Weeds of Boise: Railroad Tracks Between Kootenai Street and Overland Road

Walking along railroad tracks is a pretty cool feeling. It’s also a good place to look for weeds. Active railroad tracks are managed for optimum visibility and fire prevention, which means that trees and shrubs near the tracks are removed creating plenty of open space on either side. Open areas in full sun are ideal places for a wide variety of weed species to grow. Trains passing through can also be sources or dispersal agents of seeds, so there’s a chance that you may see things growing alongside railroad tracks that you don’t often see elsewhere. All this means that railroad tracks in urban areas are great locations to familiarize yourself with your city’s wild urban flora.

I visited a small section of railroad tracks between Kootenai Street and Overland Road in Boise. At one point, this was a pretty active railroad. Passenger trains once moved along these tracks, and the Boise Depot, which is less than a mile from this location, was one of several stops between Portland, OR and Salt Lake City, UT. Unfortunately, those services ended in 1997 and have yet to resume, despite continued support for bringing passenger rail back to the region. Still, freight trains pass by with some frequency.

Managing weeds along railroad tracks in urban areas can be tricky. There is little else in the way of vegetation to compete with the weeds. The tracks are also adjacent to parks, homes, schools, gardens, and other locations that make herbicide applications complicated. The species of weeds can also vary widely from one mile to the next, so management decisions must also vary. It’s especially important that the ballast directly beneath and on either side of the tracks is kept weed free in order to prevent fires and improve visibility. All of this and more makes weed control along railroad tracks one of the most challenging jobs around. Luckily, for someone that likes to look at weeds, it means there will always be interesting things to see near the tracks, including for example this colony of harvester ants that I came across while identifying weeds. I was happy to see that they were collecting the samaras of Siberian elm (Ulmus pumila), one of several weedy trees in the Treasure Valley.

What follows are a few images of some of the weeds I encountered along the railroad tracks between Kootenai Street and Overland Road, as well as a list of the weeds I was able to identify. The list will grow as I identify the mystery weeds and encounter others that I missed, as is the case with all posts in the Weeds of Boise series.

Virginia creeper (Parthenocissus quinquefolia)
blue mustard (Chorispora tenella)
cleavers (Galium aparine)
whitetop (Lepidium sp.)
Himalayan blackberry (Rubus bifrons)
bush honeysuckle (Lonicera sp.)
Siberian elm (Ulmus pumila)
English ivy (Hedera helix)
kochia seedlings (Bassia scoparia)
  • Arctium minus (common burdock)
  • Bassia scoparia (kochia)
  • Bromus diandrus (ripgut brome)
  • Bromus tectorum (cheatgrass)
  • Chorispora tenella (blue mustard)
  • Conium maculatum (poison hemlock)
  • Convolvulus arvensis (field bindweed)
  • Cirsium arvense (creeping thistle)
  • Dactylis glomerata (orchardgrass)
  • Descurainia sophia (flixweed)
  • Elaeagnus angustifolia (Russian olive)
  • Epilobium ciliatum (northern willowherb)
  • Equisetum sp. (horsetail)
  • Erodium cicutarium (redstem filaree)
  • Galium aparine (cleavers)
  • Hedera helix (English ivy)
  • Hordeum murinum (wild barley)
  • Lactuca serriola (prickly lettuce)
  • Lepidium sp. (whitetop)
  • Lonicera sp. (bush honeysuckle)
  • Parthenocissus quinquefolia (Virginia creeper)
  • Poa bulbosa (bulbous bluegrass)
  • Poa pratensis (Kentucky bluegrass)
  • Rubus bifrons (Himalayan blackberry)
  • Rumex crispus (curly dock)
  • Secale cereale (feral rye)
  • Taraxacum officinale (dandelion)
  • Ulmus pumila (Siberian elm)

Do you live near railroad tracks? What weeds are growing there, and do you feel as cool as I do when you walk the tracks?

When Acorn Masts, Rodents, and Lyme Disease Collide

“‘Mast years’ is an old term used to describe years when beeches and oaks set seed. In these years of plenty, wild boar can triple their birth rate because they find enough to eat in the forestes over the winter… The year following a mast year, wild boar numbers usually crash because the beeches and oaks are taking a time-out and the forest floor is bare once again.” — The Hidden Life of Trees by Peter Wohlleben


When a plant population’s annual production of seeds is highly variable and synchronous, it is considered a masting or mast seeding species. Why and how masting happens is a bit of a mystery, and efforts are underway to better understand this phenomenon. One thing is clear, boom and bust cycles can have dramatic effects on animals that use the fruits and seeds of these plants for food. Acorn production in oaks provides a stark example. As Koenig, et al. describe in Ecology (2015), a “variable acorn crop initiates a ‘chain reaction’ of responses that cascades through the ecosystem, affecting densities of deer, mice, ground-nesting birds, gypsy moths, and the tick vectors of Lyme disease.” The connection between mast seeding oaks and the prevalence of tick-borne pathogens is of particular interest considering the risks posed to humans.

Lyme disease is an infectious diesease caused by a bacterium vectored by ticks in the genus Ixodes. The life-cycle of a tick is generally 2 to 3 years, beginning after a larva hatches from an egg. From there the larva develops into a nymph and later an egg-laying adult, taking a blood meal each step of the way. Tick larvae feed on the blood of small rodents and birds, which is where they can pick up the bacterium that causes Lyme disease. After feeding, they develop into nymphs and go in search of another blood meal, perhaps another rodent or maybe something larger like a deer or a human. It is in their nymphal and adult stages that ticks transmit Lyme disease to humans. Nymphs tend to transmit the disease more frequently, partly because they go undetected more easily.

The risk to humans of being infected with Lyme disease varies year to year and is dependent largely on how many infected ticks are present. For this reason, it is important to understand the factors affecting the density of infected nymphs. In a study published in PLoS Biology (2006), Ostfeld, et al. collected data over a 13 year period in plots located in deciduous forests in the state of New York, a hotspot for Lyme disease. The predictors they considered included temperature, precipitation, acorn crop, and deer, white-footed mouse, and chipmunk abundances. Deer abundance and weather conditions had long been considered important in predicting the prevalence of ticks, but little attention had been paid to small mammals – the larval hosts for ticks – and the variability of acorn crops – an important food source for rodents.

deer tick (Ixodes scapularis) — via PhyloPic; user Mathilde Cordellier

The results of their study revealed a clear pathway – more acorns leads to more rodents which leads to more Lyme disease carrying nymphs. The process takes a couple of years. First, oak trees experience a mast year, flooding rodent populations with food. In the following year, the numbers of mice and chipmunks is unusually high. The year after that, there are lots and lots of nymphal ticks infected with Lyme-disease. The relationship is so direct that Richard Ostfeld claims, based on his research, that he can predict the incidence of Lyme disease among residents of New York and Connecticut based on when a mast year occurs. In a summer when there is an abundance of 2 -year-old oak seedlings in the surrounding forests, expect the infection rate of Lyme disease to be high.

Lyme disease also occurs in regions where oak trees are not present or are uncommon, so variability in acorn crops isn’t always the best predictor. The researchers acknowledge that acorn abundance is not going to be “a universal predictor of risk;” instead, anything that leads to an increase in rodent populations, whether it is some other food source or a lack of predators, may be a key indicator since rodents are reservoir hosts of Lyme disease.

A study published in Parasites and Vectors (2020) looked at the effects of rodent density on a number of tick-borne pathogens. They confirmed that an “increase in rodent density positively affects populations of nymphal ticks in the following year;” yet, they could not confirm that rodent density is the sole predictor of disease risk. Other factors come into play depending on the disease in question, and further research is needed to improve models that predict tick-borne diseases. They did, however, confirm that, by flooding the food supply with acorns, mast years can boost populations of a variety of rodents.

white-footed mouse (Peromyscus leucopus) — via wikimedia commons; USGS

A fear of ticks is justified. They suck your blood after all, and besides that, they can transmit some pretty serious diseases. Arm yourself by educating yourself. One place to do that is with The Field Guides podcast. Their tick two-parter is well worth the listen (part one and part two). Not only will it give you valuable information in protecting yourself against ticks, it may also give you an appreciation for their prowess. Just maybe. See also their You Tube video demonstrating how to sample for ticks.

To Fruit or Not to Fruit – The Story of Mast Seeding

Perennial plants that are able to reproduce multiple times during their lifetime don’t always yield the same amount of seeds each time they reproduce. For some of these plants, there is a stark difference between high-yield years and low-yield years, with low-yield years outnumbering the occasional high-yield years. In years when yields are high, fruit production can seem excessive. This phenomenon is called masting, or mast seeding, and it takes place at the population level. That is, during a mast year, virtually all individuals in a population of a certain species synchronously produce a bumper crop of seeds.

Plants of many types can be masting species. Bitterroot milkvetch (Astragalus scaphoides) and a tussock grass known as Chionochloa pallens are masting species, for example. However, this behavior is most commonly observed in trees, notably nut producing trees like oaks, beeches, and pecans. As you might imagine, the boom and bust cycles of mast seeding plant populations can have dramatic ecological effects. Animals that eat acorns, for example, are greeted with a veritable buffet in a mast year, which can increase their rate of reproduction for a spell. Then, in years when acorns are scarce, the populations of those animals can plummet.

How and why masting happens is not well understood. It is particularly baffling because masting populations can cover considerably large geographic areas. How do trees covering several square miles all “know” that this is the year to really go for it? While a number of possible explanations have been explored, there is still much to learn, especially since so many different species growing in such varied environments exhibit this behavior.

A popular explanation for mast seeding is predator satiation. The fruits and seeds of plants are important food sources for many animals. When a population of plants produces fruit in an unusually high abundance, its predators won’t possibly be able to eat them all. At least a few seeds will be left behind and can sprout and grow into new plants. By satiating their predators they help ensure the survival of future generations. However, even if a plant species has evolved to behave this way, it still doesn’t explain how all the plants in a particular population seem to know when it’s time for another mast year.

Predator satiation is an example of an economy of scale, which essentially means that individual plants benefit when the population acts as a whole. Another economy of scale that helps explain masting is pollen coupling. This has to do with the timing of flowering in cross pollinating species. If individuals flower out of sync with one another, the opportunities for cross pollination are limited. However, if individuals in a population flower simultaneously, more flowers will be pollinated which leads to increased fruit and seed production.  For this to happen, there are at least two factors that come into play. First, the plants have to have enough resources to flower. Making flowers is expensive, and if the resources to do so (like carbon, nitrogen, and water) aren’t available, it won’t happen. Second, weather conditions have to work in their favor. Timing of flowering depends, not only on daylength, but on temperature, rainfall, and other local weather conditions. If individuals across a population aren’t experiencing similar weather, the timing of their flowering may be off.

pollen-producing (male) flowers of pecan (Carya illinoinensis) — via wikimedia commons; Clemson University

Resource matching and resource budgeting are other proposed explanations for masting. Since plants can only use the resources available to them for things like growth and reproduction, they vary each year in how much growing or reproducing they do. Theoretically, if plants in a population are all going to flower in the same year, they all have to have access to a similar amount of resources. Often, the year following a mast year, there is a significant drop in fruit production, as though the plants have used up all of their available resources for reproduction and are taking a break. Some hypothesize that masting is a result of resource storage, and that plants save up resources for several years until they have what they need for yet another big year.

Another thing to consider is how plant hormones might play a role in masting. Gene expression and environmental cues both result in hormonal responses in plants. As Bogdziewicz, et al. write in Ecology Letters (2020), “if hormones and the genes that control them are hypersensitive to an environmental signal, masting can be at least partially independent of resource- and pollen-based mechanisms.” This and other potential explanations for masting are, at this point, largely theoretical. In their paper, Bogdziewicz, et al. propose a number of ways that theoretical predictions can be experimentally tested. If the “research agenda” outlined in their paper is carried out, they believe it will “take the biology of masting from a largely observational field of ecology to one rooted in mechanistic understanding.”

In her book, Braiding Sweetgrass, Robin Wall Kimmerer proposes an additional explanation for the mechanisms behind masting – the trees are talking to one another. Not in the way that you and I might converse, but rather by sending signals through the air via pheromones and underground via complex fungal networks. There is already evidence for this behavior when it comes to plants defending themselves from predators and in sharing resources, so why not in planning when to reproduce? As Kimmerer writes regarding masting, “the trees act not as individuals, but somehow as a collective.” The question now is how.

seedlings of European beech (Fagus sylvatica), a mast-seeding species — via wikimedia commons; user: Beentree

Additional Resources:

Winter Trees and Shrubs: Northern Catalpa

The names of plants often contain clues that can either help with identification or that tell something about the plant’s history or use. The name, catalpa, is said to be derived from the Muscogee word, katałpa, meaning “winged head,” presumably referring to the tree’s winged seeds. Or maybe, as one writer speculates, it refers to the large, heart-shaped, floppy leaves that can make it look like the tree is “ready to take flight.” Or perhaps it’s a reference to the fluted, fused petals of the tree’s large, tubular flowers. I suppose it could mean any number of things, but I’m sticking with its seeds, which are packed by the dozens in the tree’s long, slender, bean-like fruits. The seeds are flat, pale brown, and equipped with paper thin, fringed appendages on either side that assist in wind dispersal – wings, in other words.

winged seeds of northern catalpa (Catalpa speciosa)

Catalpa speciosa, or northern catalpa, is a relatively fast growing, short-lived tree native to the Midwest and one of only two species in the genus Catalpa found in the United States. Its distribution prior to the arrival of Europeans appears to have been restricted to a portion of the central Mississippi River valley, extending west into Arkansas, east into Tennessee, and north into Illinois and Indiana. It has since been widely planted outside of its native range, naturalizing in areas across the Midwest and eastern US. Early colonizers planted northern catalpa for use as fence posts, railroad ties, and firewood. Its popularity as an ornamental tree is not what it once was a century ago, but it is still occasionally planted in urban areas as a shade tree. Its messiness – littering the ground below with large leaves, flowers, and seed capsules – and its tendency to spread outside of cultivation into natural areas are reasons why it has fallen out of favor with some people.

The oval to heart-shaped, 8 to 12 inch long leaves with long petioles rotting on the ground below the tree are one sure sign that you’ve encountered a catalpa in the winter time. The leaves are some of the first to fall at the end of the growing season, briefly turning an unmemorable yellow before dropping.

leaf of northern catalpa (Catalpa speciosa) in the winter with soft hairs on the underside still visible

The leaf arrangement on northern catalpa is whorled and sometimes opposite. The twigs are easy to identify due to several unique features. They are stout, round, and grayish brown with prominent lenticels. The leaf scars are large, rounded, and raised up on the twig, looking a bit like little suction cups. They are arranged in whorls of three, with one scar considerably smaller than the other two. A series of bundle traces inside the scar form an ellipse. The leaf buds are tiny compared to the scar and are protected by loose, pointed, brown bud scales. Northern catalpa twigs lack a terminal bud. In the winter, seed capsules or the stalk of an old inflorescence often remain attached to the terminal end of the twig. The pith inside of the twig is thick, white, and solid.

twig of northern catalpa (Catalpa speciosa)

pith inside twig of northern catalpa (Catalpa speciosa)

Another common name for Catalpa speciosa is cigar tree, a name that comes from its up to 18 inch long, cigar-like seed capsules that hang from the otherwise naked tree throughout the winter. The sturdy, cylindrical pod starts out green in the summer and turns dark brown by late fall. Seed pods that haven’t fallen or already split open will dehisce in the spring time, releasing their papery seeds to the wind.

fruits of northern catalpa (Catalpa speciosa) hanging from the tree in the winter

The young bark of northern catalpa is thin and easily damaged. As it matures, it becomes furrowed with either scaly ridges or blocky plates. Mature trees are generally twisted at the base but otherwise grow straight, reaching 30 to 60 feet tall (sometimes taller) with an open-rounded to narrow-oval crown.

maturing bark of northern catalpa (Catalpa speciosa)

Northern catalpa is one of the last trees to leaf out in the spring. In late spring or early summer, 10 inch long clusters of white, tubular flowers are produced at the tips of stems. Before the flowers open, they look a bit like popped popcorn, reminding me of a song from my childhood (which I will reluctantly leave right here). The margins of its trumpet-shaped petals are ruffled and there is yellow, orange, and/or purple spotting or streaking on the inside of the tubes.

flower of northern catalpa (Catalpa speciosa) just before it opens

More Winter Trees and Shrubs on Awkward Botany:

Winter Trees and Shrubs: Netleaf Hackberry

Boise, Idaho is frequently referred to as the City of Trees despite being located in a semiarid region of the Intermountain West known as the sagebrush steppe where few trees naturally grow. It earns this moniker partly because the name Boise is derived from the river that runs through it (the Boise River), which was named La Rivere Boisse, or The Wooded River, by early French trappers. Although it flows through a largely treeless landscape, The Wooded River was an apt name on account of the wide expanse of cottonwoods and willows that grew along its banks. The fervent efforts of early colonizers to plant trees in large numbers across their new city also helped Boise earn the title, City of Trees. Today, residents continue the legacy of planting trees, ensuring that the city will remain wooded for decades to come.

As is likely the case for most urban areas, the majority of trees being planted in Boise are not native to the region. After all, very few tree species are. However, apart from the trees that flank the Boise River, there is one tree in particular that naturally occurs in the area. Celtis reticulata, commonly known as netleaf hackberry, can be found scattered across the Boise Foothills amongst shrubs, bunchgrasses, and wildflowers, taking advantage of deep pockets of moisture found in rocky outcrops and draws.

The western edge of netleaf hackberry’s range extends to the northwest of Boise into Washington, west into Oregon, and down into California. The majority of its range is found south of Idaho, across the Southwest and into northern Mexico, then east into the prairie regions of Kansas and Oklahoma. Previously placed in the elm family, it is now considered a member of the family Cannabaceae (along with hemp and hops). It’s a relatively small, broad tree (sometimes a shrub) with a semi-rounded crown. It grows slowly, is long-lived, and generally has a gnarled, hardened, twisted look to it. It’s a tough tree that has clearly been through a lot.

The leaves of Celtis reticulata are rough, leathery, and oval to lance shaped with serrate or entire leaf margins. Their undersides have a distinct net-like pattern that gives the tree its common name. A very small insect called a hackberry psyllid lays its eggs inside the leaf buds of netleaf hackberries in the spring. Its larvae develop inside the leaf, feeding on the sugars produced during photosynthesis, and causing nipple galls to form in the leaves. It’s not uncommon to see a netleaf hackberry with warty-looking galls on just about every leaf. Luckily, the tree doesn’t seem to be bothered by this.

fallen leaves of netleaf hackberry (Celtis reticulata) with nipple galls

The fruit of netleaf hackberry is a pea-sized drupe that hangs at the end of a pedicel that is 1/4 to 1/2 inch long. Its skin is red-orange to purple-brown, and its flesh is thin with a large seed in the center. The fruits, along with a few random leaves, persist on the tree throughout the winter and provide food for dozens of species of birds and a variety of mammals.

persistent fruit of netleaf hackberry (Celtis reticulata)

Celtis reticulata is alternately branched. Its twigs are slender, zig-zagging, and often curved back towards the trunk. They are reddish-brown with several pale lenticels and have sparse, fine, short hairs that are hard to see without a hand lens. The leaf scars are small, half-round, and raised up from the twig. They have three bundle scars that form a triangle. The buds are triangle-shaped with fuzzy bud scales that are slightly lighter in color than the twig. The twigs are topped with a subterminal bud, and the pith (the inner portion of the twig) is either chambered or diaphragmed and difficult to see clearly without a hand lens. 

twigs of netleaf hackberry (Celtis reticulata)

The young bark of netleaf hackberry is generally smooth and grey, developing shallow, orange-tinged furrows as it gets older. Mature bark is warty like its cousin, Celtis occidentals, and develops thick, grey, corky ridges. Due to its slow growth, the bark can be retained long enough that it becomes habitat for extensive lichen colonies.

bark of young netleaf hackberry (Celtis reticulata)

bark of mature netleaf hackberry (Celtis reticulata)

Netleaf hackberry is one of the last trees to leaf out in the spring, presumably preserving as much moisture as possible as it prepares to enter another scorching hot, bone-dry summer typical of the western states. Its flowers open around the same time and are miniscule and without petals. Their oversized mustache-shaped, fuzzy, white stigmas provide some entertainment for those of us who take the time to lean in for a closer look.

spring flowers of netleaf hackberry (Celtis reticulata)

More Winter Trees and Shrubs on Awkward Botany:


Photos of netleaf hackberry taken at Idaho Botanical Garden in Boise, Idaho.

A Few More Snags Near Ketchum

Nearly a year has passed since Sierra and I took a trip to Ketchum, Idaho and I reported on some of the snags we encountered there. After months without a break, we finally had the chance to get away for a few days, and since we were desperate for some time off and a change of scenery, we couldn’t turn it down. Plus, we were heading back to Ketchum, so I knew I’d get to check out a few more snags. I was stoked.

I’m obsessed with trees, and my preference is for live ones (generally speaking), but dead trees are certainly gaining in popularity. After all, a dead tree isn’t truly dead. As its corpse slowly rots, it continues to harbor and support life inside and out in a substantial way. Forests need dead trees just as much as they need live trees. Plus, ecology aside, dead trees are no less photogenic than any other tree.

Death isn’t all bad. New life springs from decay. Given our current state of affairs, we need this reminder, and snags offer it in spades. As Sierra and I pulled up to the Apollo Creek trailhead, we looked out onto a section of forest that had clearly been ravaged by fire in the not too distant past. Acres of standing and fallen burned out trees bore witness to this fact. Yet among the dead, life flourished, as dozens of songbirds actively foraged on and around the charred trees. They were there for the insects that were feeding on the dead wood, fueling themselves for fall migration. In the spring, when the birds return, some of them may even nest in the cavities of the dead trees. They will feed again on the insects and raise up a new generation of songbirds that will do the same. In and among snags there are myriad examples just like this, showing us the countless ways in which death supports new life.

What follows is a small sampling of the snags we encountered this time around on our trip to Ketchum.

post-fire snag among many other snags

a series of cavities in a post-fire snag

snag surrounded by live trees

three new snags

fallen snag

broken snag

new tree emerging from a nurse stump

not a snag, but one of many lupines we saw flowering along Apollo Creek Trail

Flowers Growing Out of Flowers (Things Are Getting Weird Out There)

I’m sure that anyone living through the events of 2020 would agree, these are truly wild times. So, when I stumbled across some purple coneflowers that appeared to be growing flowers out of flowers, I thought to myself, “Of course! Why not!?!” The world is upside down. Anything is possible.

As it turns out, however, this phenomenon occurs more frequently than I was aware. But it’s not necessarily a good thing, particularly if you’re concerned about plant health. We’ll get to that in a minute. First, what’s going on with these flowers?

Flowers in the aster family are unique. They have the appearance of being a single flower but are actually a cluster of two types of much smaller flowers all packed in together. Purple coneflower (Echinacea purpurea) is a great example of this. Its flower heads are composed of dozens of disc flowers surrounded by a series of ray flowers. The minuscule disc flowers form the cone-like center of the inflorescence. The petals that surround the cone are individual ray flowers. This tight cluster of many small flowers (or florets) is known as a composite. Sunflowers are another example of this type of inflorescence.

Flowers are distinct organs. Not only are they the reproductive structures of flowering plants, but unlike the rest of the plant, they exhibit determinate growth. Flowers are, after all, plant shoots that have been “told” to stop growing like other shoots and instead modify themselves into reproductive organs and other associated structures. Unlike other shoots, which continue to grow (or at least have the potential to), a flower (and the fruit it produces) is the end result for this reproductive shoot. This is what is meant by determinate growth. However, sometimes things go awry, and the modified shoots and leaves that make up a flower don’t develop as expected, producing some bizarre looking structures as a result.

An example of this is a double flower. Plants with double flowers have mutations in their genes that cause disruptions during floral development. This means that their stamens and carpels (the reproductive organs of the flowers) don’t develop properly. Instead, they become additional petals or flowers, resulting in a flower composed of petals upon petals upon petals – a look that some people like, but that have virtually nothing to offer the pollinators that typically visit them. Because of their ornamental value, double-flowered varieties of numerous species – including purple coneflower – can be found in the horticultural trade.

double-flowered purple coneflower

Genetic mutations are one way that odd looking flowers come about. It is not the cause, however, of the freak flowers that I recently came across. What I witnessed was something called phyllody and was the result of an infection most likely introduced to the plant by a leafhopper or some other sap-sucking insect. Phyllody, which has a variety of causes, is a disruption in plant hormones that leads to leaves growing in place of flower parts. As a result, the flowers become sterile and green in color. In the case of purple coneflower, leafy structures are produced atop shoots arising from the middle of ray and/or disc florets. In other species, shoots aren’t visible and instead the inflorescence is just a cluster of leaves. In a sense, the reproductive shoot has returned to indeterminate growth, having switched back to shoot and leaf production.

Phyllody can have either biotic or abiotic causes. Biotic meaning infection by plant pathogens – including certain viruses, bacteria, and fungi – or damage by insects. Abiotic factors like hot weather and lack of water can result in a temporary case of phyllody in some plants. Phyllody plus a number of other symptoms made it clear that the purple coneflower I encountered had a fairly common disease known as aster yellows. This condition is caused by a bacterial parasite called a phytoplasma, and is introduced to the plant via a sap-sucking insect. It then spreads throughout the plant, infecting all parts. The phyllody was a dead give away, but even the flowers that weren’t alien-looking were discolored. The typical vibrant purple of the ray flowers was instead a faded pink color. The flowers that had advanced phyllody – along with the rest of the plant – were turning yellow-green.

This inflorescence isn’t exhibiting phyllody yet, but the purple color in the ray flowers is quickly fading.

Hundreds of plant species are susceptible to aster yellows, and not just those in the aster family. Once a plant is infected with aster yellows, it has it for good and will never grow or reproduce properly. For this reason, it is best to remove infected plants from the garden to avoid spreading the infection to other plants. As cool as the flowers may look, infected plants just aren’t worth saving.

Further Reading: 

Book Review: The Gyroscope of Life

Gyroscopes are entertaining toys and incredibly useful tools. They retain their balance and resist changes to their orientation as long as their flywheel is spinning. As the flywheel slows or stops, the gyroscope wobbles out of control and ultimately quits. Considering their design and function, it’s easy to find parallels between gyroscopes and living systems. Consistent energy inputs keep living things alive. Changes can bring imbalance; major disruptions can lead to death. There is a reason we often describe the natural world as a sort of balancing act. It is the work of an ecologist to make sense of this balancing act. The better we understand it, the more equipped we are to protect it and operate responsibly within it.

It is through this lens that David Parrish writes about the biological world in The Gyroscope of Life, a book that Parrish refers to as “a love song to the field of biology.” Parrish has spent much of his life observing and studying the natural world and, as professor emeritus of Crop and Soil Environmental Sciences at Virginia Tech, undoubtedly shared much of what he presents in his book with countless students over the years. The Gyroscope of Life reads like part memoir and part last lecture, and is the work of someone who has an obvious passion for science and nature.

Parrish spends the first few chapters of his book writing mostly about his life and how he came to be a biologist. He acknowledges his privelege – “born male, white, and American in an era where each of those attributes provided me major advantages” –  having essentially been placed on third base from the start, “well down the third base line.” An aspiring zoologist turned botanist, he spent his early years in graduate school studying seeds and seed dormancy. It’s a topic that obviously interests him, as several pages of the book are spent considering what’s going on inside of a seed. “Seeds provide the widest-spread examples of suspended life,”  Parrish says. Are they alive or dead or neither?

Two additional, major life events play a prominent role in the arc of Parrish’s book. One being his break from organized religion and the other his battle with advanced prostate cancer. He grew up in an orthodox Christian home with a very literal understanding of the Bible. His education put him at odds with what he was taught growing up about (among other things) the age of the earth and its creation. Eventually he came to understand that science and religion “exist in separate non-overlapping spheres – the physical and the metaphysical.” He doesn’t necessarily see science and religion as being inherently at odds with each other, but his understanding of science makes it difficult to “find resonance in religion” due to the “cacophony of dissonance” it offers.

In addressing his prostate cancer, Parrish underwent an operation that gave him a newfound perspective on gender. Freed from “testosterone poisoning,” he was able to more fully consider sex and gender from a biological perspective, which he says he had been doing for decades prior to the operation. He spends a good portion of the book “demystifying sex and gender.” One compelling example he offers involves avocado flowers, which actually change gender over time, a phenomenon known as synchronous dichogamy.

avocado flowers (Persea americana) via wikimedia commons

Over the course of its pages, The Gyroscope of Life covers a significant number of topics in the fields of biology and ecology. It’s a relatively short book, but as it careens through such wide-ranging material, it does so in an approachable and suprisingly succint manner. Parrish’s sense of humor, which doesn’t waver despite how bleak the discussion sometimes gets, helps carry the story along and keeps things interesting. Parrish covers evolution (“[Biologists] argue that, if evolution didn’t happen, it should.”), taxonomy (“the name for naming things”) and sytematics, ecological niches (“[humans] are essentially living niche-free and ecosystemless”), domestication, and so much more. The last chapter is spent discussing agroecosystems (“the organisms and abiotic environment that interact in a human-managed agricultural setting”), a topic he spent much of his career studying.

The underlying message of this book, as I see it, is a simultaneous celebration for life on earth and a concern for the direction things are going considering how humans have managed things. Parrish has some admonition for humans in light of how we’ve treated our home planet, but he isn’t too heavy-handed about it. Overall, reading the book felt like sitting in on a lecture given by a friendly and dynamic professor who has obviously given a lot of thought to what he has to say.

Check out the following video to see David Parrish describe the book in his own words.

More Book Reviews on Awkward Botany:

The Hidden Flowers of Viola

Violas keep a secret hidden below their foliage. Sometimes they even bury it shallowly in the soil near their roots. I suppose it’s not a secret really, just something out of sight. There isn’t a reason to show it off, after all. Showy flowers are showy for the sole purpose of attracting pollinators. If pollinators are unnecessary, there is no reason for showy flowers, or to even show your flowers at all. That’s the story behind the cleistogamous flowers of violas. They are a secret only because unless you know to look for them, you would have no idea they were there at all.

Cleistogamy means closed marriage, and it describes a self-pollinating flower whose petals remain sealed shut. The opposite of cleistogamy is chasmogamy (open marriage). Most of the flowers we are familiar with are chasmogamous. They open and expose their sex parts in order to allow for cross-pollination (self-pollination can also occur in such flowers). Violas have chasmogamous flowers too. They are the familiar five-petaled flowers raised up on slender stalks above the green foliage. Cross-pollination occurs in these flowers, and seed-bearing fruits are the result. Perhaps as a way to ensure reproduction, violas also produce cleistogamous flowers, buried below their leaves.

an illustration of the cleistogamous flower of Viola sylvatica opened to reveal its sex parts — via wikimedia commons

Flowers are expensive things to make, especially when the goal is to attract pollinators. Colorful petals, nectar, nutritious pollen, and other features that help advertise to potential pollinators all require significant resources. All this effort is worth it when it results in the ample production of viable seeds, but what if it doesn’t? Having a method for self-pollination ensures that reproduction will proceed in the absence of pollinators or in the event that floral visitors don’t get the job done. A downside, of course, is that a seed produced via self-pollination is essentially a clone of the parent plant. There will be no mixing of genes with other individuals. This isn’t necessarily bad, at least in the short term, but it has its downsides. A good strategy is a mixture of both cross- and self-pollination – a strategy that violas employ.

The cleistogamous flowers of violas generally appear in the summer or fall, after the chasmogamous flowers have done their thing. The fruits they form split open when mature and deposit their seeds directly below the parent plant. Some are also carried away by ants and dispersed to new locations. Seeds produced in these hidden flowers are generally superior and more abundant compared to those produced by their showy counterparts. People who find violas to be a troublesome lawn weed – expanding far and wide to the exclusion of turfgrass – have these hidden flowers to blame.

That being said, there is a defense for violas. In the book The Living Landscape by Rick Darke and Doug Tallamy, Tallamy writes: “Plants such as the common blue violet (Viola sororia), long dismissed by gardeners as a weed, can be reconstituted as desirable components of the herbaceous layer when their ecosystem functionality is re-evaluated. Violets are the sole larval food source for fritillary butterflies. Eliminating violets eliminates fritillaries, but finding ways to incorporate violets in garden design supports fritillaries.”

sweet violet (Viola odorata)

In my search for the cleistogamous flowers of viola, I dug up a sweet violet (Viola odorata). I was too late to catch it in bloom, but the product of its flowers – round, purple, fuzzy fruits – were revealed as I uprooted the plant. Some of the fruits were already opening, exposing shiny, light brown seeds with prominent, white elaiosomes, there to tempt ants into aiding in their dispersal. I may have missed getting to see what John Eastman calls “violet’s most important flowers,” but the product of these flowers was certainly worth the effort.

Fruits formed from the cleistogamous flowers of sweet violet (Viola odorata)

Up close and personal with the fruit of a cleistogamous flower

The seeds (elaiosomes included) produced by the cleistogamous flower of sweet violet (Viola odorata)

See Also:

Dispersal by Bulbils – A Bulbous Bluegrass Story

The main way that a plant gets from place to place is in the form of a seed. As seeds, plants have the ability to travel miles from home, especially with the assistance of outside forces like wind, water, and animals. They could also simply drop to the ground at the base of their parent plant and stay there. The possibilities are endless, really.

But what about plants that don’t even bother making seeds? How do they get around? In the case of bulbous bluegrass, miniature bulbs produced in place of flowers function exactly like seeds. They are formed in the same location as seeds, reach maturity and drop from the plant just like seed-bearing fruits, and are then dispersed in the same ways that seeds are. They even experience a period of dormancy similar to seeds, in that they lie in wait for months or years until the right environmental conditions “tell” them to sprout. And so, bulbils are basically seeds, but different.

bulbous bluegrass (Poa bulbosa)

Bulbous bluegrass (Poa bulbosa) is a Eurasian native but is widely distributed outside of its native range having been repeatedly spread around by humans both intentionally and accidentally. It’s a short-lived, perennial grass that can reach up to 2 feet tall but is often considerably shorter. Its leaves are similar to other bluegrasses – narrow, flat or slightly rolled, with boat-shaped tips and membranous ligules – yet the plants are easy to distinguish thanks to their bulbous bases and the bulbils that form in their flower heads. Their bulbous bases are actually true bulbs, and bulbous bluegrass is said to be the only grass species that has this trait. Just like other bulb-producing plants, the production of these basal bulbs is one way that bulbous bluegrass propagates itself.

basal bulbs of bulbous bluegrass

Bulbous bluegrass is also propagated by seeds and bulbils. Seeds form, like any other plant species, in the ovary of a pollinated flower. But sometimes bulbous bluegrass doesn’t make flowers, and instead modifies its flower parts to form bulbils in their place. Bulbils are essentially tiny, immature plants that, once separated from their parent plant, can form roots and grow into a full size plant. The drawback is that, unlike with most seeds, no sexual recombination has occurred, and so bulbils are essentially clones of a single parent.

The bulbils of bulbous bluegrass sit atop the glumes (bracts) of a spikelet, which would otherwise consist of multiple florets. They have dark purple bases and long, slender, grass-like tips. Bulbils are a type of pseudovivipary, in that they are little plantlets attached to a parent plant. True vivipary occurs when a seed germinates inside of a fruit while still attached to its parent.

Like seeds, bulbils are small packets of starch and fat, and so they are sought ought by small mammals and birds as a source of food. Ants and small rodents are said to collect and cache the bulbils, which is one way they get dispersed. Otherwise, the bulbils rely mostly on wind to get around. They then lie dormant for as long as 2 or 3 years, awaiting the ideal time to take root.

bulbils of bulbous bluegrass

Bulbous bluegrass was accidentally brought to North America as a contaminant in alfalfa and clover seed. It was also intentionally planted as early as 1907 and has been evaluated repeatedly by the USDA and other organizations for use as a forage crop or turfgrass. It has been used in restoration to stabilize soils and reduce erosion. Despite numerous trials, it has consistently underperformed mainly due to its short growth cycle and long dormancy period. It is one of the first grasses to green up in the spring, but by the start of summer it has often gone completely dormant, limiting its value as forage and making for a pretty pathetic turfgrass. Otherwise, it’s pretty good at propagating itself and persisting in locations where it hasn’t been invited and is now mostly considered a weed – a noxious one at that according to some states. Due to its preference for dry climates, it is found most commonly in western North America.

In its native range, bulbous bluegrass frequently reproduces sexually. In North America, however, sexual reproduction is rare, and bulbils are the most common method of reproduction. Prolific asexual reproduction suggests that bulbous bluegress populations in North America should have low genetic diversity. Researchers set out to examine this by comparing populations found in Washington, Oregon, and Idaho. Their results, published in Northwest Science (1997), showed a surprising amount of genetic variation within and among populations. They concluded that multiple introductions, some sexual reproduction, and the autopolyploidy nature of the species help explain this high level of diversity.


Interested in learning more about how plants get around? Check out the first issue of our new zine Dispersal Stories.