The Agents That Shape the Floral Traits of Sunflowers

Flowers come in a wide array of shapes, sizes, colors, and scents. Their diversity is downright astounding. Each individual species of flowering plant has its own lengthy story to tell detailing how it came to look and act the way it does. This is its evolutionary history. Unraveling this history is a nearly insurmountable task, but one that scientists continue to chip away at piece by piece.

In the case of floral traits – particularly for flowers that rely on pollinators to produce seeds – it is safe to say that millennia of interactions with floral visitors have helped shape not only the way the flower looks, but also the nature of its nectar and pollen. However, flowers are “expensive” to make and maintain, so even though they are necessary for reproduction, plants must find a balance between that and allocating resources for defense – against both herbivory and disease – and growth. This balance can differ depending on a plant’s life history – whether it is annual or perennial. An annual plant has one shot at reproduction, so it can afford to funnel much of its energy there. If a perennial is unsuccessful at reproduction one year, there is always next year, as long as it has allocated sufficient resources towards staying alive.

Where a plant exists in the world also influences how it looks. Abiotic factors like temperature, soil type, nutrient availability, sun exposure, and precipitation patterns help shape, through natural selection, many aspects of a plant’s anatomy and physiology, including the structure and composition of its flowers. Additional biotic agents like nectar robbersflorivores, and pathogens can also influence certain floral traits.

This is the background that researchers from the University of Central Florida and University of Georgia drew from when they set out to investigate the reasons for the diverse floral morphologies in the genus Helianthus. Commonly known as sunflowers, Helianthus is a familiar genus consisting of more than 50 species, most of which are found across North America. The genus includes both annuals and perennials, and all but one species rely on cross-pollination to produce viable seeds. Pollination is mainly carried out by generalist bees.

Maximilian sunflower (Helianthus maximiliani)

Helianthus species are found in diverse habitats, including deserts, wetlands, prairies, rock outcrops, and sand dunes. Their inflorescences – characteristic of plants in the family Asteraceae – consist of a collection of small disc florets surrounded by a series of ray florets, which as a unit are casually referred to as a single flower. In Helianthus, ray florets are completely sterile and serve only to attract pollinators. Producing large and numerous ray florets takes resources away from the production of fertile disc florets, and sunflower species vary in the amount of resources they allocate for each floret form.

In a paper published in the July 2017 issue of Plant Ecology and Evolution, researchers selected 27 Helianthus species and one Phoebanthus species (a closely related genus) to investigate “the evolution of floral trait variation” by examining “the role of environmental variation, plant life history, and flowering phenology.” Seeds from multiple populations of each species were obtained, with populations being carefully selected so that there would be representations of each species from across their geographic ranges. The seeds were then grown out in a controlled environment, and a series of morphological and physiological data were recorded for the flowers of each plant. Climate data and soil characteristics were obtained for each of the population sites, and flowering period for each species was collected from various sources.

The researchers found “all floral traits” of the sunflower species to be “highly evolutionarily labile.” Flower size was found to be larger in regions with greater soil fertility, consistent with the resource-cost hypothesis which “predicts that larger and more conspicuous flowers should be selected against in resource-poor environments.” However, larger flower size had also repeatedly evolved in drier environments, which goes against this prediction. Apart from producing smaller flowers in dry habitats, flowering plants have other strategies to conserve water such as opening their flowers at night or flowering for a short period of time. Sunflowers do neither of these things. As the researchers state, “this inconsistency warrants consideration.”

The researchers speculate that “the evolution of larger flowers in drier environments” may be a result of fewer pollinators in these habitats “strongly favoring larger display sizes in self-incompatible species.” The flowers are big because they have to attract a limited number of pollinating insects. Conversely, flowers may be smaller in wetter environments because there is greater risk of pests and diseases. This is supported by the enemy-escape hypothesis – smaller flowers are predicted in places where there is increased potential for florivory and pathogens. Researchers found that lower disc water content had also evolved in wetter environments, which supports the idea that the plants may be defending themselves against flower-eating pests.

Seed heads of Maximilian sunflower (Helianthus maximiliani)

Another interesting finding is that, unlike other genera, annual and perennial sunflower species allocate a similar amount of resources towards reproduction. On average, flower size was not found to be different between annual and perennial species. Perhaps annuals instead produce more flowers compared to perennials, or maybe they flower for longer periods. This is something the researchers did not investigate.

Finally, abiotic factors were not found to have any influence on the relative investment of ray to disc florets or the color of disc florets. Variations in these traits may be influenced instead by pollinators, the “biotic factor” that is considered “the classic driver of floral evolution.” This is something that will require further investigation. As the researchers conclude, “determining the exact drivers of floral trait evolution is a complex endeavor;” however, their study found “reasonable support for the role of aridity and soil fertility in the evolution of floral size and water content.” Yet another important piece to the puzzle as we learn to tell the evolutionary history of sunflowers.

Advertisements

Highlights from the Alaska Invasive Species Workshop

This October 24-26th I was in Anchorage, Alaska for the 18th annual Alaska Invasive Species Workshop. The workshop is organized by the Committee for Noxious and Invasive Pests Management and University of Alaska Fairbanks Cooperative Extension. It is a chance for people involved in invasive species management in Alaska – or just interested in the topic – to learn about the latest science, policies, and management efforts within the state and beyond. I am not an Alaska resident – nor had I ever been there until this trip – but my sister lives there, and I was planning a trip to visit her and her family, so why not stop in to see what’s happening with invasive species while I’m at it?

What follows are a few highlights from each of the three days.

Day One

The theme of the workshop was “The Legacy of Biological Invasions.” Ecosystems are shaped by biotic and abiotic events that occurred in the past, both recent and distant. This is their legacy. Events that take place in the present can alter ecosystem legacies. Invasive species, as one speaker said in the introduction, can “break the legacy locks of an ecosystem,” changing population dynamics of native species and altering ecosystem functions for the foreseeable future. Alaska is one of the few places on earth that is relatively pristine, with comparably little human disturbance and few introduced species. Since they are at an early stage in the invasion curve for most things, Alaska is in a unique position to eradicate or contain many invasive species and prevent future introductions. Coming together to address invasive species issues and protect ecosystem legacies will be part of the human legacy in Alaska.

The keynote address was delivered by Jamie Reaser, Executive Director of the National Invasive Species Council and author of several books. She spoke about the Arctic and its vulnerability to invasive species due to increased human activity, climate change, and scant research. To address this and other issues in the Arctic, the Arctic Council put together the Arctic Biodiversity Assessment, and out of that came the Arctic Invasive Alien Species Strategy and Action Plan. Reaser shared some thoughts about how government agencies and conservation groups can come together to share information and how they can work with commercial industries to address the threat of invasive species. She stressed that Alaska can and should play a leadership role in these efforts.

Later, Reaser gave a presentation about the National Invasive Species Council, including its formation and some of the work that it is currently doing. She emphasized that invasive species are a “people issue” – in that the actions and decisions we make both create the problem and address the problem – and by working together “we can do this.”

Day Two

Most of the morning was spent discussing Elodea, Alaska’s first invasive, submerged, freshwater, aquatic plant. While it has likely been in the state for a while, it was only recognized as a problem within the last decade. It is a popular aquarium plant that has been carelessly dumped into lakes and streams. It grows quickly and tolerates very cold temperatures, photosynthesizing under ice and snow. It propagates vegetatively and is spread to new sites by attaching itself to boats and float planes. Its dense growth can crowd out native vegetation and threaten fish habitat, as well as make navigating by boat difficult and landing float planes dangerous. Detailed reports were given about how organizations across the state have been monitoring and managing Elodea populations, including updates on how treatments have worked so far and what is being planned for the future. A bioeconomic risk analysis conducted by Tobias Schwörer was a featured topic of discussion.

After lunch I took a short break from the conference to walk around downtown Anchorage, so I missed a series of talks about environmental DNA. I returned in time to hear an interesting talk about bird vetch (Vicia cracca). Introduced to Alaska as a forage crop, bird vetch has become a problematic weed on farms, orchards, and gardens as well as in natural areas. It is a perennial vine that grows quickly, produces copious seeds, and spreads rhizomatously. Researchers at University of Alaska Fairbanks found that compared to five native legume species, bird vetch produced twice the amount of biomass in the presence of both native and non-native soil microbes, suggesting that bird vetch is superior when it comes to nitrogen fixation. Further investigation found that, using only native nitrogen-fixing bacteria, bird vetch produced significantly more root nodules than a native legume species, indicating that it is highly effective at forming relationships with native soil microbes. Additional studies found that the ability of bird vetch to climb up other plants, thereby gaining access to more sunlight and smothering host plants, contributed to its success as an invasive plant.

 Seed pods of bird vetch (Vicia cracca) in Fairbanks, Alaska

Day Three

The final day of the workshop was a veritable cornucopia of topics, including risk assessments for invasive species, profiles of new invasive species, updates on invasive species control projects, discussions about early detection and rapid response (EDRR), and talks about citizen science and community involvement. My head was swimming with impressions and questions. Clearly there are no easy answers when it comes to invasive species, and like other complex, global issues (made more challenging as more players are involved), the increasingly deep well of issues and concerns to resolve is not likely to ever run dry.

Future posts will dig further into some of the discussions that were had on day three. For now, here are a few resources that I gathered throughout the workshop:

Interpretive sign at Alaska Botanical Garden in Anchorage, Alaska

Concluding the Summer of Weeds

“Most weeds suffer from a bad rap. Quite a few of the weeds in your garden are probably edible or even medicinal. Some invasive plants, including horsetail and nettle, are rich in minerals and can be harvested and used as fertilizer teas. Weeds with deep taproots, such as dandelions, cultivate the soil and pull minerals up to the surface. … Weeds are nature’s way to cover bare soil. After all, weeds prevent erosion by holding soil and minerals in place. Get to know the weeds in your area so you can put them to use for rather than against you.” — Gayla Trail, You Grow Girl

Great Piece of Turf by Albrecht Dürer (photo credit: wikimedia commons)

With summer drawing to a close, it is time to conclude the Summer of Weeds. That does not mean that my interest in weeds has waned, or that posts about weeds will cease. Quite the opposite, actually. I am just as fascinated, if not more so, with the topic of weeds as I was when this whole thing started. So, for better or worse, I will much have more to say on the subject.

In fact, I am writing a book. It is something I have been considering doing for a long time now. With so many of my thoughts focused on weeds lately, it is becoming easier to envision just what a book about weeds might look like. I want to tell the story of weeds from many different angles, highlighting both their positive and negative aspects. There is much we can learn from weeds, and not just how best to eliminate them. Regardless of how you feel about weeds, I hope that by learning their story we can all become better connected with the natural world, and perhaps more appreciative of things we casually dismiss as useless, less quick to jump to conclusions or render harsh judgments about things we don’t fully understand, and more inclined to investigate more deeply the stories about nature near and far.

Of course, I can’t do this all by myself. I will need your help. If you or someone you know works for or against weeds in any capacity, please put us in touch. I am interested in talking to weed scientists, invasive species biologists, agriculturists and horticulturists, edible weed enthusiasts, plant taxonomists, natural historians, urban ecologists, gardeners of all skill levels, and anyone else who has a strong opinion about or history of working with weeds. Please get in touch with me in one of several ways: contact page, Facebook, Twitter, Tumblr, or by commenting below.

Another way you can help is by answering the following poll. If there is more than one topic you feel particularly passionate about, feel free to answer the poll as many times as you would like; just wait 24 hours between each response. Thank you for your help! And I hope you have enjoyed the Summer of Weeds.

Quick Guide to the Summer of Weeds:

Summer of Weeds: Willowherbs and Fireweed

Last week we discussed a plant that was introduced as an ornamental and has become a widespread weed. This week we discuss some native plants that have become weedy in places dominated by humans. Similar to pineapple weed, species in the genus Epilobium have moved from natural areas into agricultural fields, garden beds, and other sites that experience regular human disturbance. Some species in this genus have been deliberately introduced for their ornamental value, but others have come in on their own. In all cases the story is similar, humans make room and opportunistic plants take advantage of the space.

Epilobium species number in the dozens and are distributed across the globe. North America is rich with them. They are commonly known as willowherbs and are members of the evening primrose family (Onagraceae). They are herbaceous flowering plants with either annual or perennial life cycles and are commonly found in recently disturbed sites, making them early successional or pioneer species. Many are adapted to wet soils and are common in wetlands and along streambanks; others are adapted to dry, open sites. Hybridization occurs frequently among species in the Epilobium genus, and individual species can be highly variable, which may make identifying them difficult.

northern willowherb (Epilobium ciliatum)

At least two North American species are commonly weedy: E. ciliatum (northern willowherb) and E. brachycarpum (panicled willowherb). Regarding these two species, the IPM website of University of California states: “Willowherbs are native broadleaf plants but usually require a disturbance to establish. Although considered desirable members of natural habitats, they can be weedy in managed urban and agricultural sites.” The field guide, Weeds of the West, refers to E. brachycarpum as a “highly variable species found mostly on non-cultivated sites, and especially on dry soils and open areas.” E. ciliatum is notorious for being a troublesome weed in greenhouses and nurseries, as discussed on this Oregon State University page.

E. ciliatum is a perennial that reproduces via both rhizomes and seeds. It reaches up to five feet tall and has oppositely arranged, lance-shaped leaves with toothed margins that are often directly attached to the stems. Its flowers are tiny – around a quarter of an inch wide – and white, pink, or purple with four petals that are notched at the tip. They sit atop a skinny stalk that is a few centimeters long, which later becomes the fruit. When dry, the fruit (or capsule) splits open at the top to reveal several tiny seeds with tufts of fine hairs.

northern willowherb (Epilobium ciliatum)

E. brachycarpum is an annual that reaches up to three feet tall and is highly branched. Its leaves are short and narrow and mostly alternately arranged. Its flowers and seed pods are similar to E. ciliatum. At first glance it can appear as one of many weeds in the mustard family; however, the tuft of hairs on its seeds distinguishes it as a willowherb.

Seeds and seed pods of panicled willowherb (Epilobium brachycarpum)

Weeds of North America by Richard Dickinson and France Royer describes one weedy species of willowherb that was introduced to North America from Europe – E. hirsutum. It is commonly referred to as great hairy willowherb, but some of its colloquial names are worth mentioning: fiddle grass, codlins and cream, apple-pie, cherry-pie, blood vine, and purple rocket. Introduced as an ornamental in the mid 1800’s, it is a semiaquatic perennial that can reach as tall as eight feet. It has small, rose-purple flowers and is frequently found growing in wetlands along with purple loosestrife (Lythrum salicaria).

Chamerion angustifolium – which is synonymously known as Epilobium angustifolium and commonly called fireweed – is distributed throughout temperate regions of the Northern Hemisphere. It is a rhizomatously spreading perennial that grows to nine feet tall; has lance-shaped, stalkless leaves; and spikes of eye-catching, rose to purple flowers. It is a true pioneer species, found in disturbed sites like clear-cuts, abandoned agricultural fields, avalanche scars, and along roadsides. It gets its common name for its reputation of being one of the first plants to appear after a fire, as John Eastman describes in The Book of Field and Roadside: “A spring fire may result in a profusion of growth as soon as 3 months afterward, testifying to fireweed’s ample seed bank in many wilderness areas.” Eastman goes on to write, “fireweed’s flush of abundance following fire may rapidly diminish after only a year or two of postburn plant growth.” This “flush of abundance” is what gives it its weedy reputation in gardens. With that in mind, it is otherwise a welcome guest thanks to its beauty and its benefit to pollinators.

fireweed (Chamerion angustifolium)

Additional Resources:

Quote of the Week:

From the book Food Not Lawns by H.C Flores

Sometimes [weeding] feels like playing God – deciding who lives and who dies is no small matter – and sometimes it feels like war. … Take a moment to ponder the relationship of these plants to other living things around, now and in the future. Your weeds provide forage and habitat for insects, birds, and animals, as well as shelter for the seedlings of other plants. They cover the bare soil and bring moisture and soil life closer to the surface, where they can do their good work. Weeds should be respected for their tenacity, persistence, and versatility and looked upon more as volunteers than as invaders.

Summer of Weeds: Common Mullein

The fuzzy, gray-green leaves of common mullein are familiar and friendly enough that it can be hard to think of this plant as a weed. Verbascum thapsus is a member of the figwort family and is known by dozens of common names, including great mullein, Aaron’s rod, candlewick, velvet dock, blanket leaf, feltwort, and flannel plant. Its woolly leaves are warm and inviting and have a history of being used as added padding and insulation, tucked inside of clothing and shoes. In Wild Edible and Useful Plants of Idaho, Ray Vizgirdas writes, “the dried stalks are ideal for use as hand-drills to start fires; the flowers and leaves produce yellow dye; as a toilet paper substitute, the large fresh leaves are choice.”

Common mullein is a biennial that was introduced to eastern North America from Eurasia in the 1700’s as a medicinal plant and fish poison. By the late 1800’s it had reached the other side of the continent. In its first year it forms a rosette of woolly, oblong and/or lance-shaped leaves. After overwintering it produces a single flower stalk up to 6 feet tall. The woolly leaves continue along the flower stalk, gradually getting smaller in size until they reach the inflorescence, which is a long, dense, cylindrical spike. Sometimes the stalk branches out to form multiple inflorescences.

First year seedlings of common mullein (Verbascum thapsus)

The inflorescence doesn’t flower all at once; instead, a handful of flowers open at a time starting at the bottom of the spike and moving up in an irregular pattern. The process takes several weeks to complete. The flowers are about an inch wide and sulfur yellow with five petals. They have both female and male sex parts but are protogynous, meaning the female organs mature before the male organs. This encourages cross-pollination by insects. However, if pollination isn’t successful by the end of the day, the flowers self-pollinate as the petals close. Each flower produces a capsule full of a few hundred seeds, and each plant can produce up to 180,000 seeds. The seeds can remain viable for over 100 years, sitting in the soil waiting for just the right moment to sprout.

Common mullein is a friend of bare, recently disturbed soil. It is rare to see this plant growing in thickly vegetated areas. As an early successional plant, its populations can be abundant immediately after a disturbance, but they do not persist once other plants have filled in the gaps. Instead they wait in seed form for the next disturbance that will give them the opportunity to rise again. They can be a pest in gardens and farm fields due to regular soil disturbance, and are often abundant in pastures and rangelands because livestock avoid eating their hairy leaves. Because of its ephemeral nature, it is generally not considered a major weed; however, it is on Colorado’s noxious weed list.

Several features make common mullein a great example of a drought-adapted plant. Its fleshy, branching taproot can reach deep into the soil to find moisture, the thick hairs on the leaves help reduce water loss via transpiration, and the way the leaves are arranged and angled on the stalk can help direct rain water down toward the roots.

Common mullein has an extensive history of ethnobotanical uses. Medicinally it has been used internally to treat coughs, colds, asthma, bronchitis, and kidney infections; and as a poultice to treat warts, slivers, and swelling. The dried flower stalks have been used to make torches, and the fuzzy leaves have been used as tinder for fire-making and wicks in lamps.

The hairy leafscape of common mullein (Verbascum thapsus)

More Resources:

Quote of the Week:

From Gaia’s Garden by Toby Hemenway

Here’s why opportunistic plants are so successful. When we clear land or carve a forest into fragments, we’re creating lots of open niches. All that sunny space and bare soil is just crying out to be colongized by light- and fertlity-absorbing green matter. Nature will quickly conjure up as much biomass as possible to capture the bounty, by seeding low-growing ‘weeds’ into a clearing or, better yet, sprouting a tall thicket stretching into all three dimensions to more effectively absorb light and develop deep roots. … When humans make a clearing, nature leaps in, working furiously to rebuild an intact humus and fungal layer, harvest energy, and reconstruct all the cycles and connections that have been severed. A thicket of fast-growing pioneer plants, packing a lot of biomass into a small space, is a very effective way to do this. … And [nature] doesn’t care if a nitrogen fixer or a soil-stabilizing plant arrived via continental drift or a bulldozer’s treads, as long as it can quickly stitch a functioning ecosystem together.

Book Review: Weeds Find a Way

At what age do we become aware that there are profound differences among the plants we see around us? That some are considered good and others evil. Or that one plant belongs here and another doesn’t. Most young children (unless an adult has taught them) are unaware that there is a difference between a weed and a desirable plant. If it has attractive features or something fun to interact with – like the seed heads of dandelions or the sticky leaves of bedstraw – they are all the same. At some point in our trajectory we learn that some plants must be rooted out, while others can stay. Some plants are uninvited guests – despite how pretty they might be – while others are welcome and encouraged.

But weeds are resilient, and so they remain. Weeds Find a Way, written by Cindy Jenson-Elliot and illustrated by Carolyn Fisher, is a celebration of weeds for their resiliency as well as for their beauty and usefulness. This book introduces the idea of weeds to children, focusing mainly on their tenacity, resourcefulness, and positive attributes rather than their darker side. “Weeds are here to stay,” so perhaps there is a place for them.

The book begins by listing some of the “wondrous ways” that weed seeds disperse themselves: “floating away on the wind,” attaching themselves to “socks and fur,” shot “like confetti from a popped balloon.” And then they wait – under snow and ice or on top of hot sidewalks – until they find themselves in a time and place where they can sprout. Eventually, “weeds find a way to grow.”

Weeds also “find a way to stay.” We can pull them up, but their roots are often left behind to “sprout again.” Pieces and parts break off and take root in the soil. Animals may swoop in to devour them, but weeds drive them away with their thorns, prickles, and toxic chemicals. In these ways they are a nuisance, but they can be beautiful and beneficial, too.

This illustrated story of weeds is followed by some additional information, as well as a list of common weeds with brief descriptions. Weeds are defined as plants “thought to be of no value that grow in places where people do not want them to grow,” adding that even “misunderstood and underappreciated plants that are native to a region and have multiple uses” can be labeled weeds.

The concept of weeds as invasive species is also addressed; some introduced plants move into natural areas and can “crowd out native vegetation, block streams, and drive away wild animals.” That being said, weeds also provide us with “endless opportunities to study one of nature’s most wonderful tools: adaptation.” Weeds are problematic as much as they are useful, it’s simply a matter of perspective.

A criticism of this book might be that it doesn’t focus enough on the negative aspects of weeds. There is plenty of that elsewhere. The aim of this book is to connect us with nature, and as Jensen-Elliot writes, “you don’t need a garden to know that nature is at work.” When there is a weed nearby, nature is nearby. Weeds “adapt and grow in tough times and desolate places,” and they make the world beautiful “one blossom at a time.”

Summer of Weeds: Salsify

Picking a favorite weed is challenging. If we dismiss entirely the idea that a person is not supposed to like weeds, the challenge is not that “favorite weeds” is an oxymoron; it is, instead, that it is impossibile to pick one weed among hundreds of weeds that is the most attractive, the most impressive, the most useful, the most forgiving, whatever. For me, salsify is a top contender.

Salsify and goatsbeard are two of several common names for plants in the genus Tragopogon. At least three species in this genus have been introduced to North America from Europe and Asia. All are now common weeds, widespread across the continent. All have, at some point, been cultivated intentionally for their edible roots and leaves, but Tragopogon porrifolius – commonly known as oyster plant or purple salsify – may be the only one that is intentionally grown in gardens today. Its purple flowers make it easy to determine between the other two species, which have yellow flowers.

As it turns out, I am not familiar with purple salsify. I don’t think it is as common in western North America as it is in other parts of the continent. In fact, the most common of the three in my corner of the world appears to be Tragopogon dubius, commonly known as western salsify. Tragopogon pratensis (meadow salsify) makes an appearance, but perhaps not as frequently. To complicate matters, hybridization is common in the genus, so it may be difficult to tell exactly what you are looking at.

western salsify (Tragopogon dubius)

Regardless, salsify is a fairly easy weed to identify. It is a biennial (sometimes annual, sometimes perennial) plant that starts out as a rosette of gray-green leaves that are grass-like in appearance. Eventually a flower stalk emerges, adorned with more grass-like leaves, branching out to form around a half dozen flower heads. Salsify is in the aster family, in which flower heads typically consist of a tight grouping of disc and ray florets. In this case, only ray florets are produced. The florets are yellow or lemon-yellow, and each flower head sits atop a series of pointed bracts which encase the flower (and the forming seed head) when closed. Examining the length of the bracts is one way to tell T. dubius (bracts extend beyond the petals) from T. pratensis (bracts and petals are equal in length).

Illustration of Tragopogon dubius by Amelia Hansen from The Book of Field and Roadside by John Eastman

The flowers of salsify open early in the morning and face the rising sun. By noon, they have usually closed. This phenomenon is the reason behind other common names like noonflower and Jack-go-to-bed-at-noon. Salsify’s timely flowering makes an appearance in Elizabeth Gilbert’s novel, The Signature of All Things: “Alma learned to tell time by the opening and closing of flowers. At five 0’clock in the morning, she noticed, the goatsbeard petals always unfolded. … At noon, the goatsbeard closed.”

The seed heads of salsify look like over-sized dandelions. Each seed (a.k.a. achene) is equipped with a formidable pappus, and with the help of a gust of wind, seeds can be dispersed hundreds of feet from the parent plant. The seeds don’t remain viable for very long, but with each plant producing a few hundred seeds and dispersing them far and wide, it is not hard to see why salsify has staying power.

Open, sunny areas are preferred by salsify, but it can grow in a variety of conditions. In The Book of Field and Roadside, John Eastman writes, “goatsbeards can establish themselves in bare soil, amid grasses and old-field vegetation, and in heavy ground litter; such adaptability permits them to thrive across a range of early plant successional stages.” Wild Urban Plants of the Northeast lists the following sites as “habitat prefrences” of meadow salsify: “abandoned grasslands, urban meadows, vacant lots, rubble dumps, and at the base of rock outcrops and stone walls.” While generally not considered a noxious weed, Tragopogon species are commonly encountered and widely naturalized. Last summer on a field trip to Mud Springs Ridge near Hells Canyon, salsify was one of only a small handful of introduced plants I observed looking right at home with the native flora.

Seed heads of western salsify (Tragopogon dubius) before opening

All that being said, why is salsify one of my favorite weeds? Its simple and elegant form appeals to me. Its gray- or blue-green stems and leaves together with its unique, yellow flowers are particularly attractive to me. And its giant, globe-shaped seed heads, which seem to glisten in the sun, captivate me. Its not a difficult weed to get rid off. It generally pulls out pretty easily, and it’s a satisfying feeling when you can get it by the root. It’s a sneaky weed, popping up full grown inside of another plant and towering above it, making you wonder how you could have missed such an intrusion. The roots are said to be the most palatable before the plant flowers, so if you can spot the young rosette – disguised as grass and also edible – consider yourself lucky. I haven’t tried them yet, but I will. [Editor’s note: Sierra tells me that I have eaten them in a salad she made, but at the time I didn’t know they were in there so I don’t remember what they tasted like.] If they are any good, that will be one more reason why salsify is one of my favorite weeds.

Bonus excerpt from Emma Cooper’s book, Jade Pearls and Alien Eyeballs, regarding Tragopogon porrifolius:

Salsify is often called the vegetable oyster, because its roots are supposed to have an oyster-like flavor although I suspect nobody would be fooled. The long roots are pale and a bit like carrots – they are mild and sweet and when young can be eaten raw. Mature roots are better cooked. Traditionally a winter food, any roots left in the ground in spring will produce a flush of edible foliage.