Randomly Selected Botanical Terms: Prickles

Let’s start by getting something out of the way: roses have prickles, not thorns. However, just like peanuts aren’t actually nuts and tomatoes are actually fruits, our colloquial terms for things don’t always match up with botanical terminology. This doesn’t mean that we should be pedants about things and go spoiling a friendly dinner party with our “well, actually…” corrections. If you hear someone saying (or singing) something about every rose having its thorn, it’s okay to just let it go.

So why don’t roses have thorns? And what even is a prickle anyway?

Plants have a way of modifying various body parts to form a variety of features that look like something totally new and different. When the development of these features are observed at a cellular level, we find that what once may have grown into something familiar, like a stem, is now something less familiar, like a thorn. A thorn, then, is a modified stem. Stem tissue was used by the plant to form a hardened spike. Thorns help protect a plant from being eaten, so going through the trouble of producing this feature is a benefit to the plant.

thorns of hawthorn (Crataegus sp.)

Spines and prickles are similar features to thorns and serve a similar purpose, but they have different origins. Spines are modified leaf or stipule tissue (the spines on a cactus are actually modified leaves). Prickles are outgrowths of the epidermis or bark. In plants, epidermis is a single, outer layer of cells that covers all of the organs (i.e. leaves, roots, flowers, stems). Outgrowths on this layer are common and often appear as little hairs. The technical term for these hairs or hair-like structures is trichomes.

the stems of staghorn sumac (Rhus typhina) are covered in dense trichomes

Prickles are much like trichomes, but there are usually less of them and they are hardened and pointy. They can be sharp like a thorn or spine and so are often confused for them. (Spines are also confused for thorns, as is the case with Euphorbia milii, whose common name is crown of thorns but whose “thorns” are actually spines.) As stated above, their cellular origin is different, and unlike thorns and spines, prickles don’t have vascular tissue, which is the internal tissue that transports water and nutrients throughout all parts of the plant. In general, prickles can be easily broken off, as they are often weakly attached to the epidermis.

Prickles are most commonly observed on roses and come in a variety of shapes, sizes, and colors.

Prickles on roses are commonly called thorns, and that’s okay. Thorn is perhaps a more poetic word and easier to relate to. But really, I’m torn and forlorn that they aren’t thorns. It puts me in a pickle trying to rhyme words with prickle.


Check out the linktree for various ways to follow and support Awkward Botany.

Winter Trees and Shrubs: Tulip Tree

At first glance, a tulip and a tulip tree couldn’t be more different. One is a bulb that puts out fleshy, green leaves in the spring, topped with colorful, cup-shaped flowers, barely reaching a foot or so tall. The other is a massive, deciduous tree with a broad, straight trunk that can grow to nearly 200 feet tall. But if you can get a look at the flowers, seed heads, and even the leaves of this enormous tree, you might see a resemblance – at least in the shape of these features – to one of our most popular spring flowering geophytes.

Tulip tree (Liriodendron tulipifera) is distributed across the eastern United States and has been planted widely outside of its native range. Also commonly known as tulip poplar, yellow poplar, and whitewood, it is a member of the magnolia family and is one of two species in its genus (the other being Liriodendron chinense – a tree found mainly in China). Many (if not most) deciduous trees of North America have small, inconspicuous flowers, but tulip trees – like its close relatives, the magnolias – have relatively large, showy flowers. The trouble is actually getting to see them since, at least on mature trees, they are borne in a canopy that is considerably taller than the average human.

Tulip tree flowers are cup-shaped, yellow-green and orange, with a series of prominent stamens surrounding the carpels which are attached to a long, slender receptacle giving it a cone-shaped appearance. As the flower matures into fruits, the tulip shape of the inflorescence is maintained as the seeds with their wing-like appendages form a tight, cone-like cluster that opens as the seeds reach maturity. The wings aid in dispersal as the seeds fall from the “cone” throughout the winter.

seed head of tulip tree (Liriodendron tulipifera)

The four-lobed leaves of tulip trees also form a vague tulip shape. They are alternately arranged, bright green, and up to five or six inches long and wide, turning yellow in the fall. Two prominent, oval-shaped stipules surround the stem at the base of the petiole of each leaf. These stipules come into play when identifying the leafless twigs of tulip trees during the winter months.

leaf of tulip tree (Liriodendron tulipifera) in late summer

The winter twigs of tulip trees are easily recognizable thanks to their duck bill shaped buds which are made up of two wine-red, violet, or greenish bud scales. The terminal buds are considerably larger and longer than the lateral buds, some of which are on little stalks. The twigs are smooth, olive-brown or red-brown, with just a few, scattered, white lenticels. Leaf scars are rounded with a dozen or so bundle scars that are either scattered or form an irregular ellipse. Pronounced stipule scars encircle the twig at the location of each leaf scar. Twigs can be cut lengthwise to reveal pale white pith that is separated by a series of diaphragms.

winter twig of tulip tree (Liriodendron tulipifera)
top right: the chambered pith of black walnut (Juglans nigra); bottom left: diaphragmed pith of tulip tree (Liriodendron tulipifera)

The bark of tulip trees can be easily confused with that of ash trees. Young bark is smooth and ash-gray to grayish green with pale, vertical cracks. As the tree matures, the cracks develop into furrows with flat-topped ridges. The ridges grow taller and more peaked, and the furrows grow deeper as the tree reaches maturity. In the book Winter Botany, William Trelease compares the mature bark of tulip trees to a series of parallel mountain ranges with deep gullies on either side.

maturing bark of tulip tree (Liriodendron tulipifera)

Perhaps even as tulips are blooming, the buds of tulip trees break to reveal their tulip-shaped, stipule bearing leaves. This makes for an interesting show. In The Book of Forest and Thicket, John Eastman describes it this way: “from terminal buds shaped like duck bills, successions of bills within bills uncurl and unfold, revealing a marvel of leaf packaging.”

More Winter Trees and Shrubs:


The photos of tulip tree were taken at Idaho Botanical Garden in Boise, Idaho.

Drought Tolerant Plants: Blue Flax

“Lewis’s prairie flax is a pretty garden ornamental suited to hot, dry sites. Each morning delicate sky blue flowers open on slender arching stems, only to fall off in the afternoon and be replaced by others the next morning. In spite of its fragile appearance, it is quite sturdy and may put out a second flush of blossoms on new growth in late summer.”Common to the This Country: Botanical Discoveries of Lewis and Clark by Susan H. Munger


When selecting plants for a waterwise garden, it is imperative that at least a portion of the plants are easy to grow and maintain and are adapted to a wide variety of conditions. This will ensure a more successful garden, both functionally and aesthetically. Luckily, there are a number of drought-tolerant plants that pretty much anyone can grow without too much trouble. Blue flax, in my opinion, is one such plant.

You may be familiar with flax as a culinary plant, known for its edible seeds which are used to make flour (i.e. meal) and oil. Or perhaps you’ve used linseed oil, a product of flax seeds, to protect wooden, outdoor furniture or in other wood finishing projects. You may also think of linen when you think of flax; and you should, because linen is a textile made from the fibrous stems of the flax plant. All of these products generally come from a domesticated, annual flax known as Linum usitatissimum – a species that has been of benefit to humans for millenia. Various species of flax have also been planted for erosion control, fire breaks, forage for livestock, and in pollinator-friendly gardens. Flax seeds, a common ingredient in bird seed mixes, provide food for birds and other small animals. All this to say, humans and flax share a long history together, and it deserves a place in your garden.

The flax species profiled here is actually two species: Linum lewisii and Linum perenne. That’s because these two species look nearly identical and are both used as garden ornamentals and in wildflower seed mixes. They are also both known as blue flax, among myriad other common names. Due to their similiarity, L. lewisii is considered by some to be a subspecies of L. perenne.

Linum lewisii is found across western North America and received its name after being collected by a member of the Lewis and Clark Expedition. The plant collection was brought back from the expedition and determined to be new to western science. It was described and named by Frederick Pursh. Linum perenne is a European species which was introduced to North America as an ornamental and has since become widely naturalized. In 1980, a naturalized selection of L. perenne was released for use in restoration plantings under the cultivar name ‘Appar’ with the understanding that it was L. lewisii. A genetic study later revealed that the cultivar was instead L. perenne. The study also provided evidence that “North American Lewis flax and European perennial blue flax are reproductively isolated,” suggesting that they are indeed two separate species.

Despite being separate species, telling them apart can be a challenge. Blue flax plants grow from a taproot and woody base and are multistemmed, reaching two to three feet tall. The stems are thin yet stringy, wiry, and not easily torn, which helps explain why flax is such a good plant for making textiles. Short, slender leaves are alternately arranged along the length of the stems, while flower buds form at the ends of stems in loose clusters. Flowers bloom early in the day and are spent by the afternoon. They are 5-petaled, saucer-shaped, and a shade of blue – from whitish blue to deep blue – depending on the plant. Small, round, 10-chambered seed capsules form in the place of flowers, each chamber housing one or two flat, shiny, dark brown seeds. Flowers bloom daily in succession up towards the ends of stems even as the fruits of spent flowers lower on the stalk mature.

seed capsules of blue flax

A close look at their flower parts is really the only way you might be able to tell these two species apart. Blue flax flowers have five stamens topped with white anthers and five styles topped with little, yellow stigmas. The flowers of L. lewisii are homostlyous, which means their styles are all the same length and are generally taller than or about the same height as the stamens. The flowers of L. perenne are heterostylous, which means their flowers can either have styles that are much longer than their stamens or stamens that are much longer than their styles. Each plant in a population of L. perenne has either all long-styled flowers or all short-styled flowers. In a mixed population of L. perenne and L. lewisii, separating the long-styled L. perenne plants from the L. lewisii plants presents a challenge (at least for me).

long-styled blue flax flower
short-styled blue flax flower

Due to the similarity of these two species, it’s easy to see how the plants or seeds of blue flax could easily be mislabeled and sold as one species even though they are the other species. This could be a problem in a restoration planting where seed source and identity is critical, but in your garden, it’s really no big deal. Both species are great for waterwise and pollinator gardens. They are equally beautiful and easy to grow and care for. If nothing else, perhaps the challenge in identifying them will encourage you to take a closer look at your flowers and familiarize yourself with their tinier parts – an act all of us amateur botanists could stand to do more often.

The photos in this post were taken at Idaho Botanical Garden in Boise, Idaho.

More Drought Tolerant Plants Posts:

Dispersal by Bulbils – A Bulbous Bluegrass Story

The main way that a plant gets from place to place is in the form of a seed. As seeds, plants have the ability to travel miles from home, especially with the assistance of outside forces like wind, water, and animals. They could also simply drop to the ground at the base of their parent plant and stay there. The possibilities are endless, really.

But what about plants that don’t even bother making seeds? How do they get around? In the case of bulbous bluegrass, miniature bulbs produced in place of flowers function exactly like seeds. They are formed in the same location as seeds, reach maturity and drop from the plant just like seed-bearing fruits, and are then dispersed in the same ways that seeds are. They even experience a period of dormancy similar to seeds, in that they lie in wait for months or years until the right environmental conditions “tell” them to sprout. And so, bulbils are basically seeds, but different.

bulbous bluegrass (Poa bulbosa)

Bulbous bluegrass (Poa bulbosa) is a Eurasian native but is widely distributed outside of its native range having been repeatedly spread around by humans both intentionally and accidentally. It’s a short-lived, perennial grass that can reach up to 2 feet tall but is often considerably shorter. Its leaves are similar to other bluegrasses – narrow, flat or slightly rolled, with boat-shaped tips and membranous ligules – yet the plants are easy to distinguish thanks to their bulbous bases and the bulbils that form in their flower heads. Their bulbous bases are actually true bulbs, and bulbous bluegrass is said to be the only grass species that has this trait. Just like other bulb-producing plants, the production of these basal bulbs is one way that bulbous bluegrass propagates itself.

basal bulbs of bulbous bluegrass

Bulbous bluegrass is also propagated by seeds and bulbils. Seeds form, like any other plant species, in the ovary of a pollinated flower. But sometimes bulbous bluegrass doesn’t make flowers, and instead modifies its flower parts to form bulbils in their place. Bulbils are essentially tiny, immature plants that, once separated from their parent plant, can form roots and grow into a full size plant. The drawback is that, unlike with most seeds, no sexual recombination has occurred, and so bulbils are essentially clones of a single parent.

The bulbils of bulbous bluegrass sit atop the glumes (bracts) of a spikelet, which would otherwise consist of multiple florets. They have dark purple bases and long, slender, grass-like tips. Bulbils are a type of pseudovivipary, in that they are little plantlets attached to a parent plant. True vivipary occurs when a seed germinates inside of a fruit while still attached to its parent.

Like seeds, bulbils are small packets of starch and fat, and so they are sought ought by small mammals and birds as a source of food. Ants and small rodents are said to collect and cache the bulbils, which is one way they get dispersed. Otherwise, the bulbils rely mostly on wind to get around. They then lie dormant for as long as 2 or 3 years, awaiting the ideal time to take root.

bulbils of bulbous bluegrass

Bulbous bluegrass was accidentally brought to North America as a contaminant in alfalfa and clover seed. It was also intentionally planted as early as 1907 and has been evaluated repeatedly by the USDA and other organizations for use as a forage crop or turfgrass. It has been used in restoration to stabilize soils and reduce erosion. Despite numerous trials, it has consistently underperformed mainly due to its short growth cycle and long dormancy period. It is one of the first grasses to green up in the spring, but by the start of summer it has often gone completely dormant, limiting its value as forage and making for a pretty pathetic turfgrass. Otherwise, it’s pretty good at propagating itself and persisting in locations where it hasn’t been invited and is now mostly considered a weed – a noxious one at that according to some states. Due to its preference for dry climates, it is found most commonly in western North America.

In its native range, bulbous bluegrass frequently reproduces sexually. In North America, however, sexual reproduction is rare, and bulbils are the most common method of reproduction. Prolific asexual reproduction suggests that bulbous bluegress populations in North America should have low genetic diversity. Researchers set out to examine this by comparing populations found in Washington, Oregon, and Idaho. Their results, published in Northwest Science (1997), showed a surprising amount of genetic variation within and among populations. They concluded that multiple introductions, some sexual reproduction, and the autopolyploidy nature of the species help explain this high level of diversity.

———————

Interested in learning more about how plants get around? Check out the first issue of our new zine Dispersal Stories.

Pine Cones and the Fibonacci Sequence

While we’re on the topic of pine cones, have you ever considered their scales and the spirals they form? Nature is replete with spirals, so perhaps it’s no surprise that they are found in pine cones. The more interesting thing is that the number of spirals found on pine cones are almost always Fibonacci numbers. But maybe that’s not that surprising either, as Fibonacci numbers are also pretty common in nature.

Add 1 plus 1 and you get 2. Add 2 plus 1 and you get 3. 3 + 2 = 5, 5 + 3 = 8, and 8 + 5 = 13. One, two, three, five, eight, and thirteen are Fibonacci numbers. Continue adding the sum to the number that came before it, and that’s the Fibonacci Sequence. The ratio of two neighboring Fibonacci numbers is an approximation of the golden ratio (e.g. 8/5 = 1.6). This is commonly represented by drawing a series of squares on graph paper and then drawing a spiral across the squares. Each square drawn is larger than the last in accordance with the Fibonacci sequence, and the spiral drawn through the squares is a logarithmic spiral.

So, what does this have to do with pine cones? Well if you count the number of spirals that are going to the right, then count the number of spirals going to the left, you usually end up with two adjacent numbers in the Fibonacci sequence. Most often it’s either 5 and 8 or 8 and 13. You can find this same pattern in lots of other plant parts, including the aggregate fruits of pineapples, the disc flowers of sunflowers (and other plants in the aster family), the bracts of artichoke flowers, florets on a cauliflower, and leaf arrangements of all sorts of other plants.

The arrangement of leaves is called phyllotaxis, and when the leaves on a stem form a spiral pattern it’s called a phyllotactic spiral. The benefit the plant receives from having its leaves grow in a spiral formation down the length of its stem is actually quite simple – it keeps them from shading each other out and thereby maximizes their exposure to the sun. If you measure the angle between each leaf, the angle should be the same between each adjacent leaf on the stem. In order for the number of spirals to be a Fibonacci number, the leaves have to be oriented at a specific angle from each other. But this isn’t always the case. Depending on the angle, the number of spirals could be part of some other number sequence, like Lucas numbers perhaps.

While the specifics of plant growth can be quite complex, the reason for the patterns that result is actually quite simple. As plants grow new parts, they are put in a spot where there is room for them to grow, which is at some angle from the part that grew before it. Once that angle is “chosen,” it generally doesn’t change, and as more plant parts grow, a spiral forms (or no spiral forms at all, depending on the pattern of growth). If plant parts are oriented at a specific angle (~ 137.5o), the numbers of spirals end up being Fibonacci numbers. For a more thorough and entertaining explanation of all this, check out this three part video series from Khan Academy. It’s well worth the watch.

And now an example:

Count the number of right-hand spirals on this ponderosa pine cone. There are 8. That’s a Fibonacci number!

Count the number of left-hand spirals on this ponderosa pine cone. To make it easier to count, you can start or end with the top left spiral that has alternating red and green scales. There are 13. That’s another Fibonacci number!

And now your mission, should you choose to accept, is to find a pine cone (or some other conifer cone) in which the number of right and left-hand spirals are not Fibonacci numbers. They’re definitely out there, so let me know what you find in the comment section below.

Further Reading:

Inside of a Seed: Two Monocots

“Seeds are travelers in space and time – small packages of DNA, protein, and starch that can move over long distances and remain viable for hundreds of years. These packages have everything they need not only to survive, but also to grow into a plant when they encounter the right conditions.”      The Book of Seeds by Paul Smith

———————

As illustrated in last week’s post, the mature seeds of dicots – depending on the species – can be either with or without endosperm (a starchy food packet that feeds a growing seedling upon germination). Seeds without endosperm store these essential sugars in their cotyledons. Monocotyledons (or monocots, for short) are a group of flowering plants (i.e. angiosperms) whose seedlings are composed of a single cotyledon. With the exception of orchids, the seeds of monocots always contain endosperm.

The first of two examples of monocot seeds is the common onion (Allium cepa). The embryo in this seed sits curled up, surrounded by endosperm inside of a durable seed coat.

If you have ever sown onion seeds, you have watched as the single, grass-like cotyledon emerges from the soil. The seed coat often remains attached to the tip of the cotyledon like a little helmet as it stretches out towards the sky. Soon the first true leaf appears, pushing out from the base of the cotyledon. The source of this first leaf is the plumule hidden within the cotyledon.

The fruit of plants in the grass family – including cereal grains like wheat, oats, barley, rice, and corn – is called a caryopsis. In this type of fruit, the fruit wall (or pericarp) is fused to the seed coat, making the fruit indistinguishable from the seed. The embryos in these seeds are highly developed, with a few more discernible parts. A simplified diagram of a corn seed (Zea mays) is shown below. Each kernel of corn on a cob is a caryopsis. These relatively large seeds are great for demonstrating the anatomy of seeds in the grass family.

In these seeds there is an additional layer of endosperm called aleurone, which is rich in protein and composed of living cells. The cells of the adjacent endosperm are not alive and are composed of starch. The embryo consists of several parts, including the cotyledon (which, in the grass family, is also called a scuttelum), coleoptile, plumule, radicle, and coleorhiza. The coleoptile is a sheath that protects the emerging shoot as it pushes up through the soil. The plumule is the growing point for the first shoots and leaves, and the radicle is the beginning of the root system. The emerging root is protected by a root cap called a calyptra and a sheath called a coleorhiza.

Germination begins with the coleorhiza pushing through the pericarp. It is quickly followed by the radicle growing through the coleorhiza. As the embryo emerges, a signal is sent to the endosperm to start feeding the growing baby corn plant, giving it a head start until it can make its own food via photosynthesis.

corn seeds (Zea mays)

Up Next: We’ll take an inside look at the seeds of gymnosperms.

———————

Do you find these posts valuable? Consider giving us a high five in the form of money to help us continue to tell the story of plants.

Donate

Inside of a Seed: Two Dicots

“A seed is a living thing that embodies roots, stems, leaves, and fruit in an embryonic state and retains the ability to convert the sun’s energy into a source of food.” — Seedtime by Scott Chaskey

———————

Few things are more miraculous than seeds. Within them is a living plant in embryonic form. Under the right conditions, these tiny objects expand, pushing out the beginnings of the most minuscule weed to the most humongous tree. Looking at these otherwise unassuming specks, you would hardly guess that they held such potential.

Housed in a seed is the genetic material necessary for growth and reproduction, along with some stored sugars to get the plant started. All of this is enclosed in a protective case. It is a rare moment in a plant’s life – a time when it isn’t rooted in place and can, for a brief period, move around. With the help of agents like wind, water, and animals it can travel anywhere in the world, venturing as far as inches or miles from its parent plant. As long as it finds a suitable place to grow, its voyage is not in vain.

Seeds are the result of sexual reproduction in plants (with rare exceptions, which we will cover in a future post). After pollination, a pollen grain sends three haploid cells into the ovule of a flower. These cells unite with the haploid cells found within. One germ cell from the pollen grain goes to the formation of an embryo, while the other two cells help form endosperm, the food source for the developing embryo. The wall of the ovule becomes the outer layer of the seed, known as the seed coat or testa. The seed matures as the fruit it is nested in ripens. Eventually, the fetal plant within the seed is ready to find a new home.

Seed heads of rubber rabbitbrush (Ericameria nauseosa) – the fuzzy pappus attached to the fruits allows seeds to float in the breeze and travel away from their parent plant.

As with so many things in biology, there is no single type of seed. When it comes to seed anatomy, most seeds consist of the same basic components, but each species of plant has its own unique seed. In fact, a well-trained taxonomist can identify plants simply by observing their seeds. With such a wide variety of seeds, it is difficult to organize them into discrete categories, but we still try. What follows is an introduction to two types of seeds – endospermic and non-endospermic – using two basic examples.

The first thing you should know about these two examples is that both species are dicotyledons (or dicots, for short). This means that when the baby plant emerges, it has two cotyledons, which are also called embryonic leaves because they look like little leaves. All flowering plants have been divided into two groups based on the number of cotyledons they have, the second group being the monocotolydons (or monocots) which have only one cotyledon. This is an old-fashioned way to classify plants, but it is still useful in some instances.

Endospermic Seeds

The seeds of the castor bean plant (Ricinus communis) are endospermic seeds. This means that they retain the endosperm that was formed when two pollen grain cells joined up with the haploid cell in the ovule. The endosperm will help feed the growing embryo as it germinates. The two cotyledons are visible within the seed, but they are thin and broad, leaving plenty of space in the seed for the endosperm. The cotyledons are part of the embryo and are attached to the radicle, which is the embryonic root. The radicle is the first thing to emerge from the seed upon germination. The area between the radicle and the cotyledon is known as the hypocotyl. It becomes the stem of the germinating seedling.

An elaisome is attached to the outside of the seed coat of castor bean seeds. This fleshy, nutrient-rich appendage is particularly attractive to ants. They carry the seeds back to their colony and feed the elaisome to their young. The seeds, however, remain unconsumed. In this way, the ants aid in the seeds’ dispersal.

seeds of castor beans (Ricinus communis)

Non-endospermic Seeds

The seeds of plants in the bean family (Fabaceae) are non-endospermic seeds. This means that as the embryo develops, it uses up the majority of the endosperm within the seed. The food necessary for the seedling to get its start is all stored in its cotyledons. The common pea (Pisum sativum) is a good example of this. The embryo – which consists of the cotyledons, plumula (or plumule), hypocotyl, and radicle – takes up all available space inside of the seed coat. After germination, as the seedling develops, the plumule appears above the cotyledons and is the growing point for the first true leaves and stems.

seeds of the common pea (Pisum sativum)

In future posts, we will look at a few other types of seeds, as well as discuss various other seed-related topics. If you have a story to share about seeds, please do so in the comment section below.

Weeds and Winter Interest

In climates where winter sucks the garden inside itself and into quiet dormancy, it is often dead stalks and seed heads that provide the most visual interest. They also become, in some respects, a reminder of a garden that once was and what will be again.” — Gayla Trail, Grow Curious

If, like me, it is during the growing season that you really thrive, winters can be brutal. Color has practically been stripped from the landscape. Death and slumber abound. Nights are long and days are cold. It’s a lengthy wait until spring returns. Yet, my love of plants does not rest. And so, I look for beauty in a frozen landscape.

In evergreens, it is obvious. They maintain their color year-round. Large bunchgrasses, shrubs and trees with interesting bark or branching habits, dried fruits and unique seed heads – all of these things are easy to spot and visually interesting.

Beyond that, there are things that we are not accustomed to finding beauty in. Such things require a keen eye, close observation, and the cultivation of greater understanding and appreciation. For most people, weeds fall into this category. What is there to love or find beautiful?

I am of the opinion that there is plenty there to intrigue us. From their spent flowers to their seed heads and dried-up leaves, they can be just as interesting as the plants we deem more desirable. The winter-long green of winter annuals alone is evidence enough. So, here is my attempt to redeem some of these plants by nominating them as candidates for winter interest.

common mallow (Malva neglecta)

field bindweed (Convolvulus arvensis)

common mullein (Verbascum thapsus)

common dandelion (Taraxacum officinale)

Russian thistle (Kali tragus, syn. Salsola tragus)

Russian thistle (Kali tragus, syn. Salsola tragus)

redstem filaree (Erodium cicutarium)

curly dock (Rumex crispus)

curly dock (Rumex crispus)

prickly lettuce (Lactuca serriola)

salsify (Tragopogon dubius)

wood avens (Geum urbanum)

yellow evening primrose (Oenothera biennis)

annual honesty, a.k.a. money plant (Lunaria annua)

white clover (Trifolium repens)

———————

A friendly reminder: Refrain from being overly ambitious with your fall cleanup and, instead, leave certain plants in place. This not only provides winter interest but can also be beneficial to the wild creatures we share space with.

 

The Agents That Shape the Floral Traits of Sunflowers

Flowers come in a wide array of shapes, sizes, colors, and scents. Their diversity is downright astounding. Each individual species of flowering plant has its own lengthy story to tell detailing how it came to look and act the way it does. This is its evolutionary history. Unraveling this history is a nearly insurmountable task, but one that scientists continue to chip away at piece by piece.

In the case of floral traits – particularly for flowers that rely on pollinators to produce seeds – it is safe to say that millennia of interactions with floral visitors have helped shape not only the way the flower looks, but also the nature of its nectar and pollen. However, flowers are “expensive” to make and maintain, so even though they are necessary for reproduction, plants must find a balance between that and allocating resources for defense – against both herbivory and disease – and growth. This balance can differ depending on a plant’s life history – whether it is annual or perennial. An annual plant has one shot at reproduction, so it can afford to funnel much of its energy there. If a perennial is unsuccessful at reproduction one year, there is always next year, as long as it has allocated sufficient resources towards staying alive.

Where a plant exists in the world also influences how it looks. Abiotic factors like temperature, soil type, nutrient availability, sun exposure, and precipitation patterns help shape, through natural selection, many aspects of a plant’s anatomy and physiology, including the structure and composition of its flowers. Additional biotic agents like nectar robbersflorivores, and pathogens can also influence certain floral traits.

This is the background that researchers from the University of Central Florida and University of Georgia drew from when they set out to investigate the reasons for the diverse floral morphologies in the genus Helianthus. Commonly known as sunflowers, Helianthus is a familiar genus consisting of more than 50 species, most of which are found across North America. The genus includes both annuals and perennials, and all but one species rely on cross-pollination to produce viable seeds. Pollination is mainly carried out by generalist bees.

Maximilian sunflower (Helianthus maximiliani)

Helianthus species are found in diverse habitats, including deserts, wetlands, prairies, rock outcrops, and sand dunes. Their inflorescences – characteristic of plants in the family Asteraceae – consist of a collection of small disc florets surrounded by a series of ray florets, which as a unit are casually referred to as a single flower. In Helianthus, ray florets are completely sterile and serve only to attract pollinators. Producing large and numerous ray florets takes resources away from the production of fertile disc florets, and sunflower species vary in the amount of resources they allocate for each floret form.

In a paper published in the July 2017 issue of Plant Ecology and Evolution, researchers selected 27 Helianthus species and one Phoebanthus species (a closely related genus) to investigate “the evolution of floral trait variation” by examining “the role of environmental variation, plant life history, and flowering phenology.” Seeds from multiple populations of each species were obtained, with populations being carefully selected so that there would be representations of each species from across their geographic ranges. The seeds were then grown out in a controlled environment, and a series of morphological and physiological data were recorded for the flowers of each plant. Climate data and soil characteristics were obtained for each of the population sites, and flowering period for each species was collected from various sources.

The researchers found “all floral traits” of the sunflower species to be “highly evolutionarily labile.” Flower size was found to be larger in regions with greater soil fertility, consistent with the resource-cost hypothesis which “predicts that larger and more conspicuous flowers should be selected against in resource-poor environments.” However, larger flower size had also repeatedly evolved in drier environments, which goes against this prediction. Apart from producing smaller flowers in dry habitats, flowering plants have other strategies to conserve water such as opening their flowers at night or flowering for a short period of time. Sunflowers do neither of these things. As the researchers state, “this inconsistency warrants consideration.”

The researchers speculate that “the evolution of larger flowers in drier environments” may be a result of fewer pollinators in these habitats “strongly favoring larger display sizes in self-incompatible species.” The flowers are big because they have to attract a limited number of pollinating insects. Conversely, flowers may be smaller in wetter environments because there is greater risk of pests and diseases. This is supported by the enemy-escape hypothesis – smaller flowers are predicted in places where there is increased potential for florivory and pathogens. Researchers found that lower disc water content had also evolved in wetter environments, which supports the idea that the plants may be defending themselves against flower-eating pests.

Seed heads of Maximilian sunflower (Helianthus maximiliani)

Another interesting finding is that, unlike other genera, annual and perennial sunflower species allocate a similar amount of resources towards reproduction. On average, flower size was not found to be different between annual and perennial species. Perhaps annuals instead produce more flowers compared to perennials, or maybe they flower for longer periods. This is something the researchers did not investigate.

Finally, abiotic factors were not found to have any influence on the relative investment of ray to disc florets or the color of disc florets. Variations in these traits may be influenced instead by pollinators, the “biotic factor” that is considered “the classic driver of floral evolution.” This is something that will require further investigation. As the researchers conclude, “determining the exact drivers of floral trait evolution is a complex endeavor;” however, their study found “reasonable support for the role of aridity and soil fertility in the evolution of floral size and water content.” Yet another important piece to the puzzle as we learn to tell the evolutionary history of sunflowers.

On the Genus Euphorbia

This is a guest post. Words and photos by Jeremiah Sandler.

———————

Suspicion

I collect cacti and succulents. The more I collect plants, the more and more I become interested in taxonomic and phylogenetic relationships between them. Not just my own plants – all of them. Most recently, the genus Euphorbia has been on my mind. My favorite species are E. meloformis var. valida and E. horrida.

I’m mostly familiar with the succulent and cacti-looking euphorbia (they are not true cacti) and a few ornamental annuals. Sometimes I would come across a species that I could determine was a euphorbia; but in trying to identify exactly which species, I found countless possibilities within the genus. It seemed odd to me that a single genus could contain so many different forms.

Turns out, Euphorbia consists of over 1800 separate species. What?! That is an insanely high number! Only about 20 genera of plants contain over 1000 separate species. Euphorbia is the fourth most populated genus among all genera of plants.

That staggering number got me thinking: how can a single genus have so many different species? How has the classification worked that out? Has the genus been phylogenetically examined? There’s no way a genus can be so huge. You know what breeders and collectors can do with that much genetic material in a single genus? The man-made hybrids seem endless.

Euphorbia globosa in bloom

Taxonomy

In older taxonomic practices, morphological similarities were the primary method of grouping individuals together. While that is still a common practice today, phylogenetic testing is now an accessible tool for organizing species into related groups.

Organizations such as the Angiosperm Phylogeny Group (APG) have been doing this advanced scientific research – analyzing DNA, doing detailed dissection, etc. Ultimately, they organize plant taxonomy and systematics with greater detail, and examine plant relationships genetically – phylogenetics.

Analyzing genomes is much more expensive and time consuming than observing morphologies. Now, a mix of methods is used, but DNA sequencing has definitely changed the systematics game in a big way. As a result of the APG’s incorporation of widespread phylogenetic DNA analyses, their taxonomical classifications are quickly becoming the generally accepted classifications among plant taxonomists.

Since the inclusion of genetic testing, many plant orders, families, and genera have been reorganized, renamed, expanded, or shrunk.

Euphorbia

One of the identifying features of euphorbias are their very unique flowers. All species in the genus have a cyathium, an inflorescence exclusively produced by euphorbias. Lacking in true petals, sepals, or nectaries, monoecious euphorbia flowers possess only the most essential parts of reproduction. However, bracts, extra-floral nectaries, and other structures surrounding the reproductive parts of the flowers make them appear superficially different.

It would be very time consuming to sequence the DNA of every member of this genus to see where they all fit. Approximately 10% of the euphorbias have been phylogenetically examined, and they confirm the traditional morphological placement. How about that?

Interestingly, of the species genetically analyzed, some were subsequently placed into the genus Euphorbia after historically being considered members of other genera.

Euphorbia horrida and Euphorbia obesa

So? What’s that mean?

Species within the same genus when crossed can (but not always) produce viable offspring. Sometimes they don’t because of differences in pollinators, flowering times, or geographic location, which prevents hybridization. Clades within plant genera also can affect intra-genus reproduction. For example, hard maples won’t naturally hybridize with soft maples, despite both being in the genus Acer. Perhaps the case is similar between the groups within Euphorbia.

As a plant collector and cacti and succulent enthusiast, imagining the endless amounts of hybrids within a massive genus is a fancy idea to me. The APG’s confirming of the initial classifications of Euphorbia into a massive genus makes the idea of endless hybrids all the more real.

Additional guest posts by Jeremiah Sandler:

———————

Jeremiah Sandler lives in southeast Michigan, has a degree in horticultural sciences, and is an ISA certified arborist. Follow him on Instagram: @j.deepsea