Randomly Selected Botanical Terms: Glochids

The spines of a cactus are an obvious threat. They are generally sharp, smooth, and stiff; as soon as you are stabbed by one, it is immediately clear that you’ve gotten too close. Sitting at the base of the spines – or in place of spines – on many species of cacti is a less obvious, but significantly more heinous threat. Unless you’re looking closely, this hazard is practically invisible, and the pain and irritation that can come as a result of close contact has the potential to last significantly longer than the sharp poke of a spine. This nefarious plant part is called a glochid, and if you’ve ever made contact with one (or more likely several dozen of them), it’s not something you will soon forget.

Opuntia polyacantha x utahensis

The spine of a cactus is actually a leaf. The area from which a spine emerges from the fleshy, photosynthetic stem of a cactus is called an areole, which is equivalent to a node or bud on a more typical stem or branch from which leaves emerge. In place of typical looking leaves, a cactus produces spines and glochids. Like spines, glochids are also modified leaves, although they appear more like soft, little tufts of hair. However, this unassuming little tuft is not to be trifled with.

Close inspection of a glochid (with the help of a microscope) reveals why you don’t want them anywhere near your skin. While the surface of a cactus spine is often smooth and free of barbs, glochids are covered in backwards-facing barbs. The miniscule size of glochids combined with their pliable nature and retrose barbs, make it easy for them to work their way into your skin and stay there. Unlike spines, glochids easily detach from a cactus stem. Barely brushing up against a glochid-bearing cactus can result in getting stuck with several of them.

Opuntia basilaris var. heilii

Because glochids can be so fine and difficult to see, you may not even be aware they are there. You probably won’t even feel them at first. Removing them is a challenge thanks to their barbs, and since you may not be able to remove them all, the glochids that remain in your skin can continue to cause irritation for days, weeks, or even months after contact. For this reason, cactuses are generally best seen and not touched, or at the very least, handled with extreme care.

Apart from being a good form of defense, the glochids of some cactus species can serve an additional function. Most cactus species occur in arid or semi-arid climates, where access to water can be quite limited. In order to increase their chances of getting the water they need, some desert plants are able to collect water from the air. A few species of cactus do this, and glochids are a critical component in making this happen.

Cylindropuntia whipplei

A study published in the Journal of King Saud University – Science (2020) examined the dew harvesting ability of Opuntia stricta, commonly known as erect prickly pear. As described above, the spines of O. stricta are smooth, while the glochids are covered in retrose barbs. Both structures are waterproof due to hardened cell walls and cuticles. However, due in part to the conical shapes of both the glochids and their barbs, water droplets from the air are able to collect on the tips of the glochids. From there, the researchers observed the droplets in their travel towards the base of the glochids. As they moved downward, small droplets combined to form larger droplets.

At the base of the glochids are a series of trichomes, which are small hair-like outgrowths of the epidermis. The trichomes do not repel water, but rather are able to absorb the droplets as they reach the base of the glochids. For a plant species that receives very little water from the soil, being able to harvest dew from the air is critical for its survival, and this is thanks in part to those otherwise obnoxious glochids.

See Also: Prickles

Randomly Selected Botanical Terms: Prickles

Let’s start by getting something out of the way: roses have prickles, not thorns. However, just like peanuts aren’t actually nuts and tomatoes are actually fruits, our colloquial terms for things don’t always match up with botanical terminology. This doesn’t mean that we should be pedants about things and go spoiling a friendly dinner party with our “well, actually…” corrections. If you hear someone saying (or singing) something about every rose having its thorn, it’s okay to just let it go.

So why don’t roses have thorns? And what even is a prickle anyway?

Plants have a way of modifying various body parts to form a variety of features that look like something totally new and different. When the development of these features are observed at a cellular level, we find that what once may have grown into something familiar, like a stem, is now something less familiar, like a thorn. A thorn, then, is a modified stem. Stem tissue was used by the plant to form a hardened spike. Thorns help protect a plant from being eaten, so going through the trouble of producing this feature is a benefit to the plant.

thorns of hawthorn (Crataegus sp.)

Spines and prickles are similar features to thorns and serve a similar purpose, but they have different origins. Spines are modified leaf or stipule tissue (the spines on a cactus are actually modified leaves). Prickles are outgrowths of the epidermis or bark. In plants, epidermis is a single, outer layer of cells that covers all of the organs (i.e. leaves, roots, flowers, stems). Outgrowths on this layer are common and often appear as little hairs. The technical term for these hairs or hair-like structures is trichomes.

the stems of staghorn sumac (Rhus typhina) are covered in dense trichomes

Prickles are much like trichomes, but there are usually less of them and they are hardened and pointy. They can be sharp like a thorn or spine and so are often confused for them. (Spines are also confused for thorns, as is the case with Euphorbia milii, whose common name is crown of thorns but whose “thorns” are actually spines.) As stated above, their cellular origin is different, and unlike thorns and spines, prickles don’t have vascular tissue, which is the internal tissue that transports water and nutrients throughout all parts of the plant. In general, prickles can be easily broken off, as they are often weakly attached to the epidermis.

Prickles are most commonly observed on roses and come in a variety of shapes, sizes, and colors.

Prickles on roses are commonly called thorns, and that’s okay. Thorn is perhaps a more poetic word and easier to relate to. But really, I’m torn and forlorn that they aren’t thorns. It puts me in a pickle trying to rhyme words with prickle.


Check out the linktree for various ways to follow and support Awkward Botany.

Burr Tongue, or The Weed That Choked the Dog

It is said that the inspiration for Velcro came when Swiss inventor, George de Mestral, was removing the burrs of burdock from his dog’s coat, an experience we had with Kōura just days after adopting her. I knew that common burdock was found on our property, and I had made a point to remove all the plants that I could easily get to. However, during Kōura’s thorough exploration of our yard, she managed to find the one plant I had yet to pull due to its awkward location behind the chicken coop.

I knew when I saw the clump of burrs attached to her hind end that we were going to spend the evening combing them out of her fur. However, not long after that we discovered that Kōura had already started the process and in doing so had either swallowed or inhaled some. What tipped us off was her violent hacking and gagging as she moved frantically around the living room. She was clearly distraught, and so were we. Recognizing that she had probably swallowed a burr, we made a quick decision to take her to an emergency vet. This was our unfortunately timed (this happened on Christmas Eve) introduction to burr tongue and all the frightening things that can happen when a dog swallows burdock burrs.

The roots, shoots, and leaves of both greater burdock (Arctium lappa) and common burdock (Arctium minus) are edible, which I have already discussed in an Eating Weeds post. The burrs, on the other hand, are clearly not. While sticking to the fur of animals and the clothing of people is an excellent way for a plant to get their seeds dispersed, the sharp, hooked barbs that facilitate this are not something you want down your throat. When this occurs, the natural response is to try to hack them up, which Kōura was doing. Salivating heavily and vomiting can also help. In many cases, this will be enough to eliminate the barbs. However, if they manage to work their way into the soft tissues of the mouth, tongue, tonsils, or throat and remain there, serious infection can occur.

burr of common burdock (Arctium minus)

A paper published in The Canadian Veterinary Journal in 1973 describes the treatment for what is commonly known as burr tongue and technically referred to as granular stomatitis. The paper gives an account of what can happen when “long-haired breeds of dogs … run free in areas where [burdock] grows” and the hooked scales of the burrs consequently “penetrate the mucous membrane of the mouth and tongue.” Dogs with burrs imbedded in their mouths may start eating less or more slowly, drinking more water, and drooling excessively. As infection progresses, their breath can start to stink. A look inside the mouth and at the tongue will reveal lesions where the burrs have embedded themselves. Treatment involves putting the dog under anesthesia, scraping away the infected tissue, and administering antibiotics. Depending on the severity of the lesions, scar tissue can form where the barbs were attached.

To prevent infection from happening in the first place, a veterinarian can put the dog under anesthesia and use a camera inside the dog’s mouth and throat to search for pieces of the burr that may have gotten lodged. There is no guarantee that they will find them all or be able to remove them, and so the dog should be monitored over the next several days for signs and symptoms. At our veterinary visit, the vet also warned us that if any burrs were inhaled into the lungs, they could cause a lung infection, which is another thing to monitor for since it would be practically impossible for an x-ray or a camera to initially find them.

Luckily, now more than three weeks later, Kōura appears to be doing fine, and the offending burdock has been taken care of. One thing is for sure, as someone who is generally forgiving of weeds, burdock is one weed that will not be permitted to grow at Awkward Botany Headquarters.


For more adventures involving Kōura, be sure to follow her on Instagram @plantdoctordog.

All the Plant Shows, part three

In part one and part two of this series, I introduced you to at least 23 plant-themed and plant-related podcasts. But wait, there’s more. As podcasts continue to be such a popular medium for entertainment and education, plant podcasts proliferate. You won’t see me complaining. I’m always happy to check out more botanical content. What follows are mini-reviews of a few more of the plant shows I’ve been listening to lately.

Plants Grow Here – Based in Australia, this is a horticulture and gardening podcast hosted by Daniel Fuller (and the occasional guest host). What separates it from other horticulture-related podcasts is the heavy focus on ecology and conservation. As Daniel says in the introductory episode, “there’s no point in talking about plants at any length without acknowledging that they exist within a wider web.” Daniel interviews plant experts, professionals, and enthusiasts from various parts of the globe, and while much of the focus is on horticulture topics, specifically related to gardening in Australia, there are several episodes that focus solely on the plants themselves and their place in the natural world.

Completely Arbortrary – Relatively new to the scene but an instant classic. Completely Arbortrary is hosted by Casey Clapp, a tree expert, and Alex Crowson, a tree agnostic. In each episode, Casey introduces Alex to a new tree species. After learning all about the tree, they each give it a rating (from zero to ten Golden Cones of Honor!). Sometimes the ratings will surprise you (Alex gave Bradford pear 9.1 Golden Cones of Honor). As the show has gone on, additional segments have been introduced, like Trick or Tree and listener questions. This is easily one of the best plant podcasts around, not just because you’ll learn something about trees (and who doesn’t love trees?), but because you will have a delightful time doing so with a couple of the friendliest and goofiest podcast hosts around.

Naturistic – In the same vein as Completely Arbortrary, Naturistic features host, Nash Turley, telling his co-host friend, Hamilton Boyce, about a natural history topic. At the time of this posting, there are only a handful of episodes available, and not all are plant-focused (most are about animals), but I assume more plant ones are in the works. Either way, each episode is well worth a listen. The topics are well-researched and presented in an amiable and approachable manner. There are also some nicely done videos that accompany some of the episodes.

Flora and Friends – A plant podcast based in Sweden and hosted by Judith, who is also a member of The Plant Book Club. Generally, Judith spends a few episodes with several guests diving deep into a single plant, group of plants, or plant-related topic. So far, there are series of episodes about nasturtiums, Pelargonium, Fritillaria, and forests. Sometimes the episodes are in Swedish, and when that’s the case, Judith refers listeners to a summary in English on the podcast’s website. Each episode is a casual and pleasant chat – or in other words a “botanical tea break” – about the topic at hand, which explains why Judith refers to the podcast as “your botanical cup of tea.”

Field, Lab, Earth – “A podcast all about past and present advances in the fields of agronomy, crop, soil, and environmental sciences.” Produced by a group of three professional societies – American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America – and hosted by Abby Morrison. In each episode, Abby talks with a guest or guests about a research topic, often having to do with agriculture, but sometimes having to do with other aspects of plant and soil science. Listeners get behind the scenes information about how the research was conducted, as well as in depth discussions on the findings. You don’t necessarily need a background in plant and soil science to listen, as many of the basic concepts are well-explained along the way. Also, if you’re a Certified Crop Adviser or Certified Professional Soil Scientist, you can earn Continuing Education Credits by listening to each episode and taking a quiz. Major Bonus!

Backyard Ecology – An urban ecology podcast hosted by Shannon Trimboli. Nature isn’t just some far off place, it’s right outside our doors as well. With a little effort, we can make our yards and other urban spaces more biodiverse and create quality habitat for all sorts of wildlife. Plants are the foundation of our urban habitats, as is the case practically anywhere else, so even when episodes of this podcast are focused on animals, you can be sure that plants are at the heart of the conversation. Join Shannon as she, through conversations with other experts and nature enthusiasts, “ignites our curiosity and natural wonder, explores our yards and communities, and improves our local pollinator and wildlife habitat”

Talking Biotech – This is a long-running podcast hosted by Dr. Kevin Folta that aims to help people better understand the science behind genetic engineering. Folta’s university research supports plant breeding efforts, and many of the episodes of his podcast focus on plant breeding using both traditional methods and genetic engineering. A variety of other aspects and uses of biotechnology are also explored on the podcast. Folta has a passion for science communication and is adamant about debunking misinformation and sharing with the world the promise that new technologies offer us in our efforts to feed the world, improve human health, and address environmental threats. Even if you’re not generally interested in plant breeding, the discussions about the plants and the research is always very interesting and thought-provoking.

War Against Weeds – There is so much more to plants than meets the eye, and what group of plants demonstrates this better than weeds? They are our constant companions, and they are continually outwitting us. Their “craftiness” is one of the reasons I find them so intriguing. Controlling weeds is a constant battle, and few know that battle better than those who work in agriculture. After all, their livelihoods depend on it. War Against Weeds is hosted by three weed scientists whose job it is to help farmers successfully manage weeds. Each episode is a peek into what it takes to do the job. The war may never be won, and the strategies must be diverse – hence the podcast’s tagline, “silver bullets are for werewolves” – and so the conversation will continue. Luckily, we get to listen in.

Arthro-Pod – Just as the name implies, this is an entomology podcast. Insects and plants share an intimate relationship, so I consider this enough of a plant-related podcast to be included here. Plus I really like it. It came to me highly recommended by Idaho Plant Doctor, who is also really into plants and bugs. Hosted by three professional entomologists that all work in extension, Arthro-Pod is a bit like War Against Weeds, but is geared more towards the layperson than the professional. The hosts are humorous and clearly love what they do, which is why, apart from the fascinating discussions about insects, this is such a delight to listen to.


Chances are there will be a part four to this series. If you’re aware of a plant podcast that I haven’t covered yet, please let me know in the comment section below or by sending me a message via the Contact page.

The Serotinous Cones of Lodgepole Pine

Behind the scales of a pine cone lie the seeds that promise future generations of pine trees. Even though the seeds are not housed within fruits as they are in angiosperms (i.e. flowering plants), the tough scales of pine cones help protect the developing seeds and keep them secure until the time comes for dispersal. In some species, scales open on their own as the cone matures, at which point winged seeds fall from the tree, taking flight towards their new homes. In other species, the scales must be pried open by an animal in order to free the seed. A third group of species have what are called serotinous cones, the scales of which are sealed shut with resin. High temperatures are required to soften the resin and expose the seeds.

Serotinous cones are a common trait of pine species located in regions where wildfire naturally and regularly occurs. One such species is lodgepole pine (Pinus contorta), which is found in abundance in forests across much of western North America. Lodgepole pine is a thin-barked tree species that burns easily and is often one of the first plants to recolonize after a stand-replacing wildfire. There are 3 or 4 subspecies of lodgepole pine. The one with the largest distribution and the one that most commonly exhibits serotinous cones is P. contorta subsp. latifolia, which occurs throughout the Rocky Mountains, north into the Yukon, and just west of the Cascade Range.

needles of lodgpole pine (Pinus contorta)

Lodgepole pine grows tall and straight, generally maxing out at around 80 feet tall. Its needles are about two and a half inches long, are borne in bundles of two, and tend to twist away from each other, which is one explanation for the specific epithet, contorta. Its cones are egg-shaped with asymmetrical bases, measuring less than two inches long with prickly tips at the ends of each scale. The seeds of lodgepole pine are tiny with little, papery wings that aid in dispersal. The cones can remain attached to the tree for 15-20 years (sometimes much longer), and the seeds remain viable for decades. In non-serotinous cones, the scales start opening on their own in early autumn. Serotinous cones require temperatures of 45-50°C (113-122°F), to release the resin bond between the scales. Some cones that happen to fall from the tree can open when exposed to particularly warm temperatures on the ground. Otherwise, it takes fire to free the seeds.

Serotinous cones aren’t a guarantee, and the percentage of trees with serotinous cones compared to those with non-serotinous cones varies widely across the range of lodgepole pine, both in space and in time. One reason for this is that trees with serotinous cones don’t develop them until they reach a certain age, generally around 20-30 years old, or perhaps as old as 50 or 60. The cones of young trees are all non-serotinous. But some trees never develop serotinous cones at all. Serotiny is a genetic trait, and there are various factors that either select for or against it. A number of factors are at play simultaneously over the life of a tree and across a population of trees, so it is difficult to determine exactly why the percentage of serotinous cones is so variable across the range of the species. What follows are a few potential explanations for this phenomenon.

closed cone of lodgepole pine (Pinus contorta)

As a fire-adapted, pioneer species, lodgepole pine has evolved to live in environments where fire is predictably common. Serotinous cones help ensure that a population won’t be wiped out when a massive wildfire comes through. After the fire has passed and the seeds are released, lodgepole pine can quickly repopulate the barren ground. As long as fire occurs within the lifespan of a population of similarly aged trees, it is advantageous for the majority of individuals to maintain their serotinous trait. If the population is located in an area that historically does not see much fire, serotinous cones may be a disadvantage and can have adverse effects on the longevity of that population.

A study published in Ecology in 2003 looked at the influence that the frequency of fire has on lodgepole pine stands found at low and high elevations in Yellowstone National Park. At lower elevations, where summer temperatures are warmer and precipitation is relatively minimal, fires occur more frequently compared to higher elevations, which tend to be cooler and wetter. The researchers found that at lower elevations when fires occurred at short intervals (less than 100 years between each fire), lodgepole pine was slower to repopulate compared to longer intervals. This suggests that the percentage of serotiny found in stands that experienced short fire intervals was low, and that stands with long fire intervals exhibit a higher percentage of serotiny. After all, as mentioned above, lodgepole pines don’t start developing serotinous cones until later in life.

At higher elevations, where fire occurs less frequently, lodgepole pines were found to have a low percentage of serotinous cones regardless of the age of the stand. Because the trees at high elevations are more likely to die of old age rather than fire, maintaining serotinous cones would be a disadvantage. Open cones are preferred. Thus, at least in this study, a greater percentage of serotinous cones was found in lodgepole pines at lower elevations compared to those at higher elevations. Latitude, elevation, mountain pine beetle attacks, and other environmental factors have all been used to explain differences in serotiny. However, the factor that seems to have the greatest influence is the frequency of fire. As James Lotan writes in a 1976 report: “A high degree of cone serotiny would be expected where repeated, high-intensity fires occur. Where forest canopies are disrupted by factors other than fire, open cones annually supply [seed] for restocking disturbances such as windfalls.”

That being said, one other factor does appear to play a critical role in whether or not lodgepole pines produce serotinous cones, and that is seed predation by squirrels. In a paper published in Ecology in 2004, researchers wondered why the percentage of serotinous cones wasn’t even higher in populations where fire reliably occurred during the lifetime of the stand. To help answer this question they looked at the activities of pine squirrels, which are the main seed predator of lodgepole pine seeds. Pine squirrels visit the canopy of lodgepole pines and consume the seeds found in serotinous cones. Because non-serotinous cones quickly shed their seeds, serotinous cones are a more reliable and accessible food source, and because pine squirrels are so effective at harvesting the seeds of serotinous cones, the researchers concluded that, “in the presence of pine squirrels, the frequency of serotiny is lower and more variable, presumably reflecting,” among a variety of other factors, “the strength of selection exerted by pine squirrels.”

A study published in PNAS in 2014 added evidence to this conclusion. While acknowledging that fire plays a major role in the frequency of serotinous cones, the researchers asserted that “squirrels select against serotiny and that the strength of selection increases with increasing squirrel density.” However, despite making it easier for squirrels to access their seeds, lodgepole pines maintain a degree of serotinous cones, since clearly their main advantage is retaining a canopy-level seed bank from which seeds are released after a fire and by which a new generation of lodgepole pines is born.

open cones of lodgepole pine (Pinus contorta)

Further Reading and Viewing:

Meet Erigeron linearis

Erigeron is a genus of herbaceous, flowering plants consisting of between 390 and 460 species and is a member of the aster/sunflower family (Asteraceae). Plants in this genus are annuals, biennials, or perennials and are mainly found in temperate regions around the world. At least 163 species occur in the contiguous United States. Erigeron diversity is particularly high in western states; however, each state is home to at least one Erigeron species.

A common name for plants in this genus is fleabane. This name comes from an outdated belief that the plants can be used to repel or poison fleas, flies, gnats, and other tiny insects, a belief for which there is no evidence. In Ancient Greek, the name Erigeron is said to mean something akin to “old man in the early morning,” likely referring to the appearance of the seed heads which look like little tufts of white hair. Some Erigeron species are also commonly referred to as daisies.

desert yellow fleabane (Erigeron linearis)

One species of Erigeron that I would like you to meet is Erigeron linearis. While most of the plants in this genus have flowers that are white, pink, or various shades of purple, E. linearis is a yellow-flowered species, hence the common name, desert yellow fleabane. Another common name for this plant is narrow leaved fleabane, a reference to its linear leaves. E. linearis is a small plant with a prominent taproot that reaches up to 20 centimeters tall and forms a leafy, rounded mat or cushion of whitish or gray-green, alternately arranged leaves. The white appearance is due to numerous, fine, appressed hairs on the leaves and stems. Flower stalks are produced in abundance in late spring through early summer and are mostly leafless. They reach above the mound of leaves and are each topped with at least one flower head, which nods at first, but then straightens out as the flowers open. Each flower head is about 2 centimeters wide and is typical of plants in the sunflower family, with a cluster of deep yellow disc florets in the center, surrounded by ray florets that are lighter in color. Both disc and ray florets are fertile; however, the disc florets have both “male” (stamens) and “female” (pistils) flower parts, while the ray florets have only “female” parts. The involucre, which sits at the base of the flowers, is egg-shaped or hemispheric and made up of a series of tiny, fuzzy bracts called phyllaries.

the flower head of desert yellow fleabane (Erigeron linearis)

The fruit of Erigeron linearis is called a cypsela, an achene-like fruit that is characteristic of plants in the sunflower family. The fruits are miniscule and topped with a pappus composed of short outer bristles and longer, pale, inner bristles. The two types of pappus bristles (or double pappus) must be the reason for the scientific name this species was originally given in 1834, Diplopappus linearis. While the seeds of more than 80% of flowering plant species found in dryland regions exhibit some form of dormancy, a study published in Plant Biology (2019), found that E. linearis is one of the few species with non-dormant seeds. This means that for those of us interested in growing plants native to the Intermountain West, E. linearis is a pretty easy one to grow and is a great addition to water-wise gardens, pollinator gardens, and rock gardens.

Erigeron linearis seedling

Erigeron linearis is distributed across several western states and into Canada. It is found in northern California, eastern Oregon and Washington, southern British Columbia, across Idaho and east into southern Montana, western Wyoming and northwestern Utah. It is found at low to moderate elevations in open, rocky foothills, grasslands, sagebrush steppe, and juniper woodlands. It prefers well-drained soils and full sun. It is one of many interesting plants found on lithosols (also known as orthents), which are shallow, poorly develop soils consisting of partially weathered rock fragments. In the book Sagebrush Country, Ronald Taylor calls lithosols “the rock gardens of the sagebrush steppe,” and refers to E. linearis and other members of its genus as “some of the more colorful components of the lithosol gardens.” E. linearis is a food source for pronghorn, mule deer, and greater sage-grouse, and the flowers are visited by several species of bees and butterflies. The plant is also a larval host for sagebrush checkerspots.

desert yellow fleabane (Erigeron linearis)

Additional Resources:

Weeds of Boise: iNaturalist Observations

So far, the lists of weeds at each of the Weeds of Boise sites look pretty similar, with several weed species showing up at nearly every site and other species only occasionally making an appearance. This isn’t a surprise really. The flora of any region typically has several species that are dominant, along with species that occur less frequently. Wild urban flora – or in other words, the naturalized weeds in urban areas – may follow a similar pattern. My unscientific and infrequent surveys, all of which have been pretty close to where I live, aren’t yet representative of the Boise area as a whole. However, something like iNaturalist might help with that. For this reason, I took a look at iNaturalist observations to get a better idea as to which species dominate the wild urban flora of Boise, Idaho.

iNaturalist is a website and app that allows users to identify, map, and share observations of living things with the rest of the world. It has been in use for over a decade and is easily one of the most popular community science, biodiversity mapping, and identification apps around. Even though it is not the primary mission of iNaturalist, the information gathered from user observations is frequently used in scientific research and conservation efforts. With over 80 million observations worldwide, iNaturalist offers a pretty decent picture of the plants, animals, fungi, and other living things found in just about any given location. You don’t even need to a registered user to browse the observations and find out what has been spotted near you or across the globe.

In order to come up with a list of weeds that have been observed in Boise by iNaturalist users, I entered “Boise City Metropolitan Area, ID, USA” into the Location field. It is possible to narrow your search to individual neighborhoods or even broaden your search to include a larger area. Clicking on the map allows you to see the area represented in your search. For my purposes, I figured that the number of observations would change if the area covered was either smaller or larger, but the list of weed species would largely remain the same. After you select your search area, you can filter out the results. Clicking on the plant icon limits the search to plants. At first I selected only introduced plants, but that seemed to eliminate a few of the plants that I would consider weeds, so instead I scanned through the entire list of plants and made a list of each of the weed species and how many times each had been observed.

There are of course limitations to using iNaturalist to create species lists, the main one being that you are relying on decisions made by iNaturalist users when it comes to what gets reported. In my case, in which I’m looking for a list of weed species found in Boise, I know there are plenty of weeds that iNaturalist users either aren’t noticing or aren’t bothering to report. The reported observations are also not likely to match the frequency at which they occur in the environment. Still, it’s interesting to see what gets reported and how often. It’s also interesting to see reports of things that I haven’t seen before. By clicking on individual observations, you can see where those observations were made, which means I know where I can go to find species I haven’t yet encountered.

What follows is a list of the top 25 weeds in the Boise area based on the number of iNaturalist observations, along with photos of some of the most reported weeds. A few of the species on the list, like cornflower, straddle the line between weed and desirable plant. I included them anyway because they are known to be naturalized outside of garden borders, even though some of the reported observations may have been intentionally planted within garden borders.

bittersweet nightshade (Solanum dulcamara)
pink-flowered field bindweed (Convolvulus arvensis)
great mullein (Verbascum thapsus)

Top 25 Weeds in the Boise City Metropolitan Area According to iNaturalist Observations (as of September 21, 2021)

  1. great mullein (Verbascum thapsus) – 110 
  2. common dandelion (Taraxacum officinale) – 98
  3. redstem stork’s-bill (Erodium cicutarium) – 83
  4. chicory (Cichorium intybus) – 62
  5. heart-podded hoary cress (Lepidium draba) – 61
  6. cornflower (Centaurea cyanus) – 58
  7. rush skeletonweed (Chondrilla juncea) – 56
  8. purple loosestrife (Lythrum salicaria) – 49
  9. bittersweet nightshade (Solanum dulcamara) – 47
  10. alfalfa (Medicago sativa) – 46
  11. common soapwort (Saponaria officinalis) – 43
  12. dwarf mallow (Malva neglecta) – 42
  13. donkey tail (Euphorbia myrsinites) – 40 
  14. poison hemlock (Conium maculatum) – 39
  15. field bindweed (Convolvulus arvensis) – 39 
  16. bulbous meadow-grass (Poa bulbosa) – 39
  17. yellow salsify (Tragopogon dubius) – 38
  18. crested wheatgrass (Agropyron cristatum) – 37 
  19. cheatgrass (Bromus tectorum) – 36
  20. moth mullein (Verbascum blattaria) – 36 
  21. hound’s-tongue (Cynoglossum officinale) – 31
  22. Virginia creeper (Parthenocissus quinquefolia) – 30
  23. catnip (Nepeta cataria) – 29
  24. white clover (Trifolium repens) – 29
  25. yellow iris (Iris pseudacorus) – 28
Virginia creeper (Parthenocissus quinquefolia)
catnip (Nepeta cataria)
common soapwort (Saponaria officinalis)

Awkward Botanical Sketches #5: Leaves of Yellowstone Edition

Earlier this month, I met up with Eric LoPresti and others at Yellowstone National Park to help take a census of Abronia ammophila, a rare plant endemic to the park and commonly referred to as Yellowstone sand verbena. Abronia (a.k.a. the sand-verbenas) is a small genus of plants in the family Nyctaginaceae that is native to western North America. Several species in the genus have fairly limited distributions, and as the common name implies, members of this genus generally occur in sandy soils. A. ammophila is no exception. A report written by Jennifer Whipple and published in 2002 described it as “restricted to stabilized sandy sites that lie primarily just above the maximum splash zone along the shoreline of [Yellowstone Lake].” Despite the large size of the lake, A. ammophila is not widespread. Most individuals are found along the north shore of the lake, and even there it has been declining. According to Whipple’s report, “Yellowstone sand verbena has been extirpated from a significant portion of its original range along the shoreline of the lake due largely to human influences.”

Like other sand verbenas, A. ammophila has sticky leaves to which sand particles easily adhere, a phenomenon known as psammophory and an act that may help in defense against herbivory. The plant grows prostrate across the sand and produces attractive, small, white, trumpet-shaped flowers in groups of up to 20 that open wide when light levels are low, such as in the evening and in times of heavy cloud cover. The flowers are self-fertile, but insects may also play a role in pollination. It is imperative that questions surrounding its pollination biology, seed dispersal, and other factors regarding its life history are answered in order to halt any further decline of the species and ensure its survival for generations to come.

While in Yellowstone, I enjoyed looking at the all plants, several of which were new to me. I decided to sketch a few of the leaves that I found common around our campsite. I was particularly interested in discolored, diseased, drought-stressed, and chewed-on leaves, since they are more interesting to sketch and color. While I was at it, I attempted to draw a Yellowstone sand verbena seedling as well.

wild strawberry (Fragaria sp.)
Richardson’s geranium (Geranium richardsonii)
lodgepole pine (Pinus contorta)
veiny dock (Rumex venosus)
cinquefoil (Potentilla sp.)
seedling of Yellowstone sand verbena (Abronia ammophila)

More Awkward Botanical Sketches

Book Review: In Defense of Plants

Many of us who are plant obsessed didn’t connect with plants right away. It took time. There was a journey we had to go on that would ultimately bring us to the point where plants are now the main thing we think about. After all, plants aren’t the easiest things to relate to. Not immediately anyway. Some of us have to work up to it. Once there, it’s pretty much impossible to go back to our former lives. What was once just a background of green hues is now a rich cast of characters, each with their own name, unique features, and distinct story to tell. Essentially, we went through what Matt Candeias refers to as our ” green revolution.” Candeias – author and host of the long-running blog and podcast, In Defense of Plants – shares his story of learning to love plants and offers a convincing arguement for why you should love them too in his new book, aptly titled, In Defense of Plants.

It’s hard to picture Candeias as anything but a plant lover. If you’ve been following his work, you’ll know he makes it a point to put plants at center stage. It seems that much of the popular content available about plants focuses on the usefulness of plants as they pertain to humans. In many cases it can be easier to find out how to grow a certain plant species than to learn about where it’s from and what it’s like in the wild. Candeias let’s the plants speak for themselves by giving them a voice through his blog, podcast, and now his book. Through the stories he shares we get a peek into the way Candeias sees plants, with the hope being that others might also “be bitten by the botanical bug.”

One of the first plants that captured the attention of Candeias was perennial blue lupine (Lupinus perennis). While assisting with a habitat restoration project at a sand and gravel quarry, Candeias was tasked with improving the establishment of lupine, which is the host plant for the caterpillars of an endangered species of butterfly called Karner blue. The work he did at the quarry and the botanical research that went into it helped Candeias realize that plant’s aren’t at all boring, but are “incredibly interesting organisms worthy of respect and admiration” and that “plants can be both surprisingly relatable and incredibly alien all at once.” His “green revolution” had begun.

The seeds of lupine are dispersed ballistically. As the seed pods dry, tension builds. Then, as Matt Candeias writes in In Defense of Plants, “with an audible pop, the pods eventually explode, catapulting the seeds out into the environment.”

In each chapter of In Defense of Plants we get a peak into the experiences that brought Candeias to where he is now as he discovers the wonder of plants. His personal stories help introduce the main topic of each chapter. Topics include plant sex, plant dispersal, plant defenses, carnivorous plants, and parasitic plants. From countless possible examples, Candeias selects a few of his favorite plant species to help illustrate each topic. Along the way, the reader is presented with various other interesting plant-related facts as Candeias discusses the behaviors of some of the world’s most fascinating plants. In the chapter on dispersal, for example, unlikely agents of seed dispersal (like catfish!) are introduced, as well as phenomena like geocarpy, in which plants are essentially planting themselves.

Carnivorous plants provide an excellent gateway into convincing people who claim to have no interest plants that they actually do. It’s difficult to deny the impressive nature of a meat-eating plant. In the carnivorous plant chapter, Candeias introduces us to the various ways such plants capture and consume their prey, and even wonders if some of these plants should be considered omnivores. After all, certain butterworts digest pollen that falls onto their sticky leaves, and some bladderworts suck in plenty of algae and possibly gain nutrients from the act. If capturing insects inside leaves modified to look like pitchers or on leaves covered in digestive enzyme-producing glands doesn’t impress you, consider the carnivorous actions of corkscrew plants, which drill their leaves into the soil to go after soil-dwelling organisms like protozoans and worms.

Parasitic plants should also excite a reluctant plant lover. These are plants that take all or most of what they need to survive from another plant or host organism. Mistletoes are one of the more familiar parasitic plants, and Candeias describes several, including one that lives almost entirely within the stems of cacti. In fact, “you would never know a cactus had been infected until the mistletoe living within decides to flower,” at which point the flowers push their way out through the sides of the cactus. Dodder is another fairly common, highly specialized, and easy to identify parasitic plant. It basically looks like “a tangled pile of orange spaghetti tossed over the surrounding vegetation.” Orchids, a favorite of Candeias, are known for being mycoheterotrophs, which essentially means they parasitize fungi. Their seeds come unequipped with the energy stores needed to get going, so they borrow resources from mycorrhizal fungi in order to get their start. Years pass before the orchid can offer anything in return.

Datura is a genus of plants that produces toxic compounds like scopolamine and atropine. In his book, In Defense of Plants, Matt Candeias warns, “it would only take a small amount of these chemicals to completely ruin your week and slightly more to put you in a grave.”

After spending more than 200 pages celebrating plants and their amazing abilities and diversity, it’s fitting that Candeias spends the final chapter of his book mourning some of the ways the actions of humans threaten the existence of so many plants. He remarks how unfortunate it is that “plants with their unseeing, unhearing, unfeeling ways of life usually occupy the lowest rung of importance in our society.” Many of us barely notice the loss, yet “plants are the foundation of functioning ecosystems.” Due to that fact, “destroying plant communities causes disastrous ripples that reverberate throughout the entire biosphere of our planet.” Everything suffers when plants are lost. Fortunately, the book doesn’t end on this dark note. Candeias’s overall message is hopeful. When we learn to understand, appreciate, and care about plants, we will want to do everything we can to protect and restore them. With any luck, after reading this book, you too will want to offer your time, energy, and resources in defense of plants.

Listen to Matt talk about his new book on this episode of his podcast.

More Book Reviews on Awkward Botany

To Fruit or Not to Fruit – The Story of Mast Seeding

Perennial plants that are able to reproduce multiple times during their lifetime don’t always yield the same amount of seeds each time they reproduce. For some of these plants, there is a stark difference between high-yield years and low-yield years, with low-yield years outnumbering the occasional high-yield years. In years when yields are high, fruit production can seem excessive. This phenomenon is called masting, or mast seeding, and it takes place at the population level. That is, during a mast year, virtually all individuals in a population of a certain species synchronously produce a bumper crop of seeds.

Plants of many types can be masting species. Bitterroot milkvetch (Astragalus scaphoides) and a tussock grass known as Chionochloa pallens are masting species, for example. However, this behavior is most commonly observed in trees, notably nut producing trees like oaks, beeches, and pecans. As you might imagine, the boom and bust cycles of mast seeding plant populations can have dramatic ecological effects. Animals that eat acorns, for example, are greeted with a veritable buffet in a mast year, which can increase their rate of reproduction for a spell. Then, in years when acorns are scarce, the populations of those animals can plummet.

How and why masting happens is not well understood. It is particularly baffling because masting populations can cover considerably large geographic areas. How do trees covering several square miles all “know” that this is the year to really go for it? While a number of possible explanations have been explored, there is still much to learn, especially since so many different species growing in such varied environments exhibit this behavior.

A popular explanation for mast seeding is predator satiation. The fruits and seeds of plants are important food sources for many animals. When a population of plants produces fruit in an unusually high abundance, its predators won’t possibly be able to eat them all. At least a few seeds will be left behind and can sprout and grow into new plants. By satiating their predators they help ensure the survival of future generations. However, even if a plant species has evolved to behave this way, it still doesn’t explain how all the plants in a particular population seem to know when it’s time for another mast year.

Predator satiation is an example of an economy of scale, which essentially means that individual plants benefit when the population acts as a whole. Another economy of scale that helps explain masting is pollen coupling. This has to do with the timing of flowering in cross pollinating species. If individuals flower out of sync with one another, the opportunities for cross pollination are limited. However, if individuals in a population flower simultaneously, more flowers will be pollinated which leads to increased fruit and seed production.  For this to happen, there are at least two factors that come into play. First, the plants have to have enough resources to flower. Making flowers is expensive, and if the resources to do so (like carbon, nitrogen, and water) aren’t available, it won’t happen. Second, weather conditions have to work in their favor. Timing of flowering depends, not only on daylength, but on temperature, rainfall, and other local weather conditions. If individuals across a population aren’t experiencing similar weather, the timing of their flowering may be off.

pollen-producing (male) flowers of pecan (Carya illinoinensis) — via wikimedia commons; Clemson University

Resource matching and resource budgeting are other proposed explanations for masting. Since plants can only use the resources available to them for things like growth and reproduction, they vary each year in how much growing or reproducing they do. Theoretically, if plants in a population are all going to flower in the same year, they all have to have access to a similar amount of resources. Often, the year following a mast year, there is a significant drop in fruit production, as though the plants have used up all of their available resources for reproduction and are taking a break. Some hypothesize that masting is a result of resource storage, and that plants save up resources for several years until they have what they need for yet another big year.

Another thing to consider is how plant hormones might play a role in masting. Gene expression and environmental cues both result in hormonal responses in plants. As Bogdziewicz, et al. write in Ecology Letters (2020), “if hormones and the genes that control them are hypersensitive to an environmental signal, masting can be at least partially independent of resource- and pollen-based mechanisms.” This and other potential explanations for masting are, at this point, largely theoretical. In their paper, Bogdziewicz, et al. propose a number of ways that theoretical predictions can be experimentally tested. If the “research agenda” outlined in their paper is carried out, they believe it will “take the biology of masting from a largely observational field of ecology to one rooted in mechanistic understanding.”

In her book, Braiding Sweetgrass, Robin Wall Kimmerer proposes an additional explanation for the mechanisms behind masting – the trees are talking to one another. Not in the way that you and I might converse, but rather by sending signals through the air via pheromones and underground via complex fungal networks. There is already evidence for this behavior when it comes to plants defending themselves from predators and in sharing resources, so why not in planning when to reproduce? As Kimmerer writes regarding masting, “the trees act not as individuals, but somehow as a collective.” The question now is how.

seedlings of European beech (Fagus sylvatica), a mast-seeding species — via wikimedia commons; user: Beentree

Additional Resources: