Is There a Place for Weeds in Urban Ecosystems?

Highly urbanized areas have a long history of disturbance. They are a far cry from the natural areas they once displaced, bearing little resemblance to what was there before. In this sense, they are a brand new thing. During the urbanization process, virtually everything is altered – temperatures, soils, wind patterns, hydrology, carbon dioxide levels, humidity, light availability, nutrients. Add to that a changing climate and increased levels of pollution, and the hope of ever seeing such a site return to its original state – whatever that might mean – is crushed.

What then should we consider the natural flora of an ecosystem like this? Certainly it is not the native flora that once stood on the site before it was developed; virtually none of the conditions are the same anymore. If we are defining “natural” as existing with minimal human intervention, then the natural urban flora would be whatever grows wild outside of our manicured landscapes and managed, remnant natural areas. It would be a cosmopolitan mixture of plants that have joined us in our migrations with and without our permission, along with a collection of species that are either extant to the site or have been brought in by wildlife. In many ways it would mirror the human populations of our modern cities – an assortment of residents from around the globe with diverse backgrounds and cultural histories.

In Wild Urban Plants of the Northeast, Peter Del Tredici classifies urban land into three general categories based on their ecological functions: native, remnant landscapes; managed, constructed landscapes; and ruderal, adaptive landscapes. Native, remnant landscapes are generally small areas within city limits that have never been developed. They contain a portion of the native plants that once populated the area, and they require vigilant and regular maintenance to keep non-native plants from invading and to control those that already have. Managed, constructed landscapes include all of the parks and gardens that have been designed and intentionally planted. They require regular maintenance of varying intensity in order to keep them looking the way they are intended to look. Ruderal, adaptive landscapes are abandoned or neglected sites that are populated by plants that have arrived on their own and that maintain themselves with virtually no human intervention. This is where the true, wild urban flora resides.

Prickly lettuce (Lactuca serriola) growing in an abandoned lot.

Many of the plants that make up our wild urban flora are what we commonly refer to as weeds. These weedy plants appear in landscapes throughout our cities, but are generally removed or controlled in all landscapes except the abandoned ones. It is in these neglected sites that weeds have the greatest potential to provide vital ecosystem services, performing ecological functions that are beneficial to urban life.

Not all plants are suited for this role. Spontaneous urban vegetation is particularly suited due to its ability to thrive in highly modified, urban environments without external management. Regardless of provenance, this suite of plants, as Del Tredici points out, seem to be “preadapted” to urban conditions and “are among the toughest on the planet.” A long list of traits has been identified for plants in this category, ranging from seed dispersal and viability to speed of growth and reproduction to tolerance of harsh conditions. Del Tredici summarizes by stating, “a successful urban plant needs to be flexible in all aspects of its life history from seed germination through flowering and fruiting, opportunistic in its ability to take advantage of locally abundant resources that may be available for only a short time, and tolerant of the stressful growing conditions caused by an abundance of pavement and a paucity of soil.”

Abandoned lots flush with weeds, overgrown roadsides and railways, and neglected alleyways colonized by enterprising plants are generally seen as ugly, unsightly eyesores – products of neglect and decline. Some of the plants found in such locations are valued in a garden setting or prized as part of the native landscape in a natural area, but growing wildly among trash and decaying urban infrastructure they, too, are refuse. As Richard Mabey has written: “If plants sprout through garbage they become a kind of litter themselves. Vegetable trash.”

Abandoned chicken coop overtaken by tree of heaven saplings (Ailanthus altissima).

Despite how we feel about these plants or the aesthetics of the locations they find themselves in, they are performing valuable services. Apart from adding to the biodiversity on the site as well as producing oxygen and sequestering carbon – services that virtually all plants offer – they may be preventing soil erosion, stabilizing waterways, absorbing excess nutrients, reducing the urban heat island effect, mitigating pollution, building soil, and/or providing food and habitat for urban wildlife. While cultivated and managed landscapes can achieve similar things, these neglected sites are doing so without resource or labor inputs. They are sustainable in the sense that their ability to provide these services is ongoing without reliance on outside maintenance.

Sites like these should be further investigated to determine the full extent of the services that they may or may not be offering, and in the event that they are doing more good than harm, they should be conserved and encouraged. One service that is receiving more attention, as Del Tredici writes, is phytoremediation – “the ability of some plants to clean up contaminated sites by selectively absorbing and storing high concentrations of heavy metals such as cadmium, lead, copper, zinc, chromium, and nickel in their tissues.” Weed species with this ability include prickly lettuce (Lactuca serriola), lambsquarters (Chenopodium album), and mugwort (Artemisia vulgaris). In an article in Places Journal, Del Tredici gives the example of the often despised, introduced plant, common reed (Phragmites australis) cleaning up the New Jersey Meadowlands by “absorbing abundant excess nitrogen and phosphorous throughout this highly contaminated site.”

In the book, Weeds: In Defense of Nature’s Most Unloved Plants, Richard Mabey writes: “As we survey our long love-hate relationship with [weeds], it may be revealing to ponder where weeds belong in the ecological scheme of things. They seem, even from the most cursory of looks, to have evolved to grow in unsettled earth and damaged landscapes, and that may be a less malign role than we give them credit for.” Perhaps, seeing them in this worthy role, will temper our knee-jerk inclination to demonize them at every turn.

———————

See Also: Our Urban Planet and Wild Urban Plants of Boise.

Advertisements

Seagrass Meadows and Their Role in Healthy Marine Ecosystems

Seagrass meadows are found along soft-bottomed, shallow, marine coastlines of every continent except Antartica. Their abundance and the important roles they play earn them the title of third most valuable ecosystem on the planet after estuaries and wetlands. These extensive meadows are made up of a group of flowering plants that are unique in their ability to thrive submerged in salty seawater. Tossed about by the tides, they feed and harbor an incredibly diverse world of marine life and help protect neighboring ecosystems by stabilizing sediments and mitigating pollution.

Seagrasses are often confused with seaweed, but they are very different organisms. Seaweed is algae. Seagrasses are plants that at one point in their evolutionary history lived on land but then retreated back into the waters of their ancient ancestors. They are rooted in the sediment of the sea floor and, depending on the species, can reproduce both sexually (submerged flowers are pollinated with the help of moving water) and/or asexually (via rhizomes). Although many of them have a grass-like appearance, none of them are in the grass family (Poaceae); instead, the approximately 72 different species belong to one of four families (Posidoniaceae, Zosteraceae, Hydrocharitaceae, or Cymodoceaceae).

Seagrass meadow in Wakaya, Fiji (photo credit: wikimedia commons)

Seagrass meadows can be composed of a single seagrass species or multiple species, with some meadows consisting of a dozen species or more. Seagrasses depend on light for photosynthesis, so they generally occur in shallow areas. How far seagrass meadows extend out into the ocean depends on light availability and the shade tolerance of the seagrass species. Their presence at the shoreline is limited naturally by how exposed they become at low tide, the frequency and strength of waves and associated turbidity, and low salinity from incoming fresh water.

Seagrass meadows benefit life on earth in many ways. As ecosystem engineers they create habitat and produce food for countless species, sequester a remarkable amount of carbon, and help maintain the health of neighboring estuaries, mangroves, coral reefs, and other ecosystems. They are home to commercial fisheries, which provide food for billions of people. Like many ecosystems on the planet, they are threatened by human activity. Pollution, development, recreation, and climate change jeopardize the health and existence of seagrass meadows. Thus, it is imperative that we learn as much as we can about them so that we are better equipped to protect them.

Turtle grass (Thalassia testudinum) growing in an estuary on the coast of San Salvador Island, Bahamas (photo credit: wikimedia commons)

In a report published in a February 2017 issue of Science, researchers examined the ability of seagrass meadows in Indonesia to remove microbial pathogens deposited into the sea via wastewater. When levels of the bacterial pathogen Enterococcus were compared between seagrass meadows and control sites, a three-fold difference was detected, with the seagrass meadows harboring the lowest levels. When other potential disease-causing bacteria were considered, the researchers found that “the relative abundance of bacterial pathogens in seawater” was 50% lower in both the intertidal flat and the coral reefs found within and adjacent to the seagrass meadows compared to control sites.

This has implications for the health of both humans and coral reefs, the latter of which face many threats including bacterial diseases. Two important coral reef diseases, white syndrome and black band disease, as well as signs of mortality associated with bleaching and sediment deposition “were significantly less on reefs adjacent to seagrass meadows compared to paired reefs,” according to the report.

Cushion sea star in seagrass meadow (photo credit: wikimedia commons)

The researchers note that “seagrasses are valued for nutrient cycling, sediment stabilization, reducing the effects of carbon dioxide elevation, and providing nursery habitat for fisheries.” The results of this study demonstrate the potential for seagrass meadows to “significantly reduce bacterial loads,” benefiting “both humans and other organisms in the environment.” Yet another reason to care about and conserve this vital ecosystem.

Additional Resources on Seagrass and Seagrass Conservation:

And if that’s not enough, check out this fun YouTube video:

When Sunflowers Follow the Sun

Tropisms are widely studied biological phenomena that involve the growth of an organism in response to environmental stimuli. Phototropism is the growth and development of plants in response to light. Heliotropism, a specific form of phototropism, describes growth in response to the sun. Discussions of heliotropism frequently include sunflowers and their ability to “track the sun.” This conjures up images of a field of sunflowers in full bloom following the sun across the sky. However cool this might sound, it simply doesn’t happen. Young sunflowers, before they bloom, track the sun. At maturity and in bloom, the plants hold still.

What is happening in these plants is still pretty cool though, and a report published in an August 2016 issue of Science sheds some light on the heliotropic movements of young sunflowers. They begin the morning facing east. As the sun progresses across the sky, the plants follow, ending the evening facing west. Over night, they reorient themselves to face east again. As they reach maturity, this movement slows, and most of the flowers bloom facing east. Over a series of experiments, researchers were able to determine the cellular and genetic mechanisms involved in this spectacular instance of solar tracking.

Helianthus annuus (common sunflower) is a native of North America, sharing this distinction with dozens of other members of this recognizable genus. It is commonly cultivated for its edible seeds (and the oil produced from them) as well as for its ornamental value. It is a highly variable species and hybridizes readily. Wild populations often cross with cultivated ones, and in many instances the common sunflower is considered a pesky weed. Whether crop, wildflower, or weed, its phototropic movements are easy to detect, making it an excellent subject of study.

Researchers began by tying plants to stakes so that they couldn’t move. Other plants were grown in pots and turned to face west in the morning. The growth of these plants was significantly stunted compared to plants that were not manipulated in these ways, suggesting that solar tracking promotes growth.

The researchers wondered if a circadian system was involved in the movements, and so they took sunflowers that had been growing in pots in a field and placed them indoors beneath a fixed overhead light source. For several days, the plants continued their east to west and back again movements. Over time, the movements became less detectable. This and other experiments led the researchers to conclude that a “circadian clock guides solar tracking in sunflowers.”

Another series of experiments helped the researchers determine what was happening at a cellular level that was causing the eastern side of the stem to grow during the day and the western side to grow during the night. Gene expression and growth hormone levels differed on either side of the stem depending on what time of day it was. In an online article published by University of California Berkeley, Andy Fell summarizes the findings: “[T]here appear to be two growth mechanisms at work in the sunflower stem. The first sets a basic rate of growth for the plant, based on available light. The second, controlled by the circadian clock and influenced by the direction of light, causes the stem to grow more on one side than another, and therefore sway east to west during the day.”

The researchers observed that as the plants reach maturity, they move towards the west less and less. This results in most of the flowers opening in an eastward facing direction. This led them to ask if this behavior offers any sort of ecological advantage. Because flowers are warmer when they are facing the sun, they wondered if they might see an increase in pollinator visits during morning hours on flowers facing east versus those facing west. Indeed, they did: “pollinators visited east-facing heads fivefold more often than west-facing heads.” When west-facing flowers where warmed with a heater in the morning, they received more pollinator visits than west-facing flowers that were not artificially warmed, “albeit [still] fewer than east-facing flowers.” However, increased pollinator visits may be only part of the story, so further investigations are necessary.

———————

I’m writing a book about weeds, and you can help. For more information, check out my Weeds Poll.

Concluding the Summer of Weeds

“Most weeds suffer from a bad rap. Quite a few of the weeds in your garden are probably edible or even medicinal. Some invasive plants, including horsetail and nettle, are rich in minerals and can be harvested and used as fertilizer teas. Weeds with deep taproots, such as dandelions, cultivate the soil and pull minerals up to the surface. … Weeds are nature’s way to cover bare soil. After all, weeds prevent erosion by holding soil and minerals in place. Get to know the weeds in your area so you can put them to use for rather than against you.” — Gayla Trail, You Grow Girl

Great Piece of Turf by Albrecht Dürer (photo credit: wikimedia commons)

With summer drawing to a close, it is time to conclude the Summer of Weeds. That does not mean that my interest in weeds has waned, or that posts about weeds will cease. Quite the opposite, actually. I am just as fascinated, if not more so, with the topic of weeds as I was when this whole thing started. So, for better or worse, I will much have more to say on the subject.

In fact, I am writing a book. It is something I have been considering doing for a long time now. With so many of my thoughts focused on weeds lately, it is becoming easier to envision just what a book about weeds might look like. I want to tell the story of weeds from many different angles, highlighting both their positive and negative aspects. There is much we can learn from weeds, and not just how best to eliminate them. Regardless of how you feel about weeds, I hope that by learning their story we can all become better connected with the natural world, and perhaps more appreciative of things we casually dismiss as useless, less quick to jump to conclusions or render harsh judgments about things we don’t fully understand, and more inclined to investigate more deeply the stories about nature near and far.

Of course, I can’t do this all by myself. I will need your help. If you or someone you know works for or against weeds in any capacity, please put us in touch. I am interested in talking to weed scientists, invasive species biologists, agriculturists and horticulturists, edible weed enthusiasts, plant taxonomists, natural historians, urban ecologists, gardeners of all skill levels, and anyone else who has a strong opinion about or history of working with weeds. Please get in touch with me in one of several ways: contact page, Facebook, Twitter, Tumblr, or by commenting below.

Another way you can help is by answering the following poll. If there is more than one topic you feel particularly passionate about, feel free to answer the poll as many times as you would like; just wait 24 hours between each response. Thank you for your help! And I hope you have enjoyed the Summer of Weeds.

Quick Guide to the Summer of Weeds:

Summer of Weeds: Willowherbs and Fireweed

Last week we discussed a plant that was introduced as an ornamental and has become a widespread weed. This week we discuss some native plants that have become weedy in places dominated by humans. Similar to pineapple weed, species in the genus Epilobium have moved from natural areas into agricultural fields, garden beds, and other sites that experience regular human disturbance. Some species in this genus have been deliberately introduced for their ornamental value, but others have come in on their own. In all cases the story is similar, humans make room and opportunistic plants take advantage of the space.

Epilobium species number in the dozens and are distributed across the globe. North America is rich with them. They are commonly known as willowherbs and are members of the evening primrose family (Onagraceae). They are herbaceous flowering plants with either annual or perennial life cycles and are commonly found in recently disturbed sites, making them early successional or pioneer species. Many are adapted to wet soils and are common in wetlands and along streambanks; others are adapted to dry, open sites. Hybridization occurs frequently among species in the Epilobium genus, and individual species can be highly variable, which may make identifying them difficult.

northern willowherb (Epilobium ciliatum)

At least two North American species are commonly weedy: E. ciliatum (northern willowherb) and E. brachycarpum (panicled willowherb). Regarding these two species, the IPM website of University of California states: “Willowherbs are native broadleaf plants but usually require a disturbance to establish. Although considered desirable members of natural habitats, they can be weedy in managed urban and agricultural sites.” The field guide, Weeds of the West, refers to E. brachycarpum as a “highly variable species found mostly on non-cultivated sites, and especially on dry soils and open areas.” E. ciliatum is notorious for being a troublesome weed in greenhouses and nurseries, as discussed on this Oregon State University page.

E. ciliatum is a perennial that reproduces via both rhizomes and seeds. It reaches up to five feet tall and has oppositely arranged, lance-shaped leaves with toothed margins that are often directly attached to the stems. Its flowers are tiny – around a quarter of an inch wide – and white, pink, or purple with four petals that are notched at the tip. They sit atop a skinny stalk that is a few centimeters long, which later becomes the fruit. When dry, the fruit (or capsule) splits open at the top to reveal several tiny seeds with tufts of fine hairs.

northern willowherb (Epilobium ciliatum)

E. brachycarpum is an annual that reaches up to three feet tall and is highly branched. Its leaves are short and narrow and mostly alternately arranged. Its flowers and seed pods are similar to E. ciliatum. At first glance it can appear as one of many weeds in the mustard family; however, the tuft of hairs on its seeds distinguishes it as a willowherb.

Seeds and seed pods of panicled willowherb (Epilobium brachycarpum)

Weeds of North America by Richard Dickinson and France Royer describes one weedy species of willowherb that was introduced to North America from Europe – E. hirsutum. It is commonly referred to as great hairy willowherb, but some of its colloquial names are worth mentioning: fiddle grass, codlins and cream, apple-pie, cherry-pie, blood vine, and purple rocket. Introduced as an ornamental in the mid 1800’s, it is a semiaquatic perennial that can reach as tall as eight feet. It has small, rose-purple flowers and is frequently found growing in wetlands along with purple loosestrife (Lythrum salicaria).

Chamerion angustifolium – which is synonymously known as Epilobium angustifolium and commonly called fireweed – is distributed throughout temperate regions of the Northern Hemisphere. It is a rhizomatously spreading perennial that grows to nine feet tall; has lance-shaped, stalkless leaves; and spikes of eye-catching, rose to purple flowers. It is a true pioneer species, found in disturbed sites like clear-cuts, abandoned agricultural fields, avalanche scars, and along roadsides. It gets its common name for its reputation of being one of the first plants to appear after a fire, as John Eastman describes in The Book of Field and Roadside: “A spring fire may result in a profusion of growth as soon as 3 months afterward, testifying to fireweed’s ample seed bank in many wilderness areas.” Eastman goes on to write, “fireweed’s flush of abundance following fire may rapidly diminish after only a year or two of postburn plant growth.” This “flush of abundance” is what gives it its weedy reputation in gardens. With that in mind, it is otherwise a welcome guest thanks to its beauty and its benefit to pollinators.

fireweed (Chamerion angustifolium)

Additional Resources:

Quote of the Week:

From the book Food Not Lawns by H.C Flores

Sometimes [weeding] feels like playing God – deciding who lives and who dies is no small matter – and sometimes it feels like war. … Take a moment to ponder the relationship of these plants to other living things around, now and in the future. Your weeds provide forage and habitat for insects, birds, and animals, as well as shelter for the seedlings of other plants. They cover the bare soil and bring moisture and soil life closer to the surface, where they can do their good work. Weeds should be respected for their tenacity, persistence, and versatility and looked upon more as volunteers than as invaders.

Summer of Weeds: Common Mullein

The fuzzy, gray-green leaves of common mullein are familiar and friendly enough that it can be hard to think of this plant as a weed. Verbascum thapsus is a member of the figwort family and is known by dozens of common names, including great mullein, Aaron’s rod, candlewick, velvet dock, blanket leaf, feltwort, and flannel plant. Its woolly leaves are warm and inviting and have a history of being used as added padding and insulation, tucked inside of clothing and shoes. In Wild Edible and Useful Plants of Idaho, Ray Vizgirdas writes, “the dried stalks are ideal for use as hand-drills to start fires; the flowers and leaves produce yellow dye; as a toilet paper substitute, the large fresh leaves are choice.”

Common mullein is a biennial that was introduced to eastern North America from Eurasia in the 1700’s as a medicinal plant and fish poison. By the late 1800’s it had reached the other side of the continent. In its first year it forms a rosette of woolly, oblong and/or lance-shaped leaves. After overwintering it produces a single flower stalk up to 6 feet tall. The woolly leaves continue along the flower stalk, gradually getting smaller in size until they reach the inflorescence, which is a long, dense, cylindrical spike. Sometimes the stalk branches out to form multiple inflorescences.

First year seedlings of common mullein (Verbascum thapsus)

The inflorescence doesn’t flower all at once; instead, a handful of flowers open at a time starting at the bottom of the spike and moving up in an irregular pattern. The process takes several weeks to complete. The flowers are about an inch wide and sulfur yellow with five petals. They have both female and male sex parts but are protogynous, meaning the female organs mature before the male organs. This encourages cross-pollination by insects. However, if pollination isn’t successful by the end of the day, the flowers self-pollinate as the petals close. Each flower produces a capsule full of a few hundred seeds, and each plant can produce up to 180,000 seeds. The seeds can remain viable for over 100 years, sitting in the soil waiting for just the right moment to sprout.

Common mullein is a friend of bare, recently disturbed soil. It is rare to see this plant growing in thickly vegetated areas. As an early successional plant, its populations can be abundant immediately after a disturbance, but they do not persist once other plants have filled in the gaps. Instead they wait in seed form for the next disturbance that will give them the opportunity to rise again. They can be a pest in gardens and farm fields due to regular soil disturbance, and are often abundant in pastures and rangelands because livestock avoid eating their hairy leaves. Because of its ephemeral nature, it is generally not considered a major weed; however, it is on Colorado’s noxious weed list.

Several features make common mullein a great example of a drought-adapted plant. Its fleshy, branching taproot can reach deep into the soil to find moisture, the thick hairs on the leaves help reduce water loss via transpiration, and the way the leaves are arranged and angled on the stalk can help direct rain water down toward the roots.

Common mullein has an extensive history of ethnobotanical uses. Medicinally it has been used internally to treat coughs, colds, asthma, bronchitis, and kidney infections; and as a poultice to treat warts, slivers, and swelling. The dried flower stalks have been used to make torches, and the fuzzy leaves have been used as tinder for fire-making and wicks in lamps.

The hairy leafscape of common mullein (Verbascum thapsus)

More Resources:

Quote of the Week:

From Gaia’s Garden by Toby Hemenway

Here’s why opportunistic plants are so successful. When we clear land or carve a forest into fragments, we’re creating lots of open niches. All that sunny space and bare soil is just crying out to be colongized by light- and fertlity-absorbing green matter. Nature will quickly conjure up as much biomass as possible to capture the bounty, by seeding low-growing ‘weeds’ into a clearing or, better yet, sprouting a tall thicket stretching into all three dimensions to more effectively absorb light and develop deep roots. … When humans make a clearing, nature leaps in, working furiously to rebuild an intact humus and fungal layer, harvest energy, and reconstruct all the cycles and connections that have been severed. A thicket of fast-growing pioneer plants, packing a lot of biomass into a small space, is a very effective way to do this. … And [nature] doesn’t care if a nitrogen fixer or a soil-stabilizing plant arrived via continental drift or a bulldozer’s treads, as long as it can quickly stitch a functioning ecosystem together.

Book Review: Weeds Find a Way

At what age do we become aware that there are profound differences among the plants we see around us? That some are considered good and others evil. Or that one plant belongs here and another doesn’t. Most young children (unless an adult has taught them) are unaware that there is a difference between a weed and a desirable plant. If it has attractive features or something fun to interact with – like the seed heads of dandelions or the sticky leaves of bedstraw – they are all the same. At some point in our trajectory we learn that some plants must be rooted out, while others can stay. Some plants are uninvited guests – despite how pretty they might be – while others are welcome and encouraged.

But weeds are resilient, and so they remain. Weeds Find a Way, written by Cindy Jenson-Elliot and illustrated by Carolyn Fisher, is a celebration of weeds for their resiliency as well as for their beauty and usefulness. This book introduces the idea of weeds to children, focusing mainly on their tenacity, resourcefulness, and positive attributes rather than their darker side. “Weeds are here to stay,” so perhaps there is a place for them.

The book begins by listing some of the “wondrous ways” that weed seeds disperse themselves: “floating away on the wind,” attaching themselves to “socks and fur,” shot “like confetti from a popped balloon.” And then they wait – under snow and ice or on top of hot sidewalks – until they find themselves in a time and place where they can sprout. Eventually, “weeds find a way to grow.”

Weeds also “find a way to stay.” We can pull them up, but their roots are often left behind to “sprout again.” Pieces and parts break off and take root in the soil. Animals may swoop in to devour them, but weeds drive them away with their thorns, prickles, and toxic chemicals. In these ways they are a nuisance, but they can be beautiful and beneficial, too.

This illustrated story of weeds is followed by some additional information, as well as a list of common weeds with brief descriptions. Weeds are defined as plants “thought to be of no value that grow in places where people do not want them to grow,” adding that even “misunderstood and underappreciated plants that are native to a region and have multiple uses” can be labeled weeds.

The concept of weeds as invasive species is also addressed; some introduced plants move into natural areas and can “crowd out native vegetation, block streams, and drive away wild animals.” That being said, weeds also provide us with “endless opportunities to study one of nature’s most wonderful tools: adaptation.” Weeds are problematic as much as they are useful, it’s simply a matter of perspective.

A criticism of this book might be that it doesn’t focus enough on the negative aspects of weeds. There is plenty of that elsewhere. The aim of this book is to connect us with nature, and as Jensen-Elliot writes, “you don’t need a garden to know that nature is at work.” When there is a weed nearby, nature is nearby. Weeds “adapt and grow in tough times and desolate places,” and they make the world beautiful “one blossom at a time.”