace.

 

The third episode features the sarlaccs of Star Wars. It turns out, sarlaccs are carnivorous plants. This discovery spawns an interesting discussion with horticulturist Tom Weaver about what defines a carnivorous plant and the various ways that different carnivorous plant species capture and kill their prey.

The fourth (and latest) episode is an exploration into the magical world of mushrooms. In Alice in Wonderland, Alice encounters a large, hookah-smoking caterpillar sitting atop a giant mushroom. Are there mushrooms big enough that a person could actually sit on them like Alice does? Greg Mueller joins the podcast to address this and many other mycology-based questions. The conversation includes a great discussion about why a botanical garden (whose main focus is plants) would be interested in fungus.

The discussions in this podcast are fun and enlightening. The hosts shine the spotlight on often overlooked characters in popular media, and with the help of their guests, lead captivating conversations about the science related to these characters. With only a handful of episodes available so far, it will be easy to get caught up. And then you, like me, will find yourself anxiously looking forward to embarking on another Botanical Mystery Tour.

———————

Is there a plant-themed podcast or podcast episode you would like to recommend? Please do so in the comment section below.