Book Review: The Gyroscope of Life

Gyroscopes are entertaining toys and incredibly useful tools. They retain their balance and resist changes to their orientation as long as their flywheel is spinning. As the flywheel slows or stops, the gyroscope wobbles out of control and ultimately quits. Considering their design and function, it’s easy to find parallels between gyroscopes and living systems. Consistent energy inputs keep living things alive. Changes can bring imbalance; major disruptions can lead to death. There is a reason we often describe the natural world as a sort of balancing act. It is the work of an ecologist to make sense of this balancing act. The better we understand it, the more equipped we are to protect it and operate responsibly within it.

It is through this lens that David Parrish writes about the biological world in The Gyroscope of Life, a book that Parrish refers to as “a love song to the field of biology.” Parrish has spent much of his life observing and studying the natural world and, as professor emeritus of Crop and Soil Environmental Sciences at Virginia Tech, undoubtedly shared much of what he presents in his book with countless students over the years. The Gyroscope of Life reads like part memoir and part last lecture, and is the work of someone who has an obvious passion for science and nature.

Parrish spends the first few chapters of his book writing mostly about his life and how he came to be a biologist. He acknowledges his privelege – “born male, white, and American in an era where each of those attributes provided me major advantages” –  having essentially been placed on third base from the start, “well down the third base line.” An aspiring zoologist turned botanist, he spent his early years in graduate school studying seeds and seed dormancy. It’s a topic that obviously interests him, as several pages of the book are spent considering what’s going on inside of a seed. “Seeds provide the widest-spread examples of suspended life,”  Parrish says. Are they alive or dead or neither?

Two additional, major life events play a prominent role in the arc of Parrish’s book. One being his break from organized religion and the other his battle with advanced prostate cancer. He grew up in an orthodox Christian home with a very literal understanding of the Bible. His education put him at odds with what he was taught growing up about (among other things) the age of the earth and its creation. Eventually he came to understand that science and religion “exist in separate non-overlapping spheres – the physical and the metaphysical.” He doesn’t necessarily see science and religion as being inherently at odds with each other, but his understanding of science makes it difficult to “find resonance in religion” due to the “cacophony of dissonance” it offers.

In addressing his prostate cancer, Parrish underwent an operation that gave him a newfound perspective on gender. Freed from “testosterone poisoning,” he was able to more fully consider sex and gender from a biological perspective, which he says he had been doing for decades prior to the operation. He spends a good portion of the book “demystifying sex and gender.” One compelling example he offers involves avocado flowers, which actually change gender over time, a phenomenon known as synchronous dichogamy.

avocado flowers (Persea americana) via wikimedia commons

Over the course of its pages, The Gyroscope of Life covers a significant number of topics in the fields of biology and ecology. It’s a relatively short book, but as it careens through such wide-ranging material, it does so in an approachable and suprisingly succint manner. Parrish’s sense of humor, which doesn’t waver despite how bleak the discussion sometimes gets, helps carry the story along and keeps things interesting. Parrish covers evolution (“[Biologists] argue that, if evolution didn’t happen, it should.”), taxonomy (“the name for naming things”) and sytematics, ecological niches (“[humans] are essentially living niche-free and ecosystemless”), domestication, and so much more. The last chapter is spent discussing agroecosystems (“the organisms and abiotic environment that interact in a human-managed agricultural setting”), a topic he spent much of his career studying.

The underlying message of this book, as I see it, is a simultaneous celebration for life on earth and a concern for the direction things are going considering how humans have managed things. Parrish has some admonition for humans in light of how we’ve treated our home planet, but he isn’t too heavy-handed about it. Overall, reading the book felt like sitting in on a lecture given by a friendly and dynamic professor who has obviously given a lot of thought to what he has to say.

Check out the following video to see David Parrish describe the book in his own words.

More Book Reviews on Awkward Botany:

The Hidden Flowers of Viola

Violas keep a secret hidden below their foliage. Sometimes they even bury it shallowly in the soil near their roots. I suppose it’s not a secret really, just something out of sight. There isn’t a reason to show it off, after all. Showy flowers are showy for the sole purpose of attracting pollinators. If pollinators are unnecessary, there is no reason for showy flowers, or to even show your flowers at all. That’s the story behind the cleistogamous flowers of violas. They are a secret only because unless you know to look for them, you would have no idea they were there at all.

Cleistogamy means closed marriage, and it describes a self-pollinating flower whose petals remain sealed shut. The opposite of cleistogamy is chasmogamy (open marriage). Most of the flowers we are familiar with are chasmogamous. They open and expose their sex parts in order to allow for cross-pollination (self-pollination can also occur in such flowers). Violas have chasmogamous flowers too. They are the familiar five-petaled flowers raised up on slender stalks above the green foliage. Cross-pollination occurs in these flowers, and seed-bearing fruits are the result. Perhaps as a way to ensure reproduction, violas also produce cleistogamous flowers, buried below their leaves.

an illustration of the cleistogamous flower of Viola sylvatica opened to reveal its sex parts — via wikimedia commons

Flowers are expensive things to make, especially when the goal is to attract pollinators. Colorful petals, nectar, nutritious pollen, and other features that help advertise to potential pollinators all require significant resources. All this effort is worth it when it results in the ample production of viable seeds, but what if it doesn’t? Having a method for self-pollination ensures that reproduction will proceed in the absence of pollinators or in the event that floral visitors don’t get the job done. A downside, of course, is that a seed produced via self-pollination is essentially a clone of the parent plant. There will be no mixing of genes with other individuals. This isn’t necessarily bad, at least in the short term, but it has its downsides. A good strategy is a mixture of both cross- and self-pollination – a strategy that violas employ.

The cleistogamous flowers of violas generally appear in the summer or fall, after the chasmogamous flowers have done their thing. The fruits they form split open when mature and deposit their seeds directly below the parent plant. Some are also carried away by ants and dispersed to new locations. Seeds produced in these hidden flowers are generally superior and more abundant compared to those produced by their showy counterparts. People who find violas to be a troublesome lawn weed – expanding far and wide to the exclusion of turfgrass – have these hidden flowers to blame.

That being said, there is a defense for violas. In the book The Living Landscape by Rick Darke and Doug Tallamy, Tallamy writes: “Plants such as the common blue violet (Viola sororia), long dismissed by gardeners as a weed, can be reconstituted as desirable components of the herbaceous layer when their ecosystem functionality is re-evaluated. Violets are the sole larval food source for fritillary butterflies. Eliminating violets eliminates fritillaries, but finding ways to incorporate violets in garden design supports fritillaries.”

sweet violet (Viola odorata)

In my search for the cleistogamous flowers of viola, I dug up a sweet violet (Viola odorata). I was too late to catch it in bloom, but the product of its flowers – round, purple, fuzzy fruits – were revealed as I uprooted the plant. Some of the fruits were already opening, exposing shiny, light brown seeds with prominent, white elaiosomes, there to tempt ants into aiding in their dispersal. I may have missed getting to see what John Eastman calls “violet’s most important flowers,” but the product of these flowers was certainly worth the effort.

Fruits formed from the cleistogamous flowers of sweet violet (Viola odorata)

Up close and personal with the fruit of a cleistogamous flower

The seeds (elaiosomes included) produced by the cleistogamous flower of sweet violet (Viola odorata)

See Also:

Revisiting the Moon Tree

I first learned about Moon Trees in the fall of 2015. One of the trees – a loblolly pine – had been planted at an elementary school just down the street from where I was living at the time. It wasn’t a new thing – it was planted back in 1977, during the period when most other Moon Trees where being planted around the country and the world – but because it wasn’t doing too well, it was in the news. Members of the community, concerned about its long-term survival, were pitching in to help keep it alive. Once I was made aware of it, I also became concerned and decided to go check on it. I even wrote a post about it, which you can read here.

Now that nearly 5 years have passed, I figured I should go check on it again. I hadn’t heard any more news about it, so I assumed it was still hanging in there, but who knows? Maybe not. Since I was going to be on that side of town for Father’s Day, I made plans to stop by. My dad hadn’t seen the tree yet, so he decided to join me.

As we approached Lowell Elementary on our bikes, I was half-expecting the tree to be gone. It was in pretty sad shape when the community stepped in to help it. Braced for this possibility, I anxiously peered down the street as we biked closer. When the tree came into view, I felt relief and announced, “There it is!”

All this time later, it still looks a little rough. The majority of its bark remains largely obscured by crusty, dried up sap, and its canopy isn’t as full as it likely would be if it was a picture of health. But it’s alive and, surprisingly enough, still growing taller, reaching for the moon.

Any loblolly pine would feel out of place in Idaho – it’s a species whose distribution spans the southwest region of the United States, which is starkly different from the northwest – however, this individual in particular is an anomaly. The seed it sprouted from took a journey into space, circled the moon a number of times and then, as a sapling, was planted in Idaho (of all places). Now, over 40 years later, it stands as a symbol of resilience. Something we could all use right now, I’m sure.

This sign was installed shortly after my original Moon Tree post.

Boise, Idaho’s Moon Tree in June 2020

My dad by the Moon Tree in Boise, Idaho

Me by the Moon Tree in Boise, Idaho

———————

Was a Moon Tree planted near you? Is it still around? Tell us about it in the comment section below.

 

Dispersal by Bulbils – A Bulbous Bluegrass Story

The main way that a plant gets from place to place is in the form of a seed. As seeds, plants have the ability to travel miles from home, especially with the assistance of outside forces like wind, water, and animals. They could also simply drop to the ground at the base of their parent plant and stay there. The possibilities are endless, really.

But what about plants that don’t even bother making seeds? How do they get around? In the case of bulbous bluegrass, miniature bulbs produced in place of flowers function exactly like seeds. They are formed in the same location as seeds, reach maturity and drop from the plant just like seed-bearing fruits, and are then dispersed in the same ways that seeds are. They even experience a period of dormancy similar to seeds, in that they lie in wait for months or years until the right environmental conditions “tell” them to sprout. And so, bulbils are basically seeds, but different.

bulbous bluegrass (Poa bulbosa)

Bulbous bluegrass (Poa bulbosa) is a Eurasian native but is widely distributed outside of its native range having been repeatedly spread around by humans both intentionally and accidentally. It’s a short-lived, perennial grass that can reach up to 2 feet tall but is often considerably shorter. Its leaves are similar to other bluegrasses – narrow, flat or slightly rolled, with boat-shaped tips and membranous ligules – yet the plants are easy to distinguish thanks to their bulbous bases and the bulbils that form in their flower heads. Their bulbous bases are actually true bulbs, and bulbous bluegrass is said to be the only grass species that has this trait. Just like other bulb-producing plants, the production of these basal bulbs is one way that bulbous bluegrass propagates itself.

basal bulbs of bulbous bluegrass

Bulbous bluegrass is also propagated by seeds and bulbils. Seeds form, like any other plant species, in the ovary of a pollinated flower. But sometimes bulbous bluegrass doesn’t make flowers, and instead modifies its flower parts to form bulbils in their place. Bulbils are essentially tiny, immature plants that, once separated from their parent plant, can form roots and grow into a full size plant. The drawback is that, unlike with most seeds, no sexual recombination has occurred, and so bulbils are essentially clones of a single parent.

The bulbils of bulbous bluegrass sit atop the glumes (bracts) of a spikelet, which would otherwise consist of multiple florets. They have dark purple bases and long, slender, grass-like tips. Bulbils are a type of pseudovivipary, in that they are little plantlets attached to a parent plant. True vivipary occurs when a seed germinates inside of a fruit while still attached to its parent.

Like seeds, bulbils are small packets of starch and fat, and so they are sought ought by small mammals and birds as a source of food. Ants and small rodents are said to collect and cache the bulbils, which is one way they get dispersed. Otherwise, the bulbils rely mostly on wind to get around. They then lie dormant for as long as 2 or 3 years, awaiting the ideal time to take root.

bulbils of bulbous bluegrass

Bulbous bluegrass was accidentally brought to North America as a contaminant in alfalfa and clover seed. It was also intentionally planted as early as 1907 and has been evaluated repeatedly by the USDA and other organizations for use as a forage crop or turfgrass. It has been used in restoration to stabilize soils and reduce erosion. Despite numerous trials, it has consistently underperformed mainly due to its short growth cycle and long dormancy period. It is one of the first grasses to green up in the spring, but by the start of summer it has often gone completely dormant, limiting its value as forage and making for a pretty pathetic turfgrass. Otherwise, it’s pretty good at propagating itself and persisting in locations where it hasn’t been invited and is now mostly considered a weed – a noxious one at that according to some states. Due to its preference for dry climates, it is found most commonly in western North America.

In its native range, bulbous bluegrass frequently reproduces sexually. In North America, however, sexual reproduction is rare, and bulbils are the most common method of reproduction. Prolific asexual reproduction suggests that bulbous bluegress populations in North America should have low genetic diversity. Researchers set out to examine this by comparing populations found in Washington, Oregon, and Idaho. Their results, published in Northwest Science (1997), showed a surprising amount of genetic variation within and among populations. They concluded that multiple introductions, some sexual reproduction, and the autopolyploidy nature of the species help explain this high level of diversity.

———————

Interested in learning more about how plants get around? Check out the first issue of our new zine Dispersal Stories.

Winter Interest in the Lower Boise Foothills

The Boise Foothills, a hilly landscape largely dominated by shrubs and grasses, are a picturesque setting any time of the year. They are particularly beautiful in the spring when a wide array of spring flowering plants are in bloom, and then again in late summer and early fall when a smaller selection of plants flower. But even when there aren’t flowers to see, plants and other features in the Foothills continue to offer interest. Their beauty may be more subtle and not as immediately striking as certain flowers can be, but they catch the eye nonetheless. Appeal can be found in things like gnarled, dead sagebrush branches, lichen covered rocks, and fading seed heads. Because the lower Boise Foothills in particular have endured a long history of plant introductions, an abundance of weeds and invasive plants residing among the natives also provide interest.

This winter has been another mild one. I was hoping for more snow, less rain, and deeper freezes. Mild, wet conditions make exploring the Foothills difficult and ill-advised. Rather than frozen and/or snow covered, the trails are thick with mud. Walking on them in this state is too destructive. Avoiding trails and walking instead on trail side vegetation is even more destructive, and so Foothills hiking is put on hold until the ground freezes or the trails dry out. This means I haven’t gotten into the Foothills as much as I would like. Still, I managed to get a few photos of some of the interesting things the lower Boise Foothills have to offer during the winter. What follows is a selection of those photos.

snow melting on the fruit of an introduced rose (Rosa sp.)

fading seed heads of hoary tansyaster (Machaeranthera canescens)

samaras of box elder (Acer negundo)

snow on seed heads of yarrow (Achillea millefolium)

gall on introduced rose (Rosa sp.)

sunflower seed heads (Helianthus annuus)

sunflower seed head in the snow (Helianthus annuus)

snow falling in the lower Boise Foothills

fading seed heads of salsify (Tragopogon dubius)

lichen on dead box elder log

seed head of curlycup gumweed (Grindelia squarrosa)

lichen and moss on rock in the snow

fruits of poison ivy (Toxicodendron radicans)

See Also: Weeds and Wildflowers of the Boise Foothills (June 2015)

———————-

The first issue of our new zine, Dispersal Stories, is available now. It’s an ode to traveling plants. You can find it in our Etsy Shop

Ground Beetles as Weed Seed Predators

As diurnal animals, we are generally unaware of the slew of animal activity that occurs during the night. Even if we were to venture out in the dark, we still wouldn’t be able to detect much. Our eyes don’t see well in the dark, and shining a bright light to see what’s going on results in chasing away those creatures that prefer darkness. We just have to trust that their out there, and in the case of ground beetles, if they’re present in our gardens we should consider ourselves lucky.

Ground beetles are in the family Carabidae and are one of the largest groups of beetles in the world with species numbering in the tens of thousands. They are largely nocturnal, so even though they are diverse and relatively abundant, we rarely get to see them. Look under a rock or log during the day, and you might see a few scurry away. Or, if you have outdoor container plants, there may be a few of them hiding out under your pots with the pillbugs. At night, they leave the comfort of their hiding places and go out on the hunt, chasing down grasshoppers, caterpillars, beetle grubs, and other arthropods, as well as slugs and snails. Much of their prey consists of common garden pests, making them an excellent form of biological control. And, as if that weren’t enough, some ground beetles also eat the seeds of common weeds.

Harpalus affinis via wikimedia commons

Depending on the species, a single ground beetle can consume around a dozen seeds per night. In general, they prefer the seeds of grasses, lambsquarters (Chenopodium album), pigweeds (Amaranthus spp.), and various plants in the mustard family (Brassicaceae). The seeds of these species are small with seed coats that are easily crushed by a beetle’s mandibles. Providing suitable habitat, avoiding insecticides, and minimizing soil disturbance (i.e. reducing or eliminating tillage) are ways that healthy ground beetle populations can be encouraged and maintained. Ground beetles prefer dense vegetation where they can hide during the daytime. Strips of bunchgrasses and herbaceous perennials planted on slightly raised bed (referred to as beetle banks) are ideal because they provide good cover and keep water from puddling up in the beetles’ hiding spots.

The freshness of weed seeds and the time of year they are available may be determining factors in whether or not ground beetles will help control weed populations. A study published in Weed Science (2014), looked at the seed preferences of Harpalus pensylvanicus, a common species of ground beetle that occurs across North America. When given the choice between year old seeds and freshly fallen seeds of giant foxtail (Setaria faberi), the beetles preferred the fresh ones. The study also found that when giant foxtail was shedding the majority of its seeds, the density of beetles was on the decline, meaning that, at least in this particular study, most of the seeds would go uneaten since fewer beetles were around when the majority of the seeds were made available. Creating habitat that extends the ground beetles’ stay is important if the goal is to maximize the number of weed seeds consumed.

Harpalus pensylvanica via wikimedia commons

Of course, the seeds of all weed species are not considered equal when it comes to ground beetle predation. Several studies have sought to determine which species ground beetles prefer, offering seeds of a variety of weeds in both laboratory and field settings and seeing what the beetles go for. Pinning this down is difficult though because there are numerous species of ground beetles, all varying in size and activity. Their abundances vary from year to year and throughout the year, as do their food sources. Since most of them are generalists, they will feed on what is available at the time. A study published in European Journal of Entomology (2003) found a correlation between seed size and body mass – small beetles were consuming small seeds and large beetles were consuming large seeds, relatively speaking.

Another study published in European Journal of Entomology (2014) compared the preferences of ground beetles in the laboratory to those in the field and found that, in both instances, the seeds of field pansy (Viola arvensis) and shepherd’s purse (Capsella bursa-pastoris) were the preferred choice. The authors note that both species have lipid-rich seeds (or high “energy content”). Might that be a reason for their preference? Or maybe it’s simply a matter of availability and “the history of individual predators and [their] previous encounters with weed seed.” After all, V. arvensis was “the most abundant seed available on the soil surface” in this particular study.

Pterostichus melanarius via wikimedia commons

A study published in PLOS One (2017), looked at the role that scent might play in seed selection by ground beetles. Three species of beetles were offered the seeds of three different weed species in the mustard family. The seeds of Brassica napus were preferred over the other two by all three beetle species. The beetles were also offered both imbibed and non-imbibed seeds of all three plants. Imbibed simply means that the seeds have taken in water, which “can result in the release of volatile compounds such as ethanol and acetaldehyde.” The researchers wondered if the odors emitted from the imbibed seeds would “affect seed discovery and ultimately, seed consumption.” This seemed to be the case as all three beetle species exhibited a preference for the imbibed seeds.

Clearly, ground beetles are fascinating study subjects, and there is still so much to learn about them and their eating habits. If indeed their presence is limiting the spread of weeds and reducing weed populations, they should be happily invited into our farms and gardens and efforts should be made to provide them with quality habitat. For a bit more about ground beetles, check out this episode of Boise Biophilia.

Further Reading:

Camel Crickets and the Dust Seeds of Parasitic Plants

A common way for plants to disperse their seeds is to entice animals to eat their seed-bearing fruits – a strategy known as endozoochory. Undigested seeds have the potential to travel long distances in the belly of an animal, and when they are finally deposited, a bit of fertilizer joins them. Discussions surrounding this method of seed dispersal usually have birds and mammals playing the starring roles – vertebrates, in other words. But what about invertebrates like insects? Do they have a role to play in transporting seeds within themselves?

Certain insects are absolutely important in the dispersal of seeds, particularly ants. But ants aren’t known to eat fruits and then poop out seeds. Instead they carry seeds to new locations, and some of these seeds go on to grow into new plants. In certain cases there is an elaisome attached to the seed, which is a nutritious treat that ants are particularly interested in eating. Elaisomes or arils have also been known to attract other insects like wasps and crickets, which may then become agents of seed dispersal. But endozoochory in insects, at first, seems unlikely. How would seeds survive not being crushed by an insect’s mandibles or otherwise destroyed in the digestion process?

camel crickets eating fruits of parasitic plants (via New Phytologist)

While observing parasitic plants in Japan, Kenji Suetsugu wanted to know how their seeds were dispersed. Many parasitic plants rely on wind dispersal, thus their seeds are minuscule, dust-like, and often winged. However, the seeds of the plants Suetsugu was observing, while tiny, were housed in fleshy fruits that don’t split open when ripe (i.e. indehiscent). This isn’t particularly unusual as other species of parasitic plants are known to have similar fruits, and Suetsugu was aware of studies that found rodents to be potential seed disperers for one species, birds to be dispersers of another, and even one instance of beetle endozoochory in a parasitic plant with fleshy, indehiscent fruit. With this in mind, he set out to identify the seed dispersers in his study.

Suetsugu observed three achlorophyllous, holoparisitic plants – Yoania amagiensis, Monotropastrum humile, and Phacellanthus tubiflorus. While their lifestyles are similar, they are not at all closely related and represent three different families (Orchidaceae,  Ericaceae, and Orobanchaceae respectively). All of these plants grow very low to the ground in deep shade below the canopy of trees. Air movement is at a minimum at their level, so seed dispersal by wind is not likely to be very effective. Using remote cameras, Suetsugu captured dozens of hours of footage and found camel crickets and ground beetles to be the main consumers of the fruits, with camel crickets being “the most voracious of the invertebrates.” This lead to the next question – did the feces of the fruit-eating camel crickets and ground beetles contain viable seeds?

Monotropastrum humile via wikimedia commons

After collecting a number of fecal pellets from the insects, Suetsugu determined that the seeds of all three species were “not robust enough to withstand mastication by the mandibles of the ground beetles.” On the other hand, the seeds passed through the camel crickets unscathed. A seed viability test confirmed that they were viable. Camel crickets were dispersing intact seeds of all three parasitic plants via their poop. The minuscule size of the seeds as well as their tough seed coat (compared to wind dispersed seeds of similar species) allowed for safe passage through the digestive system of this common ground insect.

In a later study, Suetsugu observed another mycoheterotrophic orchid, Yoania japonica, and also found camel crickets to be a common consumer of its fleshy, indehiscent fruits. Viable seeds were again found in the insect’s frass and were observed germinating in their natural habitat. Seutsugu noted that all of the fruits in his studies consumed by camel crickets are white or translucent, easily accessible to ground dwelling insects, and give off a fermented scent to which insects like camel crickets are known to be attracted. Camel crickets also spend their time foraging in areas suitable for the growth of these plants. All of this suggests co-evolutionary adaptations that have led to camel cricket-mediated seed dispersal.

Yoania japonica via wikimedia commons

Insect endozoochory may be an uncommon phenomenon, but perhaps it’s not as rare as we once presumed. As mentioned above, an instance of endozoochory by a beetle has been reported, as has one by a species of cockroach. Certainly the most well known example involves the wetas of New Zealand, which are large, flightless insects in the same order as grasshoppers and crickets and sometimes referred to as “invertebrate mice.” New Zealand lacks native ground-dwelling mammals, and wetas appear to have taken on the seed dispersal role that such mammals often play.

Where seeds are small enough and seed coats tough enough, insects have the potential to be agents of seed dispersal via ingestion. Further investigation will reveal additional instances where this is the case. Of course, effective seed dispersal means seeds must ultimately find themselves in locations suitable for germination in numbers that maintain healthy populations, which for the dust seeds of parasitic plants is quite specific since they require a host organism to root into. Thus, effective seed dispersal in these scenarios is also worth a more detailed look.

Further Reading:

———————

For more stories of seed dispersal check out the first issue of my new zine, Dispersal Stories.

2019: Year in Review

It’s the start of a new decade and the beginning of another year of Awkward Botany. As we’ve done in years prior, it’s time to look back at what we’ve been up to this past year and look forward to what’s coming in the year ahead. Thank you for sticking with us as we head into our eighth year exploring and celebrating the world of plants.

The most exciting news of 2019 (as far as Awkward Botany is concerned) is the release of the first issue of our new zine, Dispersal Stories. It’s a compilation of (updated) writing that originally appeared on Awkward Botany about seeds and seed dispersal and is the start of what I hope will be a larger project exploring the ways in which plants get around. Look forward to the second issue coming to a mailbox near you sometime in 2020.

Also new to our Etsy Shop is a sticker reminding us to always be botanizing, including while riding a bike. Stay safe out there, but also take a look at all the plants while you’re cruising around on your bike or some other human-powered, wheeled vehicle. Whether you’re in a natural area or out on the streets in an urban or rural setting, there are nearly always plants around worth getting to know.

This year we also started a Ko-fi page, which gives readers another avenue to follow us and support what we do. Check us out there if Ko-fi is your thing.

Buy Me a Coffee at ko-fi.com

We also still have our donorbox page for those who would like to support us monetarily. As always you can stay in touch with us by liking and following our various social media accounts (Facebook, Twitter, Tumblr, and our currently inactive, but that could change at any moment Instagram). Sharing is caring, so please be sure to tell your friends about Awkward Botany in whatever way you choose. We are always thrilled when you do.

Below are 2019 posts that are part of new and ongoing series. You can access all other posts via the Archives widget. 2019 saw a significant drop in guest posts, so if you’d like to submit a post for consideration, please visit our Contact page and let me know what you’d like to write about. Guest writers don’t receive much in return but my praise and adulation, but if that sounds like reward enough to you, then writing something for Awkward Botany might just be your thing. And while we’re on the topic of guest posts, check out this post I wrote recently for Wisconsin Fast Plants.

Happy Reading and Plant Hunting in 2020!

Inside of a Seed & Seed Oddities:

Podcast Review:

Poisonous Plants:

Tiny Plants:

Eating Weeds:

Using Weeds:

Drought Tolerant Plants:

Tea Time:

Field Trip:

Awkward Botanical Sketches:

Guest Posts:

Out Now! Dispersal Stories #1

Before I started this blog, I had spent 16 years publishing zines at a steady clip and sending them to all corners of the world through the mail. I had never really meant to abandon zines altogether, and in some ways, putting all my writing efforts into a blog felt a little like a betrayal. My intention had always been to one day put together another zine. Now, six and a half years later, I’m happy to report that day has come.

Rather than bring an old zine back from the grave, I decided to make a new zine. Thus, Dispersal Stories #1. It’s quite a bit different from zines I’ve made in the past, which were generally more personal and, I guess, ranty. In fact, Dispersal Stories is very much like this blog, largely because it is mostly made up of writing that originally appeared here, but also because its main focus (for now) is plants. What sets it apart is that, unlike this blog, it zeroes in on a specific aspect of plants. As the title suggests, it’s all about dispersal. For much of their life, plants are essentially sessile. Once they are rooted in place, they rarely go anywhere else. But as seeds, spores, or some other sort of propagule they are actually able to move around quite a bit. The world is their oyster. What’s happening during this period of their lives is the focus of Dispersal Stories.

But why do a zine about this? Apart from just wanting to do another zine after all these years, my hope is that Dispersal Stories will be the start of a much more ambitious project. A book perhaps. My interest in dispersal was born out of my interest in weeds, and there is so much that I would like to learn and share about both of these subjects – so much so that the blog just doesn’t really cut it. So, I’m expanding the Awkward Botany empire. First a zine, then a book, then … who knows? I’m an oyster! (Or something like that.)

Dispersal Stories #1 is available in our etsy shop, or you can contact me here and we can work something out. While you’re at it, check out our new sticker.

If you love looking at plants and learning their names, then you probably enjoy doing it any chance you get. Usually it’s an activity you do while walking, but who says you can’t botanize while riding a bike? This sticker is inspired by a friend who once said that while mountain biking you get to “see three times as many flowers in half the time!” Stick it on your bike or in some other prominent location to remind yourself and others that we can botanize anytime anywhere.

Your purchase of one or both of these items helps support what we do. You can also support us by buying us a ko-fi or putting money in our donorbox. Sharing these posts also helps us out. If you get a copy of the zine, let us know what you think by sending us an email, a message on twitter or facebook, or by leaving a comment below. As always, thanks for reading.

Related Posts:

Pine Cones Are Like Hangars for Pine Tree Seeds

Over the past year I’ve written about the making of pine tar and the drinking of pine needle tea. But why stop there? Pines are a fascinating group of plants, worthy of myriad more posts, and so my exploration into the genus continues with pine cones and the seeds they bear.

Pines are conifers and, more broadly, gymnosperms. They are distinct from angiosperms (i.e. flowering plants), with the most obvious distinction being that they don’t make flowers. Since they are flowerless, they are also fruitless, as fruits are seed-bearing structures formed from the ovary or ovaries of flowering plants. Pines do make seeds though, and, as in angiosperms, pollen is transported from a “male” organ to a “female” organ in order for seeds to form. Rather than being housed in a fruit, the seeds are essentially left out in the open, which is why the term “naked seeds” is frequently used in reference to gymnosperms.

seed cone of Scots pine (Pinus sylvestris ‘Glauca Nana’)

In the case of pines and other conifers, the seeds may be naked, but they’re not necessarily homeless. They have the protection of cones, which is where the female reproductive organs are located. Male, pollen cones are separate structures and are smaller and less persistent than the cones that house the seeds. A cone, also known as a strobilus, is a modified branch. A series of scales grow in a spiral formation along the length of the branch, giving the cone its shape. On the inside of these scales is where the seeds form, two per scale. First they are egg cells, and then, after pollination and a period of maturation, they become seeds. The scales protect them throughout the process and then release them when the time is right.

With more than 120 species in the genus Pinus, there is great diversity in the size, shape, and appearance of pine cones. While at first glance they don’t appear all that different from one another, the cones of each species have unique characteristics that can help one identify the pine they fell from without ever having to see the tree. Pine cones are also distinct from the cones of other conifers. For one, pine cones take at least two or, in some cases, three years to reach maturity, whereas the cones of other conifers develop viable seeds in a single year. Pine cones are also known to remain on the tree for several years even after the seeds are mature – in some species up to 10 years or more – and they don’t always part with their seeds easily. Lodgepole pines (Pinus contorta) require high temperatures to melt the resin that holds their scales closed, the cones of jack pine (P. banksiana) generally only open in the presence of fire, and the seeds of whitebark pine (P. albicaulis) are extracted with the aid of birds (like Clark’s nutcracker) and other animals.

immature seed cone of lodgepole pine (Pinus contorta)

Every pine cone is special in its own right, but some stand out in particular. The largest and heaviest pine cones are found on Coulter pine (P. coulteri), measuring up to 15 inches long and weighing as much as 11 pounds with scales that come to a sharp point. It’s understandable why the falling cones of this species are frequently referred to as widowmakers. Longer cones, but perhaps less dangerous, are found on sugar pine (P. lambertiana). The tallest trees in the genus, the cones of sugar pine consistently reach 10 to 20 inches long and sometimes longer.

Pine tree seeds are a food source for numerous animals, including humans. Most are so small they aren’t worth bothering with, however, several species have seeds that are quite large and worth harvesting. Most commercially grown pine nuts come from stone pine (P. pinea) and Korean pine (P. koraiensis). In North America, a wild source for pine nuts is found in the pinyon pines, which have a long history of being harvested and eaten by humans.

immature seed cone of ponderosa pine (Pinus ponderosa)

The seeds of many pines come equipped with little wings called samaras, which aid them in their dispersal. Upon maturity, pine cone scales open and release the seeds. Like little airplanes leaving the hangar, the seeds take flight. Wind dispersal is not an effective means of dispersal for all pines though. A study published in Oikos found that seeds weighing more than 90 milligrams are not dispersed as well by wind as lighter seeds are. When it comes to long distance dispersal, heavier seeds are more dependent on animals like birds and rodents, and some pines rely exclusively on their services. The author of the study, Craig Benkman, notes that “bird-dispersed pines have proportionately thinner seed coats than wind-dispersed pines,” which he points out in reference to Japanese stone pine (P. pumila) and limber pine (P. flexilis), whose seeds weigh around 90 milligrams yet rely mostly on birds for dispersal. Benkman suspects that the seeds of these two species “would probably weigh over 100 milligrams if they had seed coats of comparable thickness as wind-dispersed seeds.”

Whitebark pine, as mentioned above, holds tightly to its seeds. Hungry animals must pry them out, which they do. Pine seeds are highly nutritious and supplement the diets of a wide range of wildlife. Some of the animals that eat the seeds also cache them for later. Clark’s nutcrackers are particularly diligent hoarders, harvesting thousands more seeds than they can possibly consume and depositing them in small numbers in locations suitable for sprouting.

Even large seeds that naturally fall from their cones have a chance to be dispersed further. As the seeds become concentrated at the base of the tree, ground-foraging rodents gather them up and cache them in another location, which Benkman refers to as secondary seed dispersal.

Particularly in pine species with wind dispersed seeds, what the weather is like helps determine when the hangar door will open to release the flying seeds. When it is wet and rainy, the scales of pine cones close up. The seeds wouldn’t get very far in the rain anyway, so why bother? When warm, dry conditions return, the scales open back up and the seeds are free to fly again. You can even watch this in action in the comfort of your own home by following the instructions layed out in this “seasonal science project.”

immature seed cones of limber pine (Pinus flexilis)

mature seed cones of limber pine (Pinus flexilis)

Further Reading:

———————

Photos of pine cones were taken at Idaho Botanical Garden in Boise, Idaho