Book Review: A Gardener’s Guide to Botany

Avid gardeners spend a lot of time getting up close and personal with their plants. Whether they have a background in botany or not, they are bound to notice things about plants that others won’t. Questions are sure to arise about what their plants are up to, how they manage to do the things they do, or what might be done to help make their lives better. In the age of information, answers can be found at the touch of a button and from a wide variety of sources, some more trustworthy than others. The latest resource for gardeners with a question is A Gardener’s Guide to Botany. Written by plant expert and seasoned science communicator, Scott Zona, this is a source of information that’s not only trusted and highly credible, but also approachable for readers at any level and an absolute joy to read.

A Gardener’s Guide to Botany by Scott Zona, Ph.D.

You may know Zona as the go-to guy when it comes to questions about palms or tropical plants, but his knowledge of the plant kingdom extends far beyond these diverse groups. Zona has spent the majority of his life studying plants in all their forms across a wide variety of landscapes and has been sharing his knowledge through various institutions and societies that he’s been a part of along the way. His book is like a summary or overview of all the things he’s learned throughout this journey. It’s also just the beginning, a jumping off point and invitation to learn even more about the endlessly fascinating world of botany.

In the first chapter, Zona helps us understand just what makes a plant a plant – what separates plants from all other walks of life, and what plants have in common with other living things. Plants were one of the first forms of life that came about in the early years of life on our planet. Their evolution helped set the stage for so many other lifeforms to come. Due to the fact that they are generally fixed to one spot for the duration of their lives, they have had to adapt to deal with a wide variety of threats and stressors without the benefit of being able to run away or head for higher ground. As climates around them have changed and landscapes have shifted, so have they. All the while, plants have continued to be primary producers and ecosystem engineers, benefiting the lives of so many other living things, including humans, right up until this very day. Their existence is critical to the continuation of life on earth. Many of the ways that plants have been able to be so successful for so many millions of years are described in Zona’s book.

The second chapter of A Gardener’s Guide to Botany is a lesson in plant anatomy. Zona provides an overview of the inner and outer workings of roots, shoots, leaves, flowers, and fruits. Understanding basic plant anatomy can be important for maintaining a successful garden; it’s also just incredibly interesting in its own right. Plants are simple constructions, yet show up in such diverse forms. By modifying their limited parts, they are able to produce a wide variety of interesting features unique to each species. A branch becomes a thorn, a leaf becomes a spine, a root becomes a fleshy storage organ, an inflorescence becomes a tendril. This is just the beginning of the many surprises plants have up their sleeves.

The tendrils of grape vines (Vitis spp.) are modified, sterile inflorescences.

The next three chapters are all about what plants need to survive, namely water, light, and nutrients. Gardeners know that if any of these three things are out of whack, their plants are sure to suffer. Luckily, plants have some experience adapting a number of ways to get the things they need. Roots can search the soil for water and pockets of nutrients. Shoots move in search of light and can produce leaves that match the intensity or amount of sunlight (smaller and thicker in full sun, broader and thinner in the shade). Relationships can be made with microbes that live in the soil in order to gain access to resources, and even to help plants defend themselves (which is the subject of chapter six). Sometimes light is too intense for plants, and plants have developed features to deal with this such as waxes on their leaves, hairy or fuzzy leaf surfaces, or additional plant pigments that can act as sunscreen. Some of these features also help the plant retain water when temperatures are high. Other plant species have adaptations to live in water-abundant environments, such as drip tips on their leaves to help them shed water or special tissues in their stems and roots that help facilitate gas exchange.

Plants need light to carry out photosynthesis, so the more light the better. But not always. The newly emerging leaves of some species are red, orange, and/or yellow in color which helps protect the developing tissues from the intensity of the sun until the tissues have time to mature, at which point they turn their standard green color. In the fall, the leaves of deciduous plants experience a similar color change but in reverse. This change serves a similar function, protecting leaves from sun damage as they reabsorb nutrients back into the plant.

Lovage (Levisticum officinale) emerges in the spring, its leaves first taking on hues of purple and yellow which help protect the developing tissues from harsh, direct sunlight.

The chapter about defense is sure to be a popular one. Who doesn’t enjoy learning about the many ways these stationary organisms have developed to defend themselves against hordes of invaders out to destroy them? From fortifications like thorns, spines, and sticky hairs to any number of toxic substances produced within their tissues, many of which humans have learned to use for our own benefit. Some plants even recruit other species to help them out, like ants, mites, and various microbes. Of course, for all the defenses they put up, there are at least a few herbivorous creatures that manage to find a work around. And so the war continues.

In the following chapter, Zona covers another popular topic, plant sex. Pollinators and pollination have gained a lot of interest over the past decade or so, particularly among gardeners. Turning our gardens into habitats for bees and other insect pollinators is one way we can help conserve these important organisms. Understanding more about the specifics of pollination and plant reproduction will only help us improve these efforts. Learning about the many ways by which plants reproduce asexually also helps us out when we are trying to make more plants. Successful plant propagation and plant breeding rely on a good understanding of the concepts that Zona covers in chapter seven.

The bright yellow spots on the petals of snapdragons (Antirrhinum sp.) mimic pollen-loaded anthers and help draw in pollinators.

The final chapter is all about dispersal – how plants get around – and is one that I will be returning to repeatedly for some time. Plant dispersal is one of my favorite topics, and Zona does not disappoint. All the basic means of getting around are covered, and with them come dozens of stories that demand a curious mind look further into, like palm fruit dispersal by electric eels or the aardvarks that disperse the seeds of underground cucumbers. This a chapter that could have gone on for the whole book.

One of my favorite things about this book is that for the majority of the topics that Zona discusses, plant examples are given so that you can see for yourself, and many of those plants can be easily found either as a common garden plant or indoor houseplant. This means that you don’t have to travel the world to familiarize yourself with these concepts, instead you can see them in action right outside your door. Most of us, whether we have a garden or not, have easy access to plants, even if it’s just the weeds growing in the sidewalk cracks. This makes getting to know the Plant Kingdom a possibility for nearly anyone. As Zona writes, “a stroll in the garden or a hike through the woods is all it takes to begin a journey into a leafy, green world.” Let his book be “your passport, your interpreter, your currency converter, and your host on a learning adventure into the world of plants.”

More Book Reviews:

Advertisement

The Life Cycle of a Sunflower Stem Weevil

Last summer I came across a downy woodpecker hammering away at the stalk of a sunflower. I wondered what it was going after, and so I split open a stalk lengthwise to find the center of the stem hollowed out and several small larvae squirming through the debris left behind. A quick internet search later and I was learning about sunflower stem weevils, specifically Cylindrocopturus adspersus, which seems to be the species getting the most attention online and the stem-dwelling weevil that commercial sunflower growers seem most concerned about.

However, the range of sunflower stem weevil doesn’t appear to extend into Idaho, and so this is not likely to be the larvae I was seeing. There are other weevil species whose larvae can be found inside the stems of sunflowers (The sunflower I was observing was Helianthus annuus. I wasn’t specific about naming a particular species because it is my understanding that these weevils can be found on a variety of different Helianthus species., such as the cocklebur weevil (which is found in Idaho), but since larvae can be difficult to identify, I’ll wait to confirm the identity until I hear from an expert, find an adult weevil, and/or raise the larvae in captivity and see what it turns into. If and when that happens, I’ll be sure to update you. Until then, I present to you the life cycle of a sunflower stem weevil, which is still quite interesting, even if it’s not the species I found inside my sunflower stalks. And to be clear, the sunflower I observed was Helianthus annuus; however, the weevils I refer to in this post can be found on a number of different Helianthus species and related genera.

Sunflower stem weevils are in the family Curculionidae, which is the snout and bark beetle family. There are tens of thousands of species of weevils, a handful of which interact with sunflowers (plants in the genus Helianthus). Some weevil species eat the seeds, others eat the leaves, some are root feeders, while others are stem feeders. Depending on the life stage of a particular weevil species, it may consume multiple parts of a sunflower. Another interesting weevil is the sunflower headclipping weevil, which you can read about at The Prairie Ecologist.

Adult sunflower stem weevils are about 3/16 inch (4-5 mm) long and somewhat egg or oval shaped. They are grayish-brown with white spots. Their eyes, antennae, and snout are black, and their snout is short, curved, and held beneath the head. As adults, they can be found on sunflowers and sunflower relatives eating the leaves. However, they are not easily found. Their size, for one, makes them difficult to see, and they also move to the opposite sides of leaves and stems when disturbed, sometimes dropping to the ground as a threat approaches. You can see images of them on BugGuide.

unidentified larva in a sunflower stem

The larvae of sunflower stem weevils are about a quarter of a inch long and creamy white with a small, brown head capsule. They feed in the vascular tissue of sunflower stalks during the summer. In the fall, they migrate to the base of the stalks and create chambers in the woody tissue of the stalks and root crowns for overwintering.

Sunflower stem weevils have a single generation per year. After overwintering as larvae in the base of last year’s sunflowers, they pupate and emerge as adults in late spring or early summer. They find young sunflower plants and begin feeding on the leaves. After about 2-4 weeks, the weevils mate and lay eggs just beneath the epidermis of sunflower stems, usually in the stalk just below the cotyledon leaves. The eggs hatch a short time later and begin feeding in the stem until it’s time to overwinter.

the life cycle of a sunflower stem weevil

The damage caused by sunflower stem weevils is generally only a problem on sunflower farms, and only when weevils are found in high enough numbers to cause significant yield losses. Damage to leaves by the adults isn’t usually a concern. On the other hand, as the larvae tunnel through the stem, they can cause the plant to lodge (i.e. fall over prematurely), which is a problem particularly when the plants are machine harvested. Sunflower stem weevils can also introduce and help spread a fungus that causes black stem rot.

Read More About Sunflower Stem Weevil and Other Insect Pests of Sunflowers:

Randomly Selected Botanical Terms: Glochids

The spines of a cactus are an obvious threat. They are generally sharp, smooth, and stiff; as soon as you are stabbed by one, it is immediately clear that you’ve gotten too close. Sitting at the base of the spines – or in place of spines – on many species of cacti is a less obvious, but significantly more heinous threat. Unless you’re looking closely, this hazard is practically invisible, and the pain and irritation that can come as a result of close contact has the potential to last significantly longer than the sharp poke of a spine. This nefarious plant part is called a glochid, and if you’ve ever made contact with one (or more likely several dozen of them), it’s not something you will soon forget.

Opuntia polyacantha x utahensis

The spine of a cactus is actually a leaf. The area from which a spine emerges from the fleshy, photosynthetic stem of a cactus is called an areole, which is equivalent to a node or bud on a more typical stem or branch from which leaves emerge. In place of typical looking leaves, a cactus produces spines and glochids. Like spines, glochids are also modified leaves, although they appear more like soft, little tufts of hair. However, this unassuming little tuft is not to be trifled with.

Close inspection of a glochid (with the help of a microscope) reveals why you don’t want them anywhere near your skin. While the surface of a cactus spine is often smooth and free of barbs, glochids are covered in backwards-facing barbs. The miniscule size of glochids combined with their pliable nature and retrose barbs, make it easy for them to work their way into your skin and stay there. Unlike spines, glochids easily detach from a cactus stem. Barely brushing up against a glochid-bearing cactus can result in getting stuck with several of them.

Opuntia basilaris var. heilii

Because glochids can be so fine and difficult to see, you may not even be aware they are there. You probably won’t even feel them at first. Removing them is a challenge thanks to their barbs, and since you may not be able to remove them all, the glochids that remain in your skin can continue to cause irritation for days, weeks, or even months after contact. For this reason, cactuses are generally best seen and not touched, or at the very least, handled with extreme care.

Apart from being a good form of defense, the glochids of some cactus species can serve an additional function. Most cactus species occur in arid or semi-arid climates, where access to water can be quite limited. In order to increase their chances of getting the water they need, some desert plants are able to collect water from the air. A few species of cactus do this, and glochids are a critical component in making this happen.

Cylindropuntia whipplei

A study published in the Journal of King Saud University – Science (2020) examined the dew harvesting ability of Opuntia stricta, commonly known as erect prickly pear. As described above, the spines of O. stricta are smooth, while the glochids are covered in retrose barbs. Both structures are waterproof due to hardened cell walls and cuticles. However, due in part to the conical shapes of both the glochids and their barbs, water droplets from the air are able to collect on the tips of the glochids. From there, the researchers observed the droplets in their travel towards the base of the glochids. As they moved downward, small droplets combined to form larger droplets.

At the base of the glochids are a series of trichomes, which are small hair-like outgrowths of the epidermis. The trichomes do not repel water, but rather are able to absorb the droplets as they reach the base of the glochids. For a plant species that receives very little water from the soil, being able to harvest dew from the air is critical for its survival, and this is thanks in part to those otherwise obnoxious glochids.

See Also: Prickles

Awkward Botany on Outdoor Idaho (plus Send Us Your Questions)

I spend a lot time on this blog putting weeds in the spotlight, celebrating them for their successes and the unique and interesting plants they are. It’s rare that I get to share these sentiments outside of this particular venue, but I was given such an opportunity recently when asked to talk about weeds for an episode of Outdoor Idaho, a long running show on Idaho Public Television that covers Idaho’s natural history. The theme of this particular episode is wildflowers, so I was intrigued by the idea of coming on to discuss urban weeds. For many, the term “wildflowers” may invoke native plants blooming in natural areas in places far removed from the hustle and bustle of the city. But a wildflower doesn’t have to be a native plant, nor does it have to be growing in the wild. Any plant occurring naturally on its own without the assistance of humans can be a wildflower, and that includes our wild urban flora. I appreciated the chance to share this particular thought with the viewers of Outdoor Idaho.

photo credit: Jay Krajic

Along with me waxing on about weeds, the Wildflowers episode features a host of other Idahoans sharing their thoughts, expertise, and experiences with wildflowers. The episode is brief – coming in at under 30 minutes – but the producers packed in a ton of great wildflower content, and overall I found it to be an excellent representation of the flora of Idaho and a convincing argument for why we should appreciate and elevate these plants. The flora of any region is special and important in its own right, and Idaho’s flora is no different, including its weeds.

Check out Outdoor Idaho’s Wildfowers episode here.

In other news…

If you want to see more of me on the screen (and I’m not sure why you would), Sierra (a.k.a. Idaho Plant Doctor) and I are doing monthly Q&A videos in which we answer your questions about plants, gardening, pests and diseases, insects, or any other topic you might be curious about. You can tune in to those discussions on Sierra’s instagram. If you have questions of your own that you would like us to address, please leave them in the comments section below, or send them to me via the contact page or my instagram.

Weeds of Boise: Vacant Lot on West Kootenai Street

Every urban area is bound to have its share of vacant lots. These are sites that for whatever reason have been left undeveloped or were at one point developed but whose structures have since been removed. The maintenance on these lots can vary depending on who has ownership of them. Some are regularly mowed and/or treated with herbicide, while others go untouched for long periods of time. Even when there is some weed management occurring, vacant lots are locations where the urban wild flora dominates. Typically no one is coming in and removing weeds in an effort to cultivate something else, and so weeds run the show.

As with any piece of land populated by a diverse suite of wild plants, vacant lots are dynamic ecosystems, which you can read all about in the book Natural History of Vacant Lots by Matthew Vessel and Herbert Wong. The impact of humans can be seen in pretty much any ecosystem, but there are few places where that impact is more apparent than in a vacant lot. In lots located in bustling urban centers, human activity is constant. As Vessel and Wong write, “numerous ecosystem interactions are affected when humans intervene by spraying herbicides or insecticides, by trampling, by physically altering the area, or by depositing garbage and waste products.” These activities “can abruptly alter the availability and types of small habitats; this will in turn affect animal as well as plant diversity and population dynamics.” The dynamic nature of these sites is a reason why vacant lots are excellent places to familiarize yourself with the wild urban flora.

Kōura relaxing in a vacant lot

On our morning walks, Kōura and I have been visiting a small vacant lot on West Kootenai Street. We have watched as early spring weeds have come and gone, summer weeds have sprouted and taken off, perennial weeds have woken up for the year, and grass (much of which appears to have been intentionally planted) has grown tall and then been mowed with some regularity. Someone besides us is looking after this vacant lot, and it’s interesting to see how the plant community is responding. As Vessel and Wong note, “attempts to control weedy plants by mowing, cultivating, or spraying often initiate the beginning of a new cycle of growth.” For plants that are adapted to regular disturbance, measly attempts by humans to keep them in check are only minor setbacks in their path to ultimate dominance.

What follows are a few photos of some of the plants we’ve seen at the vacant lot on Kootenai Street, as well as an inventory of what can be found there. This list is not exhaustive and, as with other Weeds of Boise posts, will continue to be updated as I identify more species at this location.

dandelion (Taraxacum officinale)
grape hyacinth (Muscari armeniacum)
henbit (Lamium amplexicaule)
wild barley (Hordeum murinum) backed by cheatgrass (Bromus tectorum)
narrowleaf plantain (Plantago lanceolata) and broadleaf plantain (Plantago major)
perrennial sweet pea (Lathyrus latifolius) surrounded by redstem filaree (Erodium cicutarium)
whitetop (Lepidium sp.)
white clover (Trifolium repens)
  • Bromus tectorum (cheatgrass)
  • Capsella bursa-pastoris (shepherd’s purse)
  • Ceratocephala testiculata (bur buttercup)
  • Convolvulus arvensis (field bindweed)
  • Descurainia sophia (flixweed)
  • Draba verna (spring draba)
  • Erodium cicutarium (redstem filaree)
  • Geum urbanum (wood avens)
  • Holosteum umbellatum (jagged chickweed)
  • Hordeum murinum (wild barley)
  • Lactuca serriola (prickly lettuce)
  • Lamium amplexicaule (henbit)
  • Lathyrus latifolius (perennial sweet pea)
  • Lepidium sp. (whitetop)
  • Malva neglecta (dwarf mallow)
  • Medicago lupulina (black medic)
  • Muscari armeniacum (grape hyacinth)
  • Plantago lanceolata (narrowleaf plantain)
  • Plantago major (broadleaf plantain)
  • Poa bulbosa (bulbous bluegrass)
  • Poa pratensis (Kentucky bluegrass)
  • Rumex crispus (curly dock)
  • Taraxacum officinale (dandelion)
  • Tragopogon dubius (salsify)
  • Trifolium repens (white clover)
  • Veronica sp. (speedwell)

If you live in an urban area, chances are good there is a vacant lot near you. What have you found growing in your neighborhood vacant lot? Feel free to share in the comment section below.

The Serotinous Cones of Lodgepole Pine

Behind the scales of a pine cone lie the seeds that promise future generations of pine trees. Even though the seeds are not housed within fruits as they are in angiosperms (i.e. flowering plants), the tough scales of pine cones help protect the developing seeds and keep them secure until the time comes for dispersal. In some species, scales open on their own as the cone matures, at which point winged seeds fall from the tree, taking flight towards their new homes. In other species, the scales must be pried open by an animal in order to free the seed. A third group of species have what are called serotinous cones, the scales of which are sealed shut with resin. High temperatures are required to soften the resin and expose the seeds.

Serotinous cones are a common trait of pine species located in regions where wildfire naturally and regularly occurs. One such species is lodgepole pine (Pinus contorta), which is found in abundance in forests across much of western North America. Lodgepole pine is a thin-barked tree species that burns easily and is often one of the first plants to recolonize after a stand-replacing wildfire. There are 3 or 4 subspecies of lodgepole pine. The one with the largest distribution and the one that most commonly exhibits serotinous cones is P. contorta subsp. latifolia, which occurs throughout the Rocky Mountains, north into the Yukon, and just west of the Cascade Range.

needles of lodgpole pine (Pinus contorta)

Lodgepole pine grows tall and straight, generally maxing out at around 80 feet tall. Its needles are about two and a half inches long, are borne in bundles of two, and tend to twist away from each other, which is one explanation for the specific epithet, contorta. Its cones are egg-shaped with asymmetrical bases, measuring less than two inches long with prickly tips at the ends of each scale. The seeds of lodgepole pine are tiny with little, papery wings that aid in dispersal. The cones can remain attached to the tree for 15-20 years (sometimes much longer), and the seeds remain viable for decades. In non-serotinous cones, the scales start opening on their own in early autumn. Serotinous cones require temperatures of 45-50°C (113-122°F), to release the resin bond between the scales. Some cones that happen to fall from the tree can open when exposed to particularly warm temperatures on the ground. Otherwise, it takes fire to free the seeds.

Serotinous cones aren’t a guarantee, and the percentage of trees with serotinous cones compared to those with non-serotinous cones varies widely across the range of lodgepole pine, both in space and in time. One reason for this is that trees with serotinous cones don’t develop them until they reach a certain age, generally around 20-30 years old, or perhaps as old as 50 or 60. The cones of young trees are all non-serotinous. But some trees never develop serotinous cones at all. Serotiny is a genetic trait, and there are various factors that either select for or against it. A number of factors are at play simultaneously over the life of a tree and across a population of trees, so it is difficult to determine exactly why the percentage of serotinous cones is so variable across the range of the species. What follows are a few potential explanations for this phenomenon.

closed cone of lodgepole pine (Pinus contorta)

As a fire-adapted, pioneer species, lodgepole pine has evolved to live in environments where fire is predictably common. Serotinous cones help ensure that a population won’t be wiped out when a massive wildfire comes through. After the fire has passed and the seeds are released, lodgepole pine can quickly repopulate the barren ground. As long as fire occurs within the lifespan of a population of similarly aged trees, it is advantageous for the majority of individuals to maintain their serotinous trait. If the population is located in an area that historically does not see much fire, serotinous cones may be a disadvantage and can have adverse effects on the longevity of that population.

A study published in Ecology in 2003 looked at the influence that the frequency of fire has on lodgepole pine stands found at low and high elevations in Yellowstone National Park. At lower elevations, where summer temperatures are warmer and precipitation is relatively minimal, fires occur more frequently compared to higher elevations, which tend to be cooler and wetter. The researchers found that at lower elevations when fires occurred at short intervals (less than 100 years between each fire), lodgepole pine was slower to repopulate compared to longer intervals. This suggests that the percentage of serotiny found in stands that experienced short fire intervals was low, and that stands with long fire intervals exhibit a higher percentage of serotiny. After all, as mentioned above, lodgepole pines don’t start developing serotinous cones until later in life.

At higher elevations, where fire occurs less frequently, lodgepole pines were found to have a low percentage of serotinous cones regardless of the age of the stand. Because the trees at high elevations are more likely to die of old age rather than fire, maintaining serotinous cones would be a disadvantage. Open cones are preferred. Thus, at least in this study, a greater percentage of serotinous cones was found in lodgepole pines at lower elevations compared to those at higher elevations. Latitude, elevation, mountain pine beetle attacks, and other environmental factors have all been used to explain differences in serotiny. However, the factor that seems to have the greatest influence is the frequency of fire. As James Lotan writes in a 1976 report: “A high degree of cone serotiny would be expected where repeated, high-intensity fires occur. Where forest canopies are disrupted by factors other than fire, open cones annually supply [seed] for restocking disturbances such as windfalls.”

That being said, one other factor does appear to play a critical role in whether or not lodgepole pines produce serotinous cones, and that is seed predation by squirrels. In a paper published in Ecology in 2004, researchers wondered why the percentage of serotinous cones wasn’t even higher in populations where fire reliably occurred during the lifetime of the stand. To help answer this question they looked at the activities of pine squirrels, which are the main seed predator of lodgepole pine seeds. Pine squirrels visit the canopy of lodgepole pines and consume the seeds found in serotinous cones. Because non-serotinous cones quickly shed their seeds, serotinous cones are a more reliable and accessible food source, and because pine squirrels are so effective at harvesting the seeds of serotinous cones, the researchers concluded that, “in the presence of pine squirrels, the frequency of serotiny is lower and more variable, presumably reflecting,” among a variety of other factors, “the strength of selection exerted by pine squirrels.”

A study published in PNAS in 2014 added evidence to this conclusion. While acknowledging that fire plays a major role in the frequency of serotinous cones, the researchers asserted that “squirrels select against serotiny and that the strength of selection increases with increasing squirrel density.” However, despite making it easier for squirrels to access their seeds, lodgepole pines maintain a degree of serotinous cones, since clearly their main advantage is retaining a canopy-level seed bank from which seeds are released after a fire and by which a new generation of lodgepole pines is born.

open cones of lodgepole pine (Pinus contorta)

Further Reading and Viewing:

Meet Erigeron linearis

Erigeron is a genus of herbaceous, flowering plants consisting of between 390 and 460 species and is a member of the aster/sunflower family (Asteraceae). Plants in this genus are annuals, biennials, or perennials and are mainly found in temperate regions around the world. At least 163 species occur in the contiguous United States. Erigeron diversity is particularly high in western states; however, each state is home to at least one Erigeron species.

A common name for plants in this genus is fleabane. This name comes from an outdated belief that the plants can be used to repel or poison fleas, flies, gnats, and other tiny insects, a belief for which there is no evidence. In Ancient Greek, the name Erigeron is said to mean something akin to “old man in the early morning,” likely referring to the appearance of the seed heads which look like little tufts of white hair. Some Erigeron species are also commonly referred to as daisies.

desert yellow fleabane (Erigeron linearis)

One species of Erigeron that I would like you to meet is Erigeron linearis. While most of the plants in this genus have flowers that are white, pink, or various shades of purple, E. linearis is a yellow-flowered species, hence the common name, desert yellow fleabane. Another common name for this plant is narrow leaved fleabane, a reference to its linear leaves. E. linearis is a small plant with a prominent taproot that reaches up to 20 centimeters tall and forms a leafy, rounded mat or cushion of whitish or gray-green, alternately arranged leaves. The white appearance is due to numerous, fine, appressed hairs on the leaves and stems. Flower stalks are produced in abundance in late spring through early summer and are mostly leafless. They reach above the mound of leaves and are each topped with at least one flower head, which nods at first, but then straightens out as the flowers open. Each flower head is about 2 centimeters wide and is typical of plants in the sunflower family, with a cluster of deep yellow disc florets in the center, surrounded by ray florets that are lighter in color. Both disc and ray florets are fertile; however, the disc florets have both “male” (stamens) and “female” (pistils) flower parts, while the ray florets have only “female” parts. The involucre, which sits at the base of the flowers, is egg-shaped or hemispheric and made up of a series of tiny, fuzzy bracts called phyllaries.

the flower head of desert yellow fleabane (Erigeron linearis)

The fruit of Erigeron linearis is called a cypsela, an achene-like fruit that is characteristic of plants in the sunflower family. The fruits are miniscule and topped with a pappus composed of short outer bristles and longer, pale, inner bristles. The two types of pappus bristles (or double pappus) must be the reason for the scientific name this species was originally given in 1834, Diplopappus linearis. While the seeds of more than 80% of flowering plant species found in dryland regions exhibit some form of dormancy, a study published in Plant Biology (2019), found that E. linearis is one of the few species with non-dormant seeds. This means that for those of us interested in growing plants native to the Intermountain West, E. linearis is a pretty easy one to grow and is a great addition to water-wise gardens, pollinator gardens, and rock gardens.

Erigeron linearis seedling

Erigeron linearis is distributed across several western states and into Canada. It is found in northern California, eastern Oregon and Washington, southern British Columbia, across Idaho and east into southern Montana, western Wyoming and northwestern Utah. It is found at low to moderate elevations in open, rocky foothills, grasslands, sagebrush steppe, and juniper woodlands. It prefers well-drained soils and full sun. It is one of many interesting plants found on lithosols (also known as orthents), which are shallow, poorly develop soils consisting of partially weathered rock fragments. In the book Sagebrush Country, Ronald Taylor calls lithosols “the rock gardens of the sagebrush steppe,” and refers to E. linearis and other members of its genus as “some of the more colorful components of the lithosol gardens.” E. linearis is a food source for pronghorn, mule deer, and greater sage-grouse, and the flowers are visited by several species of bees and butterflies. The plant is also a larval host for sagebrush checkerspots.

desert yellow fleabane (Erigeron linearis)

Additional Resources:

Book Review: In Defense of Plants

Many of us who are plant obsessed didn’t connect with plants right away. It took time. There was a journey we had to go on that would ultimately bring us to the point where plants are now the main thing we think about. After all, plants aren’t the easiest things to relate to. Not immediately anyway. Some of us have to work up to it. Once there, it’s pretty much impossible to go back to our former lives. What was once just a background of green hues is now a rich cast of characters, each with their own name, unique features, and distinct story to tell. Essentially, we went through what Matt Candeias refers to as our ” green revolution.” Candeias – author and host of the long-running blog and podcast, In Defense of Plants – shares his story of learning to love plants and offers a convincing arguement for why you should love them too in his new book, aptly titled, In Defense of Plants.

It’s hard to picture Candeias as anything but a plant lover. If you’ve been following his work, you’ll know he makes it a point to put plants at center stage. It seems that much of the popular content available about plants focuses on the usefulness of plants as they pertain to humans. In many cases it can be easier to find out how to grow a certain plant species than to learn about where it’s from and what it’s like in the wild. Candeias let’s the plants speak for themselves by giving them a voice through his blog, podcast, and now his book. Through the stories he shares we get a peek into the way Candeias sees plants, with the hope being that others might also “be bitten by the botanical bug.”

One of the first plants that captured the attention of Candeias was perennial blue lupine (Lupinus perennis). While assisting with a habitat restoration project at a sand and gravel quarry, Candeias was tasked with improving the establishment of lupine, which is the host plant for the caterpillars of an endangered species of butterfly called Karner blue. The work he did at the quarry and the botanical research that went into it helped Candeias realize that plant’s aren’t at all boring, but are “incredibly interesting organisms worthy of respect and admiration” and that “plants can be both surprisingly relatable and incredibly alien all at once.” His “green revolution” had begun.

The seeds of lupine are dispersed ballistically. As the seed pods dry, tension builds. Then, as Matt Candeias writes in In Defense of Plants, “with an audible pop, the pods eventually explode, catapulting the seeds out into the environment.”

In each chapter of In Defense of Plants we get a peak into the experiences that brought Candeias to where he is now as he discovers the wonder of plants. His personal stories help introduce the main topic of each chapter. Topics include plant sex, plant dispersal, plant defenses, carnivorous plants, and parasitic plants. From countless possible examples, Candeias selects a few of his favorite plant species to help illustrate each topic. Along the way, the reader is presented with various other interesting plant-related facts as Candeias discusses the behaviors of some of the world’s most fascinating plants. In the chapter on dispersal, for example, unlikely agents of seed dispersal (like catfish!) are introduced, as well as phenomena like geocarpy, in which plants are essentially planting themselves.

Carnivorous plants provide an excellent gateway into convincing people who claim to have no interest plants that they actually do. It’s difficult to deny the impressive nature of a meat-eating plant. In the carnivorous plant chapter, Candeias introduces us to the various ways such plants capture and consume their prey, and even wonders if some of these plants should be considered omnivores. After all, certain butterworts digest pollen that falls onto their sticky leaves, and some bladderworts suck in plenty of algae and possibly gain nutrients from the act. If capturing insects inside leaves modified to look like pitchers or on leaves covered in digestive enzyme-producing glands doesn’t impress you, consider the carnivorous actions of corkscrew plants, which drill their leaves into the soil to go after soil-dwelling organisms like protozoans and worms.

Parasitic plants should also excite a reluctant plant lover. These are plants that take all or most of what they need to survive from another plant or host organism. Mistletoes are one of the more familiar parasitic plants, and Candeias describes several, including one that lives almost entirely within the stems of cacti. In fact, “you would never know a cactus had been infected until the mistletoe living within decides to flower,” at which point the flowers push their way out through the sides of the cactus. Dodder is another fairly common, highly specialized, and easy to identify parasitic plant. It basically looks like “a tangled pile of orange spaghetti tossed over the surrounding vegetation.” Orchids, a favorite of Candeias, are known for being mycoheterotrophs, which essentially means they parasitize fungi. Their seeds come unequipped with the energy stores needed to get going, so they borrow resources from mycorrhizal fungi in order to get their start. Years pass before the orchid can offer anything in return.

Datura is a genus of plants that produces toxic compounds like scopolamine and atropine. In his book, In Defense of Plants, Matt Candeias warns, “it would only take a small amount of these chemicals to completely ruin your week and slightly more to put you in a grave.”

After spending more than 200 pages celebrating plants and their amazing abilities and diversity, it’s fitting that Candeias spends the final chapter of his book mourning some of the ways the actions of humans threaten the existence of so many plants. He remarks how unfortunate it is that “plants with their unseeing, unhearing, unfeeling ways of life usually occupy the lowest rung of importance in our society.” Many of us barely notice the loss, yet “plants are the foundation of functioning ecosystems.” Due to that fact, “destroying plant communities causes disastrous ripples that reverberate throughout the entire biosphere of our planet.” Everything suffers when plants are lost. Fortunately, the book doesn’t end on this dark note. Candeias’s overall message is hopeful. When we learn to understand, appreciate, and care about plants, we will want to do everything we can to protect and restore them. With any luck, after reading this book, you too will want to offer your time, energy, and resources in defense of plants.

Listen to Matt talk about his new book on this episode of his podcast.

More Book Reviews on Awkward Botany

Eating Weeds: Japanese Knotweed

When I first learned that Japanese knotweed was edible, I had my doubts. Sure, lots of plants may be edible, but are they really something you’d want to eat? I know Japanese knotweed as one of the most notorious weeds on the planet. Its destructive, relentless, and prolific nature has landed it on the world’s 100 worst invasive species list, right up there with black rats, Dutch elm disease, and killer algae. Having encountered a fair number of Japanese knotweed stands, the first thing to come to mind has never been, “that looks delicious.” Mature stalks stand as tall as 3 meters with broad, leathery leaves and hollow, bamboo-like stems. Their late summer flowers – a mess of tiny white florets on sprawling flower stalks – are a pollinator’s delight and favored by beekeepers for their abundant nectar. I don’t doubt that the honey produced from such an encounter is tasty, but the plant itself? I needed convincing.

Finally, I looked into it. I came across recipes of Japanese knotweed pickles and learned that it was the young, early emerging shoots that were sought after. That changed my perspective. Certainly you wouldn’t want to gnaw on a woody, 4 foot tall Japanese knotweed stalk, but the tender stems as they’re just beginning to re-emerge from the ground in the spring? Now those might be worth trying.

emerging stems of Japanese knotweed (Reynoutria japonica)

Japanese knotweed (Reynoutria japonica) was introduced to Europe from Japan in the 1800’s, arriving at Royal Botanic Gardens Kew by 1850. At that point, it was a prized ornamental. Its thick stems spotted with reds and purples, its broad, shiny leaves, and its showy flower heads all gave it garden appeal. It was also found to be useful for stabilizing hillsides and reducing erosion, honey production, and as a rhubarb substitute (it’s in the same plant family as rhubarb after all). Not long after that, it made its way to North America. Certainly people must have been aware of its propagative prowess as they moved the plant around. It readily roots from root and stem fragments, plus it produces extensive rhizomes, working their way as deep as 3 meters into the soil and as far as 7 meters away from the parent plant. Perhaps that should have been cause for alarm, but how could anyone have predicted just how aggressive and widespread it would soon become?

Thanks to the plant’s rhizomes, Japanese knotweed grows in thick, many-stemmed stands, pushing out, shading out, and leaving very little room for other plants. The rhizomes are also tough and can push up through gravel, cement, and asphalt. They are notorious for damaging foundations, pipes, and even pushing their way through floorboards. If that’s not enough, Japanese knotweed is pretty much impossible to kill. Herbicides may set it back, but they generally don’t take it out. Cutting it down repeatedly can slow it down, but it may also encourage it to grow more thickly and spread out more widely. Smothering it can work, but you have to be prepared to keep it smothered for quite a while. The deep rhizomes are slow to die, and they may eventually find their way outside of the smothered area, popping up to destroy your efforts to contain it. You can try to dig it out, but the amount of dirt you’d have to dig to get every last root and rhizome really isn’t feasible in most circumstances.

But hey, you can eat it, and perhaps you should. A quick internet search reveals a number of ways the plant can be consumed – purees, chutneys, compotes, sorbets. I chose to go with pickled Japanese knotweed. It seemed simple and approachable enough and a good way to determine if I was going to like it or not. Room temperature brine fermentation is pretty easy. You basically put whatever you’re wanting to pickle in a jar, add whatever spices and things you’d like, fill the jar with salty water, then seal it shut and let it sit there for a few days. Before you know it, you’ve got pickles.

There are several recipes for pickled Japanese knotweed to choose from. I went with this one. The seasonings I used were a bit different, and the stalks I had weren’t as “chubby” as recommended, but otherwise my approach was the same. After a few days, I gave them a try. I was pleasantly surprised. I thought they tasted a little like nopales. Sierra reluctantly tried them and was also surprised by how good they were. They reminded her of pickled asparagus. Other sources describe them as lemony, crunchy, tart and suggest serving them with fish, ramen, or even adding them to a cocktail made with purslane. Many of the weeds I’ve tried have been a fun experience, but not necessarily something I need to repeat. Japanese knotweed pickles, on the other hand, could become a spring tradition for me, and since we’re pretty much stuck with this plant, I’m sure to have a steady supply.

More Eating Weeds Posts on Awkward Botany:

When Acorn Masts, Rodents, and Lyme Disease Collide

“‘Mast years’ is an old term used to describe years when beeches and oaks set seed. In these years of plenty, wild boar can triple their birth rate because they find enough to eat in the forestes over the winter… The year following a mast year, wild boar numbers usually crash because the beeches and oaks are taking a time-out and the forest floor is bare once again.” — The Hidden Life of Trees by Peter Wohlleben

———————

When a plant population’s annual production of seeds is highly variable and synchronous, it is considered a masting or mast seeding species. Why and how masting happens is a bit of a mystery, and efforts are underway to better understand this phenomenon. One thing is clear, boom and bust cycles can have dramatic effects on animals that use the fruits and seeds of these plants for food. Acorn production in oaks provides a stark example. As Koenig, et al. describe in Ecology (2015), a “variable acorn crop initiates a ‘chain reaction’ of responses that cascades through the ecosystem, affecting densities of deer, mice, ground-nesting birds, gypsy moths, and the tick vectors of Lyme disease.” The connection between mast seeding oaks and the prevalence of tick-borne pathogens is of particular interest considering the risks posed to humans.

Lyme disease is an infectious diesease caused by a bacterium vectored by ticks in the genus Ixodes. The life-cycle of a tick is generally 2 to 3 years, beginning after a larva hatches from an egg. From there the larva develops into a nymph and later an egg-laying adult, taking a blood meal each step of the way. Tick larvae feed on the blood of small rodents and birds, which is where they can pick up the bacterium that causes Lyme disease. After feeding, they develop into nymphs and go in search of another blood meal, perhaps another rodent or maybe something larger like a deer or a human. It is in their nymphal and adult stages that ticks transmit Lyme disease to humans. Nymphs tend to transmit the disease more frequently, partly because they go undetected more easily.

The risk to humans of being infected with Lyme disease varies year to year and is dependent largely on how many infected ticks are present. For this reason, it is important to understand the factors affecting the density of infected nymphs. In a study published in PLoS Biology (2006), Ostfeld, et al. collected data over a 13 year period in plots located in deciduous forests in the state of New York, a hotspot for Lyme disease. The predictors they considered included temperature, precipitation, acorn crop, and deer, white-footed mouse, and chipmunk abundances. Deer abundance and weather conditions had long been considered important in predicting the prevalence of ticks, but little attention had been paid to small mammals – the larval hosts for ticks – and the variability of acorn crops – an important food source for rodents.

deer tick (Ixodes scapularis) — via PhyloPic; user Mathilde Cordellier

The results of their study revealed a clear pathway – more acorns leads to more rodents which leads to more Lyme disease carrying nymphs. The process takes a couple of years. First, oak trees experience a mast year, flooding rodent populations with food. In the following year, the numbers of mice and chipmunks is unusually high. The year after that, there are lots and lots of nymphal ticks infected with Lyme-disease. The relationship is so direct that Richard Ostfeld claims, based on his research, that he can predict the incidence of Lyme disease among residents of New York and Connecticut based on when a mast year occurs. In a summer when there is an abundance of 2 -year-old oak seedlings in the surrounding forests, expect the infection rate of Lyme disease to be high.

Lyme disease also occurs in regions where oak trees are not present or are uncommon, so variability in acorn crops isn’t always the best predictor. The researchers acknowledge that acorn abundance is not going to be “a universal predictor of risk;” instead, anything that leads to an increase in rodent populations, whether it is some other food source or a lack of predators, may be a key indicator since rodents are reservoir hosts of Lyme disease.

A study published in Parasites and Vectors (2020) looked at the effects of rodent density on a number of tick-borne pathogens. They confirmed that an “increase in rodent density positively affects populations of nymphal ticks in the following year;” yet, they could not confirm that rodent density is the sole predictor of disease risk. Other factors come into play depending on the disease in question, and further research is needed to improve models that predict tick-borne diseases. They did, however, confirm that, by flooding the food supply with acorns, mast years can boost populations of a variety of rodents.

white-footed mouse (Peromyscus leucopus) — via wikimedia commons; USGS

A fear of ticks is justified. They suck your blood after all, and besides that, they can transmit some pretty serious diseases. Arm yourself by educating yourself. One place to do that is with The Field Guides podcast. Their tick two-parter is well worth the listen (part one and part two). Not only will it give you valuable information in protecting yourself against ticks, it may also give you an appreciation for their prowess. Just maybe. See also their You Tube video demonstrating how to sample for ticks.