Summer of Weeds: Eating Purslane

If it wasn’t so prolific and persistent, purslane would probably be a welcome guest in our vegetable gardens and edible landscapes. Easily among the most nutritious and versatile of the edible weeds, Portulaca oleracea is an annoyingly abundant annual that has inserted itself into garden beds and croplands in temperate climates across the globe. Thought to have originated in India or somewhere in Eurasia, purslane invaded North America long before Europeans did and has been naturalized across much of the continent for hundreds of years.

common purslane (Portulaca oleracea)

There are over 100 known species in the genus Portulaca, the only genus in the family Portulacaceae (otherwise known as the purslane family). Common purslane is a succulent plant with paddle- or teardrop-shaped leaves that generally grows low to the ground, forming a thick mat. It reaches for the sky when grown in shade or when competing with other plants for space. It produces little, yellow flowers that only open in bright sun and are typically self-pollinated. A small capsule containing dozens of tiny, black seeds quickly follows each flower. Each plant can produce tens of thousands of seeds, which remain viable for around 40 years.

Attempts to remove purslane by cultivation may only aid its survival. Broken pieces of the plant can take root in the soil, and uprooted plants can re-root if they are in contact with soil. Stirring up the ground brings to the surface seeds from purslane’s extensive seed bank. These freshly exposed seeds can then germinate, taking advantage of disturbance and open space. For all these reasons and more, John Eastman writes in The Book of Field and Roadside: “Purslane knows how to live and linger.”

The ever-urban and ever-common purslane.

The seeds of purslane germinate in late spring and throughout the summer when the soil has reached at least 75 – 80° Fahrenheit. It is adapted to high heat and dry soils. In order to conserve water, it switches to CAM photosynthesis when conditions are particularly hot and dry. In this photosynthetic pathway, carbon dioxide is stored as malic acid during the night and then converted back during the day. This means that, when it comes to eating purslane, the flavor changes depending on when the plant is harvested. In The Wild Wisdom of Weeds, Katrina Blair discusses this phenomenon: “In the morning purslane leaves contain as much as ten times more malic acid, making them very sour tasting. If you prefer a milder tasting purslane, harvest your greens in late afternoon and if you want more zing to your recipes, gather the leaves at dawn.”

Speaking of eating purslane, if all the claims are to be trusted, there may not be a more nutritious weed. In A Feast of Weeds, Luigi Ballerina calls it “a health bomb” because “it contains more omega-3 fatty acids than almost any other green, not to mention vitamins A, B, and C and beta carotene.” Blair calls it “one of the most nutritious plants on Earth,” and goes on to sing praises about its richness in dietary fiber, vitamins, minerals, protein, etc. Funnily enough, in describing the health benefits of purslane, Ballerina also quotes ancient sources claiming that “purslane calms sexual excitement.” Apparently it not only “eliminate[s] sensual dreams, but if used too much, it often extinguishes all ardor and even the capacity to procreate.”

With that caveat in mind, I tried it anyway. I had eaten it before, but nothing more than a leaf here and there and once in a green salad. I picked two recipes to try: Walnut Purslane Coleslaw from The Wild Wisdom of Weeds and Potatoes and Purslane from A Feast of Weeds. I’m generally a big fan of coleslaw, but for whatever reason I found this recipe to be a little bland. It was missing something, but I couldn’t put my finger on it. The purslane seemed to add a vague slimy-ness to it, which it will do on account of its mucilaginous nature.

Walnut Purslane Coleslaw

The Potatoes and Purslane recipe involved cooking the purslane. I enjoyed the finished product both hot and cold. The purslane added a sort of lemon-y spinach flavor. Those who tried it with me also liked it. The potato recipe was made with purslane that had been harvested in the morning, which may explain the strong lemon-y flavor. The coleslaw was made with purslane harvested in late afternoon, which may explain its blandness. I will have to try it the other way around for comparison. Purslane recipes abound in books and on the internet; browsing through them, I am intrigued enough to consider trying others. I think I’ll start with pickled purslane, purslane pesto, and perhaps, purslane sauerkraut.

Potatoes and Purslane

More Resources:

———————

Do you have a favorite purslane recipe? Share it in the comment section below.

Introducing the Summer of Weeds

I spent the first five months of this year posting almost exclusively about invasive species. There is still plenty more to say on the topic, and I’m sure I will get back to that. However, it is time now to dive into the topic that I really want to explore. Weeds.

There is definitely crossover between the two topics – many weeds are invasive species – but there are clear distinctions, too. Oftentimes, weeds as a category of plants are unfairly and unjustly lumped under the title “invasive,” but any plant can be a weed at any moment in time if a human says so. That’s the difference. A plant does not have to prove that it is causing any sort of ecological or economic damage to be called a “weed;” it just has to be growing where a human doesn’t want it to. Yet, too quickly a plant “out of place” is cursed at using words like “invasive” or “noxious” regardless of its origin or behavior. I know I’m being overly semantic about this, but it seems unfair (and incorrect) to lump any and all plants that are bothering us for whatever reason into categories that have legal definitions.

If you can’t already tell, I am obsessed with weeds. It’s a topic I have been thinking about fairly consistently for much of my adult life. For one thing, as part of my career I spend a huge portion of my time killing and controlling weeds. I comprehend fully the visceral reaction of seeing a garden overcome by weeds – the vile thoughts one can have towards a group of plants that are soiling what could otherwise be a beautiful landscape – and I know very well the backbreaking work and countless hours that go into removing uninvited plants (cursing the intruders along the way). I get why weeds are a problem, and I understand why they are a subject of so much vitriol. Yet, over the years I have developed a respect – even a love – for weeds (despite the fact that I still must remove them and that removing them continues to be an overwhelming task).

Unwanted plants have been following us around and getting in our way for millenia. Essentially, we are partners in crime. We intentionally and unintentionally bring plants from various parts of the world on our travels, and through disturbance we create conditions where introduced plants can settle in and thrive. Over time, some once beloved plants grow out of favor and transition from desirable to weedy. As our cycles of disturbance continue, we give early successional, opportunistic plant species a chance to perpetuate themselves, guaranteeing that we will keep such “weeds” with us forever. We reap what we sow; even though we generally don’t plant weeds on purpose, other actions ensure that they will be our constant companions.

The importance of weed control goes beyond the aesthetic. In horticulture and agriculture, weeds compete with crops for light, space, water, and nutrients. They also harbor pests and diseases, and their seeds can contaminate crops. In pastures and rangelands, some weeds poison livestock. Certain weeds are harmful to people, too. Other weeds are simply disruptive – getting tangled up in machinery, damaging infrastructure, blocking our vision along roadways, and even giving cyclists flat tires. Apart from all that, even if all weeds did was make our gardens look unsightly, I imagine we would still be pretty angry with them.

I am interested in weeds wherever they are, but the weeds that fascinate me the most are those that thrive in urban environments. Not necessarily the weeds in our yards, but the weeds that have escaped our fences and property lines; the ones in the margins. We see them in abandoned lots, along roadways, near irrigation channels, and in other neglected spaces. They pop up in the cracks of sidewalks, on rooftops, in the middle of decaying buildings, and anywhere else that people haven’t paid attention to in a while. Urban areas have, for the most part, been scraped of their native flora. Introduced species move in to fill that void. As Richard Mabey writes in his book about weeds, these plants “insinuate the idea of wild nature into places otherwise quite shorn of it;” they are “the very essence of wildness.” Novel ecosystems, like those created by urbanization and human development, are with us whether we like it or not. There is a “wildness” to them that is unlike other cultivated and manicured areas maintained by humans. These urban wild places are worth a closer look.

So, what is the Summer of Weeds?

Put simply, it’s an exploration of weeds. Throughout the summer I will be profiling some of the weeds I come across in my daily life. I will include photos, a brief description, and some interesting facts about each species. I will also include quotes about weeds from various sources, as well as videos, links, resources, and whatever else I come across that seems worth sharing. I hope you enjoy it. If you have anything to add along the way – specifically any personal thoughts or stories to share about weeds – please do. You can contact me via the usual ways: in the comment section below, through the Contact page, or on Twitter, Tumblr, Facebook, or Instagram. Happy Summer!

Poisonous Plants: Buttercups

Hold a buttercup flower under your chin. If your chin glows yellow, you love butter. That is according to a classic childhood game anyway. Recent research explored the cellular structure of buttercup petals and revealed the anatomical reason behind their yellow glow. Apart from helping to warm the flower’s sex organs, this glow is thought to draw in pollinating insects to ensure proper pollination.

Now take the fresh green leaves of buttercups, crush them up, and rub them against your skin. On second thought, DON’T DO THAT! This is not a childhood game and should absolutely be avoided…unless, of course, you derive some sort of pleasure from painful blisters.

Buttercups, also commonly known as crowfoots, are in the genus Ranunculus and the family Ranunculaceae. Ranunculus consists of a few hundred species and is a common group of annual and perennial herbaceous plants with alternately arranged, palmately veined leaves that are either entire, lobed, or finely divided. Buttercup flowers are usually yellow (sometimes white) with 5 petals (sometimes 3 or 7) that are either borne singly or in loose clusters. The flowers are complete, having both male and female reproductive structures that are easily identifiable. Flowering usually occurs in the spring.

bulbous buttercup (Ranunculus bulbosus) – photo credit: wikimedia commons

Ranunculus species are found throughout the world. Common habitats include moist woods, meadows, open fields, wetlands and other riparian areas, as well as drier sites like roadsides and neglected, urban lots. Several species are commonly grown as ornamentals, and others are common weeds in natural areas, urban landscapes, and agricultural fields.

All buttercups contain a compound called ranunculin. When the leaves are crushed or bruised, ranunculin breaks down to form an acrid, toxic oil called protoanemonin. Contact with this oil causes dermatitis. Symptoms occur within an hour of contact and include burning and itching along with rashes and blisters. When the leaves are chewed, blisters can form on the lips and face. If swallowed, severe gastrointestinal irritation can follow, accompanied by dizziness, spasms, and paralysis. The toxic oil is also irritating to the eyes.

Ranunculus species vary in their levels of this toxic compound, and individual plants are said to be more toxic in the spring when they are actively growing and flowering. Protoanemonin breaks down further into an innocuous compound called anemonin, so dead and dried out plants are generally safe. Commonly encountered (and particularly toxic) species in North America include tall buttercup (R. acris), cursed buttercup (R. sceleratus), creeping buttercup (R. repens), littleleaf buttercup (R. arbortivus), and sagebrush buttercup (R. glaberrimus). Bulbous buttercup (R. bulbosus) has bulbous roots that are toxic when fresh but are said to be edible after they are well boiled or completely dried.

cursed buttercup (Ranunculus sceleratus)

The toxicity of Ranunculus species seems to be more of an issue for livestock than for humans. Grazing animals tend to avoid it since it tastes so bad. Those that do eat it exhibit responses similar to humans – blistering around the mouth, gastrointestinal issues, etc. In The Book of Field and Roadside, John Eastman writes about Ranunculus acris: “Cattle usually avoid the plant – its acrid juices can blister their mouths – though they can also develop something like an addiction to it, consuming it until it kills them.” Buttercups becoming dominant in pastures and rangelands is often a sign of overgrazing.

Despite – and likely due to – their toxicity, buttercups have a long history of medicinal uses. Civilizations in many parts of the world have used the leaves and roots of the plant to treat numerous ailments including rheumatism, arthritis, cuts, bruises, and even hemorrhoids. A report published in 2011 describes three patients in Turkey that had applied poultices of corn buttercup (R. arvensis) to parts of their body to treat rheumatism. The patients were treated for chemical burns caused by the applications. The report concludes by advising against treatments “whose therapeutic effects have not been proven yet by scientific studies.”

In The North American Guide to Common Poisonous Plants and Mushrooms, buttercups are listed among plant species that are skin and eye irritants, honey poisons, and milk poisons (see Appendices 3, 4, and 5). Other genera in the buttercup family may also contain high levels of protoanemonin, including popular ornamentals like Clematis, Helleborus, Anemone, and Pulsatilla. Thus, the moral of this story: handle these plants with care.

sagebrush buttercup (Ranunculus glaberrimus)

More Poisonous Plant Posts on Awkward Botany:

Campaigns Against Invasive Species, part one

I have been posting almost exclusively about invasive species for four months now. If you have made it this far, I salute you. It is neither the most exciting nor the most encouraging topic, but it is the journey I am on (for whatever reason), and I am pleased to have you along.

In the battle against invasive species, citizen awareness and participation is imperative. The public and private sectors can try as they may, but if individual citizens are acting in ways that help introduce or spread invasives, then much of this effort can be for naught. Thus, campaigns to educate the public are regularly launched.

One popular way to spread the word is through video. Often, the goal of these videos is to both educate and entertain. Some achieve this better than others, while some are downright dull or simply baffling. Speculating on the effectiveness of these videos is not the purpose of this post. Rather, I just thought I would take a break from the usual text heavy posts and share a few videos that I found interesting and/or entertaining. If you have a favorite invasive species video, please share it in the comment section below.

Invasive species explained:

Introducing Bob Noxious from Invasive Species of Idaho:

And here is the particularly creepy, Vin Vasive, from USDA APHIS:

Invaders! in British Columbia:

In Namibia, “Cacti must die!”:

Eco Sapien and the story of Japanese knotweed in the UK:

What happened when American minks, brought to Europe for the fur trade, escaped into natural areas?:

Michigan’s Department of Environmental Quality explains how invasive species spread:

Pennsylvania’s Wild Resource Conservation Program teaches kids about invasive species:

MinuteEarth‘s take on invasive species:

Also, check out these five TEDx talks:

Invasive Species vs. The Global Economy

As humans have spread across the globe, other species have followed. The domestication of animals and the advent of agriculture helped speed up this process, but species have been traveling around with humans long before that. Presently, our ability to move species from one corner of the globe to another is unprecedented. As more countries join the global economy, the risk of outsider species establishing themselves in uncharted territory increases. Species introductions via globalization are not likely to decrease, and so the question must be asked: Are we, as a global community, equipped to address this?

A review published in Nature Communications in August 2016 warns that “most countries have limited capacity to act against invasions.” The authors come to this conclusion after analyzing available data about invasive species across the globe and developing a “global, spatial forecast for emerging invasions throughout the twenty-first century.” National responses to invasive species were assessed based on reports to the Convention on Biological Diversity (CBD).

As part of the 2011-2020 CBD Strategic Plan for Biodiversity, nations or states that are parties of the CBD agreed to work towards a series of goals called Aichi Biodiversity Targets. Target 9 addresses invasive species: “By 2020, invasive alien species and pathways are identified and prioritized, priority species are controlled or eradicated and measures are in place to manage pathways to prevent their introduction and establishment.” The authors of the review found that, while most countries have made progress on identifying and prioritizing some of the most prominent and threatening invasive species, “current management practices only target a handful” and “prevention of introduction and establishment lags far behind progress towards the reactive CBD goals.”

Biological invasions are expected to remain high across the globe; however, regions with a high Human Development Index (HDI) face different threats compared to regions with a low HDI. Due to increasing levels of international trade, high-HDI regions will continue to be threatened by introductions via pet and plant imports. Climate change and the coinciding biome shifts and changes in fire frequency are expected to aid in the establishment and perpetuation of invasive species in these regions.

Low-HDI regions have historically been less threatened by invasive species compared to high-HDI regions. As these regions join the global economy, they risk experiencing a much higher level of species introductions. Many of the planet’s biodiversity hotspots are found in low-HDI regions, making these hotspots more vulnerable to invasions as the potential for introductions increases. The authors found that the threat of introductions is at its highest in regions where “high levels of passenger air travel overlap with agriculture conversion.” Low-HDI regions are more limited in their capacity to respond to invasions compared to high-HDI regions and are more vulnerable to food shortages when invasive species disrupt agriculture.

“High risk in low-HDI countries could arise from coincidence between intensifying agriculture sectors and high levels of passenger air travel that is likely to transport arthropod pests. … Low-HDI countries could prioritize screening of passenger baggage for live plants, fruits or vegetables, which could host crop pests and pathogens.” – Early, et al. (2016) – photo credit: wikimedia commons

The authors state: “The intensities and global patterns of introduction and disturbance are changing more rapidly today than at any time during human history.” Introductions are not projected to slow in high-HDI regions, and low-HDI regions will be increasingly threatened as species already well established in high-HDI regions expand their reach. This is grim news, but it also presents an opportunity. Through cooperation and data sharing, our understanding of invasive species can greatly increase, and regions with greater access to resources can share such things with less fortunate regions. This is the hope of the authors as well: “We urge increased exchange of information and skills between regions with a wealth of invasive alien species experts and low-HDI countries that have less expertise.”

For more information about this review, go here. For more information about global trade in the modern era, check out the new podcast Containers.

What Is a Plant, and Why Should I Care? part four

What Is a Plant?

Part one and two of this series have hopefully answered that.

Why should you care?

Part three offered a pretty convincing answer: “if it wasn’t for [plants], there wouldn’t be much life on this planet to speak of.”

Plants are at the bottom of the food chain and are a principle component of most habitats. They play major roles in nutrient cycling, soil formation, the water cycle, air and water quality, and climate and weather patterns. The examples used in part three of this series to explain the diverse ways that plants provide habitat and food for other organisms apply to humans as well. However, humans have found numerous other uses for plants that are mostly unique to our species – some of which will be discussed here.

But first, some additional thoughts on photosynthesis. Plants photosynthesize thanks to the work accomplished by very early photoautotrophic bacteria that were confined to aquatic environments. These bacteria developed the metabolic processes and cellular components that were later co-opted (via symbiogensis) by early plants. Plants later colonized land, bringing with them the phenomena of photosynthesis and transforming life on earth as we know it. Single-celled organisms started this whole thing, and they continue to rule. That’s just something to keep in mind, since our focus tends to be on large, multi-cellular beings, overlooking all the tiny, less visible beings at work all around us making life possible.

Current representation of the tree of life. Microorganisms clearly dominate. (image credit: nature microbiology)

Current representation of the tree of life. Microorganisms clearly dominate. (image credit: nature microbiology)

Food is likely the first thing that comes to mind when considering what use plants are to humans. The domestication of plants and the development of agriculture are easily among the most important events in human history. Agricultural innovations continue today and are necessary in order to both feed a growing population and reduce our environmental impact. This is why efforts to discover and conserve crop wild relatives are so essential.

Plants don’t just feed us though. They house us, clothe us, medicate us, transport us, supply us, teach us, inspire us, and entertain us. Enumerating the untold ways that plants factor in to our daily lives is a monumental task. Rather than tackling that task here, I’ll suggest a few starting points: this Wikipedia page, this BGCI article, this Encylopedia of Life article, and this book by Anna Lewington. Learning about the countless uses humans have found for plants over millennia should inspire admiration for these green organisms. If that admiration leads to conservation, all the better. After all, if the plants go, so do we.

Humans have a long tradition of using plants as medicine. Despite all that we have discovered regarding the medicinal properties of plants, there remains much to be discovered. This one of the many reasons why plant conservation is so important. (photo credit: wikimedia commons)

Humans have a long tradition of using plants as medicine. Despite all that we have discovered regarding the medicinal properties of plants, there remains much to be discovered. This is one of the many reasons why plant conservation is imperative. (photo credit: wikimedia commons)

Gaining an appreciation for the things that plants do for us is increasingly important as our species becomes more urban. Our dense populations tend to push plants and other organisms out, yet we still rely on their “services” for survival. Many of the functions that plants serve out in the wild can be beneficial when incorporated into urban environments. Plants improve air quality, reduce noise pollution, mitigate urban heat islands, help manage storm water runoff, create habitat for urban wildlife, act as a windbreak, reduce soil erosion, and help save energy spent on cooling and heating. Taking advantage of these “ecosystem services” can help our cities become more liveable and sustainable. As the environmental, social, and economic benefits of “urban greening” are better understood, groups like San Francisco’s Friends of the Urban Forest are convening to help cities across the world go green.

The importance of plants as food, medicine, fuel, fiber, housing, habitat, and other resources is clear. Less obvious is the importance of plants in our psychological well being. Numerous studies have demonstrated that simply having plants nearby can offer benefits to one’s mental and physical health. Yet, urbanization and advancements in technology have resulted in humans spending more and more time indoors and living largely sedentary lives. Because of this shift, author Richard Louv and others warn about nature deficit disorder, a term not recognized as an actual condition by the medical community but meant to describe our disconnect with the natural world. A recent article in BBC News adds “nature knowledge deficit” to these warnings – collectively our knowledge about nature is slipping away because we don’t spend enough time in it.

The mounting evidence for the benefits of having nature nearby should be enough for us to want to protect it. However, recognizing that we are a part of that nature rather than apart from it should also be emphasized. The process that plants went through over hundreds of millions of years to move from water to land and then to become what they are today is parallel with the process that we went through. At no point in time did we become separate from this process. We are as natural as the plants. We may need them a bit more than they need us, but we are all part of a bigger picture. Perhaps coming to grips with this reality can help us develop greater compassion for ourselves as well as for the living world around us.

Tomato vs. Dodder, or When Parasitic Plants Attack

At all points in their lives, plants are faced with a variety of potential attackers. Pathogenic organisms like fungi, bacteria, and viruses threaten to infect them with diseases. Herbivores from all walks of life swoop in to devour them. For this reason, plants have developed numerous mechanisms to defend themselves against threats both organismal and environmental. But what if the attacker is a fellow plant? Plants parasitizing other plants? It sounds egregious, but it’s a real thing. And since it’s been going on for thousands of years, certain plants have developed defenses against even this particular threat.

Species of parasitic plants number in the thousands, spanning more than 20 different plant families. One well known group of parasitic plants is in the genus Cuscuta, commonly known as dodder. There are about 200 species of dodder located throughout the world, with the largest concentrations found in tropical and subtropical areas. Dodders generally have thread-like, yellow to orange, leafless stems. They are almost entirely non-photosynthetic and rely on their host plants for water and nutrients. Their tiny seeds can lie dormant in the soil for a decade or more. After germination, dodders have only a few days to find host plants to wrap themselves around, after which their rudimentary roots wither up. Once they find suitable plants, dodders form adventitious roots with haustoria that grow into the stems of their host plants and facilitate uptake of water and nutrients from their vascular tissues.

A mass of dodder (Cuscuta sp.) - photo credit: wikimedia commons

A mass of dodder (Cuscuta sp.) – photo credit: wikimedia commons

Some plants are able to fend off dodder. One such instance is the cultivated tomato (Solanum lycopersicum) and its resistance to the dodder species, Cuscuta reflexa. Researchers in Germany were able to determine one of the mechanisms tomato plants use to deter dodder; their findings were published in a July 2016 issue of Science. The researchers hypothesized that S. lycopersicum was employing a similar tactic to that of a microbial invasion. That is, an immune response is triggered when a specialized protein known as a pattern recognition receptor (PRP) reacts with a molecule produced by the invader known as a microbe-associated molecular pattern (MAMP). A series of experiments led the researchers to determine that this was, in fact, the case.

The MAMP was given the name Cuscuta factor and was found “present in all parts of C. reflexa, including shoot tips, stems, haustoria, and, at lower levels, in flowers.” The PRP in the tomato plant, which was given the name Cuscuta receptor 1 (or CuRe 1), reacts with the Cuscuta factor, triggering a response that prohibits C. reflexa access to its vascular tissues. Starved for nutrients, the dodder perishes. When the gene that codes for CuRe 1 was inserted into the DNA of Solanum pennellii (a wild relative of the cultivated tomato) and Nicotiana benthamiana (a relative of tobacco and a species in the same family as tomato), these plants “exhibited increased resistance to C. reflexa infestation.” Because these transgenic lines did not exhibit full resitance to the dodder attack, the researchers concluded that “immunity against C. reflexa in tomato may be a process with layers additional to CuRe 1.”

photo credit: wikimedia commons

photo credit: wikimedia commons

A slew of crop plants are vulnerable to dodder and other parasitic plants, so determining the mechanisms behind resistance to parasitic plant attacks is important, especially since such infestations are so difficult to control, have the potential to cause great economic damage, and are also a means by which pathogens are spread. It is possible that equivalents to CuRe 1 exist in other plants that exhibit resistance to parasitic plants, along with other yet to be discovered mechanisms involved in such resistance, so further studies are necessary. Discoveries like this not only help us make improvements to the plants we depend on for food, but also give us a greater understanding about plant physiology, evolutionary ecology, and the remarkable ways that plants associate with one another.

Additional Resources: