Bat Pollinated Flowers of a Mexican Columnar Cactus

Pollination syndromes – suites of floral traits used to determine potential pollinators and routes of pollination – have been informative in studying plant-pollinator interactions, but are generally too simplistic to tell the full story. Most flowering plants are generalists when it comes to pollinators, whereas pollination syndromes imply specialization. Not all pollinators are created equal though, and some may be more effective at pollinating particular plants than others. In fact, occasionally pollination syndromes ring true and a predicted plant-pollinator combination turns out to be the most effective and reliable interaction.

According to a study published in American Journal of Botany by Ibarra-Cerdeña, et al., Stenocereus queretaroensis, a species of columnar cactus endemic to western Mexico, adheres to this scenario. Stenocereus is a genus in a group of columnar and tree-like cacti called the Pachycereeae tribe. Cactus in this group are generally bat pollinated; however, their flowers are typically visited by various species of birds and insects as well, and in some cases, bats are not the primary pollinator. In their introduction, the authors note that specialization appears to be more common in tropical latitudes, and chiropterophilic (bat pollinated) columnar cacti that occur in temperate regions can be comparatively more generalized. This is because “extratropical chiropterophilic cacti appear to be faced with unpredictable seasonal year-to-year variation in pollinators,” while “cacti in tropical regions” experience “highly reliable seasonal availability of nectar-feeding bats, thereby leading to a temporally stable pollination system.”

Stenocereus queretaroensis is a massive cactus, reaching up to ten meters tall. Several vertical stems rise from a short, stocky, central trunk. Each stem has up to eight distinctive ribs and averages around 15 centimeters in diameter. Groupings of white to grey spines up to four centimeters long appear along the ribs. Flowers are light-colored, around 10 to 14 centimeters in length, and occur along the upper half of the stems, extended well beyond the spines. Flowers open at night – producing abundant nectar – and close by the afternoon the following day. Floral characteristics led the authors of this study to predict bats to be the main pollinator, and they set up a series of experiments to test this.

Stenocereus queretaroensis - photo credit: wikimedia commons

Stenocereus queretaroensis – photo credit: wikimedia commons

Part of their experiment consisted of five treatments involving 130 flowers on 75 plants. One group of flowers was bagged and allowed to self-pollinate naturally, while another group was bagged and self-pollinated manually. A third group was left exposed during the night but bagged in the morning, while a fourth group was bagged during the night and exposed during the daytime. The final group was left alone. For each of these five treatments, aborted flowers and mature fruits were counted and seed set was determined. Nectar samples were taken from a separate group of flowers at two hour intervals from 8:00 PM to 8:00 AM, after which no nectar was produced. A camera was also used to document floral visits. Visits were deemed “legitimate” when the “visitor’s body came in contact with anthers and/or stigma” and “illegitimate” when “no contact with anthers or stigma” was made.

The researchers found S. queretaroensis to be “incapable of self-pollination,” as no fruit set occurred for the first two treatments. The control group and the nocturnally exposed group had nearly identical results, producing significantly more fruits with greater seed set compared to the nocturnally bagged group. During the day, flowers were visited by four species of birds (two hummingbirds, a woodpecker, and an oriole) and several species of bees (mainly honey bees). During the night, apart from illegitimate visits from a nectar robbing hawkmoth, one species of bat was the dominant floral visitor, and the majority (93.8%) of the visits were legitimate. This bat species was Leptonycteris curasoae, the southern long-nosed bat.

Leptonycteris curasoae - photo credit: wikimedia commons

Leptonycteris curasoae – photo credit: wikimedia commons

The abundance of nectar-feeding bats was monitored in the study area over a four year period, and L. curasoae was by far the most abundant species throughout the study period. Nectar produced in the flowers of S. queretaroensis was at its maximum around midnight, which seemed to correlate with observations of bat visits. Even though daytime visitors appeared to contribute to fruit and seed set, the nocturnal treatment produced significantly more fruit with significantly higher seed set, suggesting that bats are the more efficient pollinator. Insects visiting during the daytime, when nectar was decreasingly available, were most likely robbing pollen.

The authors acknowledge that for most plant species, “a wide array of taxonomically diverse fauna such as insects, birds, and mammals usually serve as potential pollinators,” and that “generalized pollination systems are more frequent than specialized ones.” However, in this case, “a close association between L. curasoae and S. queretaroensis [suggests] that the chiropterophilic syndrome is still a useful model.”

Related Posts:

Bats As Pollinators – An Introduction to Chiropterophily

Most plants that rely on animals to assist in pollination look to insects. In general, insects are abundant, easy to please, and efficient at transferring pollen. Because insect pollination is such a common scenario, it is easy to overlook pollination that is carried out by vertebrates. Birds are the most prominent pollinator among vertebrates, but mammals participate, too. The most common mammal pollinator is the bat.

About a fifth of all mammal species on the planet are bats, with species estimates numbering in the 1200-1300 range. Bats are the only mammals that can truly fly. They are not blind, nor are they flying rodents, and they are not going to suck your blood (except in very rare cases!). Most bats eat insects, but a small, significant group of them are nectarivorous. Their main food source is the nectar produced within flowers. In the process of feeding, these bats pollinate plants.

Out of 18 families in the order Chiroptera, only two include species with morphologies that set them apart as nectar-feeders. The family Pteropodidae, known commonly as Old World fruit bats or flying foxes, occurs in tropical and subtropical regions of Africa, Asia, Australia, Papa New Guinea, and the Pacific Islands. The family Phyllostomidae, known commonly as American leaf-nosed bats, occurs in tropical and subtropical regions of the Americas. For simplicity’s sake, the former are referred to as Old World bats, and the latter as New World bats. While both groups are similar in that they consist of species that feed on nectar, they are only distantly related, and thus the nectar feeding species in these families have distinct behavioral and morphological differences.

Grey headed flying fox photo credit: wikimedia commons

Grey headed flying fox (Pteropus poliocephalus), a floral visiting bat from Australia (photo credit: wikimedia commons)

More than 500 species of plants, spanning 67 plant families, are pollinated by bats. This pollination syndrome is known as chiropterophily. In general, flowers that use this approach tend to be white or dull in color, open at night, rich with nectar, and musty or rotten smelling. They are generally tubular, cup shaped, or otherwise radially symmetrical and are often suspended atop tall stalks or prominently located on branches or trunks. In a review published in Annals of Botany, Theodore Fleming, et al. state “flower placement away from foliage and nocturnal anthesis [blooming] are the unifying features of the bat pollination syndrome,” while all other characteristics are highly variable among species. The family Fabaceae contains the highest number of bat-pollinated genera. Cactaceae, Malvaceae, and Bignoniaceae follow closely behind.

The characteristics of bat pollinated flowers vary widely partly because the bats that visit them are so diverse. Between the two bat families there are similarities in their nectar-feeding species, including an elongated rostrum, teeth that are smaller in number and size, and a long tongue with hair-like projections on the tip. Apart from that, New World bats are much smaller than Old World bats, and their rostrums and tongues are much longer relative to the size of their bodies. New World bats have the ability to hover in front of flowers, while Old World bats land on flowers to feed. Old World bats do not have the ability to use echolocation to spot flowers, while New World bats do. Fleming, et al. conclude, “because of these differences, we might expect plants visited by specialized nectar-feeding [New World bats] to produce smaller flowers with smaller nectar volumes per flower than those visited by their [Old World bat] counterparts.”

Pollination by bats is a relatively new phenomenon, evolutionarily speaking. Flowers that are currently pollinated by bats most likely evolved from flowers that were once pollinated by insects. Some may have evolved from flowers that were previously bird pollinated. The question is, why adopt this strategy? Flowers that are bat pollinated are “expensive” to make. They are typically much bigger than insect pollinated flowers, and they contain large amounts of pollen and abundant, nutrient-rich nectar. Due to resource constraints, many plants are restricted from developing such flowers, but those that do may find themselves at an advantage with bats as their pollinator. For one, hairy bat bodies collect profuse numbers of pollen grains, which are widely distributed as they visit numerous flowers throughout the night. In this way, bats can be excellent outcrossers. They also travel long distances, which means they can move pollen from one population of plants to an otherwise isolated neighboring population. This serves to maintain healthy genetic diversity among populations, something that is increasingly important as plant populations become fragmented due to human activity.

Pollinating bats are also economically important to humans, as several plants that are harvested for their fruits, fibers, or timber rely on bats for pollination. For example, bat pollinated Eucalyptus species are felled for timber in Australia, and the fruits of Durio zibethinus in Southeast Asia form after flowers are first pollinated by bats. Also, the wild relatives of bananas (Musa spp.) are bat pollinated, as is the plant used for making tequila (Agave tequilana).

Durio sp. (photo credit: wikimedia commons)

The flowers of durian (Durio sp.), trees native to Southeast Asia, are pollinated by bats (photo credit: wikimedia commons)

There is still much to learn about nectarivorous bats and the flowers they visit. It is clear that hundreds of species are using bats to move their pollen, but the process of adopting this strategy and the advantages of doing so remain ripe for discovery. Each bat-plant relationship has its own story to tell. For now, here is a fun video about the bat that pollinates Agave tequilana:

Hamburg Parsley Harvest

Earlier this year I reviewed Emma Cooper’s book, Jade Pearls and Alien Eyeballs, a book describing a slew of unusual, edible plants to try in the garden. Many of the plants profiled in the book sounded fun to grow, so I decided to try at least two this year: oca and Hamburg parsley. I didn’t get around to growing oca, but I did manage to produce a miniscule crop of Hamburg parsley.


Hamburg parsley (also known as root parsley) is the tuberous root forming variety (var. tuberosum) of garden parsley, Petroselinum crispum. Native to the Mediterranean region, P. crispum has long been cultivated as a culinary herb. It is a biennial in the family Apiaceae and a relative of several other commonly grown herbs and vegetable crops including dill, fennel, parsnip, and carrot. In its first year, the plant forms a rosette of leaves with long petioles. The leaves are pinnately compound with three, toothed leaflets. Flowers are produced in the second year and are borne in a flat-topped umbel on a stalk that reaches up to 80 centimeters tall. The individual flowers are tiny, star-shaped, and yellow to yellow-green.

The leaves of Hamburg parsley can be harvested and used like common parsley, but the large, white taproots are the real treat. They can be eaten raw or cooked. Eaten raw, they are similar to carrots but have a mild to strong parsley flavor. The bitter, parsley flavor mellows and sweetens when the roots are roasted or used as an ingredient in soups or stews.


Despite sowing seeds in a 13 foot long row, only two of my plants survived and reached a harvestable size. Germination was fairly successful, and at one point there were several tiny plants dispersed along the row. Most perished pretty early on though; probably the result of browsing by rabbits. Generally, parsley seeds can be slow to germinate, so when they are direct seeded, Cooper and others recommend sowing seeds of quick growing crops like radish and lettuce along with them to help mark the rows – something I didn’t do.

My harvest may have been pathetic, but at least I ended up with some decent roots to sample. Raw, the roots were not as crisp as a carrot, and the parsley flavor was a little strong. I roasted the remainder in the oven with potatoes, carrots, and garlic, and that was a delicious way to have them. If I manage to grow more in the future, I will have to try them in a soup.


Did you try something new in your garden this year? Share your experience in the comment section below.

Beavers and Water Lilies – An Introduction to Zoochory

Beavers are classic examples of ecosystem engineers. It is difficult to think of an animal – apart from humans – whose day-to-day activities have more impact on the landscape than beavers. Their dam building activities create wetlands that are used by numerous other species, and their selective harvesting of preferred trees affects species composition in riparian areas. And that’s just the start. Their extensive evolutionary history and once widespread distribution has made them major players in the landscape for millions of years.

Today, the beaver family (Castoridae) consists of just two extant species: Castor fiber (native to Eurasia) and Castor canadensis (native to North America). Both species were hunted by humans to the brink of extinction but, thanks to conservation efforts, enjoy stable populations despite having been eliminated from much of their historical ranges. Before the arrival of Europeans, North American beavers are estimated to have been anywhere from 60 million to 400 million strong. Extensive trapping reduced the population to less than half a million. Today, 10 million or more make their homes in rivers, streams, and wetlands across the continent.

North American beaver (Castor canadensis) - photo credit: wikimedia commons

North American beaver (Castor canadensis) – photo credit: wikimedia commons

Beavers are herbivores, and they harvest trees and shrubs to build dams and lodges. Their interactions with plants are legion, and so what better way to introduce the concept of animal-mediated seed dispersal than beavers. Plants have several strategies for moving their seeds around. Wind and gravity are popular approaches, and water is commonly used by plants both aquatic and terrestrial. Partnering with animals, however, is by far the most compelling method. This strategy is called zoochory.

Zoochory has many facets. Two major distinctions are epizoochory and endozoochory. In epizoochory, seeds become attached in some form or fashion to the outside of an animal. The animal unwittingly picks up, transports, and deposits the seeds. The fruits of such seeds are equipped with hooks, spines, barbs, or stiff hairs that help facilitate attachment to an animal’s fur, feathers, or skin. A well known example of this is the genus Arctium. Commonly known as burdock, the fruits in this genus are called burs – essentially small, round balls covered in a series of hooks. Anyone who has walked through – or has had a pet walk through – a patch of burdocks with mature seed heads knows what a nuisance these plants can be. But their strategy is effective.

The burs of Arctium - photo credit: wikimedia commons

The burs of Arctium – photo credit: wikimedia commons

Endozoochory is less passive. Seeds that are dispersed this way are usually surrounded by fleshy, nutritious fruits desired by animals. The fruits are consumed, and the undigested seeds exit out the other end of the animal with a bit of fertilizer. Certain seeds require passage through an animal’s gut in order to germinate, relying on chemicals produced during the digestion process to help break dormancy. Other seeds contain mild laxatives in their seed coats, resulting in an unscathed passage through the animal and a quick deposit. Some plants have developed mutualistic relationships with specific groups of animals regarding seed dispersal by frugivory. When these animal species disappear, the plants are left without the means to disperse their seeds, which threatens their future survival.

Beavers rely on woody vegetation to get them through the winter, but in warmer months, when herbaceous aquatic vegetation is abundant, such plants become their preferred food source. Water lilies are one of their favorite foods, and through both consumption of the water lilies and construction of wetland habitats, beavers help support water lily populations. This is how John Eastman puts it in The Book of Swamp and Bog: “Beavers relish [water lilies], sometimes storing the rhizomes. Their damming activities create water lily habitat, and they widely disperse the plants by dropping rhizome fragments hither and yon.”

Fragrant water lily (Nympaea odorata) - photo credit: wikimedia commons

Fragrant water lily (Nymphaea odorata) – photo credit: wikimedia commons

The seeds of water lilies (plants in the family Nymphaceae) are generally dispersed by water. They have a fleshy growth around the seeds called an aril that helps them float. Over time the aril becomes waterlogged and begins to disintegrate. At that point, the seed sinks to the bottom of the lake or pond where it germinates in the sediment. The seeds are also eaten by birds and aquatic animals, including beavers. The aril is digestible, but the seed is not.

In her book, Once They Were Hats, Frances Backhouse writes about the relationship between beavers and water lilies. She visits a lake where beavers had long been absent, but were later reintroduced. She noted changes in the vegetation due to beaver activity – water lilies being only one of many plant species impacted.

Every year in late summer, the beavers devoured the seed capsules [of water lilies], digested their soft outer rinds and excreted the ripe undamaged seeds into the lake. Meanwhile, as they dredged mud from the botom of the lake for their construction projects, they were unintentionally preparing the seed bed. Seeing the lilies reminded me that beavers also inadvertantly propagate willows and certain other woody plants. When beavers imbed uneaten sticks into dams or lodges or leave them lying on moist soil, the cuttings sometimes sprout roots and grow.

Other facets of zoochory include animals hoarding fruits and seeds to be eaten later and then not getting back to them, or seeds producing fleshy growths that ants love called elaiosomes, resulting in seed dispersal by ants. Animals and plants are constantly interacting in so many ways. Zoochory is just one way plants use animals and animals use plants, passively or otherwise. These relationships have a long history, and each one of them is worth exploring and celebrating.

Drought Tolerant Plants: Pearly Everlasting

Despite being such a widely distributed and commonly occurring plant, Anaphalis margaritacea is, in many other ways, an uncommon species. Its native range spans North America from coast to coast, reaching up into Canada and down into parts of Mexico. It is found in nearly every state in the United States, and it even occurs throughout northeast Asia. Apart from that, it is cultivated in many other parts of the world and is “weedy” in Europe. Its cosmopolitan nature is due in part to its preference for sunny, dry, well-drained sites, making it a common inhabitant of open fields, roadsides, sandy dunes, rocky slopes, disturbed sites, and waste places.

Its common name, pearly everlasting, refers to its unique inflorescence. Clusters of small, rounded flower heads occur in a corymb. “Pearly” refers to the collection of white bracts, or involucre, that surround each flower head. Inside the bracts are groupings of yellow to brown disc florets. The florets are unisexual, which is unusual for plants in the aster family. Plants either produce all male flowers or all female flowers (although some female plants occasionally produce florets with male parts). Due to the persistent bracts, the inflorescences remain intact even after the plant has produced seed. This quality has made them a popular feature in floral arrangements and explains the other half of the common name, “everlasting.” In fact, even in full bloom, the inflorescences can have a dried look to them.


Pearly everlasting grows from 1 to 3 feet tall. Flowers are borne on top of straight stems that are adorned with narrow, alternately arranged, lance-shaped leaves. Stems and leaves are gray-green to white. Stems and undersides of leaves are thickly covered in very small hairs. Apart from contributing to its drought tolerance, this woolly covering deters insects and other animals from consuming its foliage. In The Book of Field and Roadside, John Eastman writes, “Insect foliage feeders are not numerous on this plant, owing to its protective downy ‘gloss.’ … The plant’s defensive coat seems to prevent spittlebug feeding on stem and underleaves. The tomentum also discourages ant climbers and nectar robbers.”


Not all insects are thwarted however, as Anaphalis is a host to the caterpillars of at least two species of painted lady butterflies (Vanessa virginiensis and V. cardui). Its flowers, which occur throughout the summer and into the fall. are visited by a spectrum of butterflies, moths, bees, and flies.

Because the plants produce either male or female flowers, cross-pollination between plants is necessary for seed development. However, plants also reproduce asexually via rhizomes. Extensive patches of pearly everlasting can be formed this way. Over time, sections of the clonal patch can become isolated from the mother plant, allowing the plant to expand its range even in times when pollinators are lacking.

The attractive foliage and unique flowers are reason enough to include this plant in your dry garden. The flowers have been said to look like eye balls, fried eggs, or even, as Eastman writes, “white nests with a central yellow clutch of eggs spilling out.” However you decide to describe it, this is a tough and beautiful plant deserving of a place in the landscape.


Read more:

Photos in this post are of Anaphalis margaritacea ‘Neuschnee’ and were taken at Idaho Botanical Garden in Boise, Idaho.

Poisonous Plants: Heartbreak Grass

An Asian vine known to be deadly poisonous has been in the news lately. Alexander Perepilichny, a Russian banker turned whistleblower who provided information on tax fraud committed by the Russian state and the Russian Mafia, mysteriously died while jogging back in November 2012. Last year, a botanist at Royal Botanic Gardens, Kew was called in to help with the ongoing investigation. Analyses revealed traces of a compound found in Gelsemium elegans, suggesting that Perepilichny had been poisoned and calling into question the orignal claim that there was no foul play in his death.

Gelsemium is a genus in the family Gelsemiaceae. It is composed of three species, two of which are native to North America (G. rankinii and G. sempervirens). Gelsemium elegans is native to China and Southeast Asia. All species are poisonous due to a number of alkaloids found in virtually all parts of the plant and particularly concentrated in the roots and leaves. The most toxic and abundant compound is gelsemine, an alkaloid related to strychnine.

Gelsemium elegans, commonly known as heartbreak grass, is a twining vine with oppositely arranged, narrowly ovate leaves and yellow to orange flowers with five petals that are fused near the base. It occurs in thickets and scrubby forests. According to news reports (NPR and ABC News), it has a history of being used in assassinations by Chinese and Russian contract killers. Finding traces of it in Perepilichny’s body understandably raises questions about his death. The investigation continues, and the Kew botanist is now a “star witness.” 

Gelsemium elegans (image credit: Flora of China)

Gelsemium elegans (image credit: Flora of China)

Poisoning by heartbreak grass is not a pleasant experience. Its affects can be felt soon after ingestion and, depending on the amount ingested and the time that lapses between ingestion and treatment, death – usually by asphyxiation – can be imminent. The Hong Kong Journal of Emergency Medicine reported on two cases of Gelsemium elegans poisoning, in which a husband and wife consumed the plant after mistaking it for the medicinal herb, Mussaenda pubescens. The 65 year old woman became dizzy, weak, and nauseous thirty minutes after consuming the plant. Then she went unconscious. Quick medical attention saved her life. She was released from the hospital eight days later, after spending time in intensive care and undergoing various treatments. Her 69 year old husband experienced similar dizziness and weakness, but promptly vomited and called for an ambulance.

The report states that “ingestion of G. elegans is highly poisonous regarding its neurological and respiratory depressive effects,” and that “early and active respiratory support is the key to successful resuscitation.” The report also wisely warns: “People should best avoid eating any wild plants because of the similar external appearance of certain poisonous and non-poisonous species.” Proper and skilled identification is paramount, especially where plants are growing so closely together that they intertwine, “leading to inadvertent ingestion.”

All Gelsemium species have been used medicinally to treat a variety of ailments. If used properly, they may provide effective treatments; however, in their book, The North American Guide to Common Poisonous Plants and Mushrooms, Nancy Turner and Patrick von Aderkas state – regarding the medicinal use of G. sempervirens – that the “plant [is] considered very dangerous for herbal use.” They also list the plant as a skin and eye irritant and claim that the flower’s nectar produces poisonous honey.

gelsemium sempervirens 1

Gelsemium sempervirens

Commonly known as Carolina jasmine and yellow jessamine, G. sempervirens is a woodland plant found in west Texas and throughout the southeastern United States. It is an attractive, evergreen, perennial vine with yellow, fragrant, funnel-shaped flowers and is grown as an ornamental in its native region and beyond. Most poisonings occur when the stems and leaves are consumed, usually as some kind of “herbal preparation;” however, the Handbook of Poisonous and Injurious Plants claims that “there are cases of children who were poisoned after sucking on the flowers.” Headaches, dizziness, blurred visions, dry mouth, and difficulty speaking and talking are a few of the initial symptoms experienced after ingesting this plant. When cases are severe, muscles in the body experience weakness, spasms, and contractions. Symptoms, in other words, are akin to strychnine poisoning, and barring prompt and proper medical care, results can be similarly deadly.

More Poisonous Plants Posts:

The Problem with ‘Yes’ Landscapes

This is a guest post by Jeremiah Sandler. Follow Jeremiah on Instagram @_j.sandler


I don’t work for a landscape company, nor have I ever worked for one. The company I do work for contracts with these companies to do health care on their landscapes. For example, we scout for insects and diseases, spray pesticides when necessary, make recommendations of proper cultural practices, and fertilize.

Something has been bothering me for the past two years about the landscapes in metropolitan southeast Michigan. Both commercial and residential landscapes have at least two things in common: the same plants, and the same poor management of these plants. The clients have no idea they’re being ripped off.

The landscape companies I have experience with seem to think the homeowner is always right.

The ‘Yes’ Conversation

You want a Colorado blue spruce in humid Michigan? Sure, no problem. Let’s put six trees within 15 square feet. Don’t bother removing the cage and burlap. We also won’t tell you the massive expense you’ll pay in the future to spray fungicides on your spruce to keep it alive. If one dies, we’ll just replace it with the same plant.

You want a green hedge? Boxwoods or yews. They’ll be sheared multiple times a year by our crew of expert (and underpaid and exhausted) workers. At the first sign of new growth, we’ll be there mutilating your plants to ensure that they stay at right angles. You see all of those ripped apart, discolored leaves on your shrubs? Ignore that; plants are meant to be tamed into perfect geometry. Oh, that’ll be an extra charge to spray insecticides and fungicides.

Here’s a list of plants you can get to add to the monotony in your neighborhood: crabapple, hawthorn, cherry, honeylocust, blue spruce, oak, red maple, Japanese maple, pear, white pine, boxwood, yew, hydrangea, arborvitae, burning bush, and wax begonias.

Why is your hemlock tree neon yellow? We don’t know, let’s just replace it. Why is your Norway maple declining? Well, when we planted it, we kept the cage on its root ball, despite this tree having notorious girdling roots. Let’s get you a new one. Why are some of your shrubs rotting out? We left the soaker hoses on them for years and kept them running regularly. Yes we can spray all of your plants. We can kill everything before it’s a problem.

We’re the best landscapers in town! Our services are top of the line, and we guarantee your landscape will look exactly the same as your neighbor’s.

That’s a very sardonic, hypothetical conversation between a homeowner and a landscape company. A sensible company knows you don’t know best. As a homeowner, it is wise to heed the advice of a company’s horticulturist. Cost is always a consideration for the homeowner. However, the more expensive company is not always the highest quality. Here’s why.

So, you want a Colorado blue spruce?

A responsible company won’t let you plant a blue spruce in a place with wet springs and humid summers. They will tell you why it is not a good idea, and they will suggest alternatives. For example, a concolor fir (Abies concolor) looks similar to a blue spruce. They are resistant to needle cast diseases and cytospora canker, and they can tolerate southeast Michigan’s alkaline soils. In the long run, it is much cheaper to get the right plant in the right place.

You will pay more for your blue spruce because, not only are you paying for installation, you are paying to spray fungicides year after year to avoid having a skeleton in your yard. Companies know there is a likelihood of replacing your newly planted blue spruces, so you are charged for it.

We love boxwoods and so do you

Maybe you do like the classic, formal look of hedges. And maybe you do like the texture offered by a boxwood or yew. That’s fine. This is the problem I see literally every single day: over-shearing.

An appropriate cultivar selection is the answer. Cultivars and hybrids exist which only grow to x-amount tall and x-amount wide. Simply read the tag from the nursery. If your landscape company planted the proper plants the first time, they wouldn’t be able to charge you as much as they do to “maintain” them. The right plants in the right places need very little maintenance. I will concede, a few plants can tolerate being sheared. Once in a great while is acceptable; not three times a year.

Excessive shearing stresses out a plant. In fact, certain chemicals released by the open wounds of the leaves attract insects. Wet, exposed tissue serves as a breeding ground for fungi. Some of the problems your shrubs face are directly caused by the shearing itself.

PlantAmnesty, a website dedicated to stopping bad pruning practices states:

Any pruning book will explain that one prunes to open up the center of the plant, allowing air and light penetration to make the plant healthy. Shearing, on the other hand, creates a twiggy outer shell that gets ever denser and collects more deadwood and dead leaves every year, the opposite of a healthy condition. The results create the perfect protected place for pests and diseases, akin to locking up the house so the garbage can’t be removed. After many years, this treatment can lead to disease and general bad health without actually being a disease itself. If plants have mites and blights, bugs and mildews galore, how they were pruned may be the root of the problem.

Not to mention, the plant is spending all of its energy regrowing those leaves you continually cut off. There are correct ways to prune plants, and none of them include the excessive use of motorized shears. A plant grows to reach an equilibrium with its environment. If the environment is adequate, the plant will grow. If the environment is unfavorable, the plant will decline. In other words, if it is growing, let it grow!

What’s a monoculture?

There seems to be only 15 plants which are acceptable to the landscaper. The plant selection is predictable. Certainly there are more than 15 different species of plants you can have on your property. Sure, some redundant species are okay: white pines, oaks, maples (except that damned Norway maple). I don’t want to discourage people from exploring new options, though.

Native plants offer easy beauty. They have evolved in your region for millennia and are therefore adapted to your environmental conditions. These plants often tolerate both biological and environmental stressors better than non-native plants. Expenses are saved when you don’t have to pay for disease control. You wouldn’t buy a vehicle, for example, that you know would break down and require fixing all the time.

There are dozens of other shrub options for texture, winter interest, privacy walls, etc., that you don’t have to hire a crew to shear every month. Surprisingly, some large yucca species are hardy in colder zones, which offer a different texture. Red-twig dogwoods provide colorful winter interest; there are red, green, and yellow-stemmed cultivars. Coyote willow is native to southeast Michigan. It is a thin-leafed, rhizomatous Salix species which forms beautiful yellow walls in the fall. An entire, separate article can be written on the subject of alternatives. Just know there are plenty of species to choose from no matter where you live.

Ask, and you shall receive

This request comes from homeowners and is often fulfilled by companies: “Can’t you just spray it?” Granting this request is entirely wrong. One cannot, by law and by principle, go around as a pesticide desperado. You live in that environment. Why would you want pesticides in excess? Chemicals are used as a last resort and strictly on an as needed basis.

Appropriate timing, safety precautions, and proper insect identification are all legally required before insecticides can be applied. Some of the ‘yes’-type companies will comply with all uneducated (and sometimes unsafe) requests.

Some of the appointments I have with customers address very rudimentary horticultural problems. The homeowner’s concerns are legitimate. Most problems they are having, though, can be avoided with an ounce of foresight. Issues include planting hemlock trees in full sun, or replacing a Japanese maple killed by verticillium wilt with another Japanese maple. The list goes on…

Saying ‘No’

There’s a myriad of things that can go wrong in a landscape. It is an artificial environment containing plants which evolved continents apart. Plants often don’t have the capacity to combat pathogens that they are not exposed to in their native habitats, but certain issues are impossible to predict. There is a base knowledge one should have before making these kinds of decisions. The “customer is always right” philosophy doesn’t apply in this domain. You should have some creative influence on your landscape; it’s yours, after all. Spend the time in the nursery looking for interesting plants, make a list, and run it by your landscaper. If they say ‘yes’ to all of your choices, fire them. The people you hire cannot be too timid to tell you ‘no’ sometimes.

“Right plant, right place” is the mantra among plant health care technicians. We are the people who have to clean up the messes made by your landscapers. If your landscaper did their job with longevity in mind, I probably wouldn’t have much to do.