Weeds of Boise: Hellstrip on Jefferson Street

Growing plants in urban areas comes with a variety of challenges. Soil conditions aren’t always ideal; shade thrown by buildings and other structures can be difficult to work around; paved surfaces lead to compaction and, among other things, can increase temperatures in the immediate area; and in locations where water is limited, keeping plants hydrated is a constant concern. One location that tends to be especially difficult for gardeners is the hellstrip – the section of ground between a roadway and a sidewalk. Much can be said about gardening in hellstrips, so much that there is even a book about it called Hellstrip Gardening by Evelyn Hadden, which I spent several posts reviewing a few years back.

The difficulty of maintaining a hellstrip (and perhaps questions about who is responsible for maintaining it in the first place) can result in it being a piece of property frequently subject to neglect. In urban areas, neglected land is the perfect place for weeds to take up residence. The conditions in a hellstrip being what they are – hot, dry, frequently trampled, and often polluted – also gives weeds a chance to show what they can do. It’s a wonder that any plant can survive in such conditions, but the wild flora of our cities consists of some pretty tough plants, and a hellstrip is an excellent location to familiarize yourself with some of these plants.

On a walk with Kōura, I came across a weedy hellstrip on Jefferson Street in downtown Boise. Many of the classic hellstrip challenges are present there – it’s surrounded by paved surfaces, there is lots of foot traffic in the area, parking is permitted on the roadside, urban infrastructure (street signs, parking meters, stoplights) is present within the strip. It’s clear that at one point the area was being maintained as irrigation is installed and there are remnants of turfgrass. Three honey locusts were also planted in the strip, one of which has clearly died. Now that maintenance seems to have ceased, weeds have become the dominant flora in this hellstrip. What follows are a few photos and a list of the weeds I’ve identified so far. Like all posts in the Weeds of Boise series, this list may be updated as I continue to check back in on this location.

shepherd’s purse (Capsella bursa-pastoris) and prickly lettuce (Lactuca serriola)
dandelion (Taraxacum officinale)
salsify (Tragopogon dubius)
seed head of salsify
knotweed (Poylgonum sp.)
prickly lettuce (Lactuca serriola)
mallow (Malva neglecta)
orchard grass (Dactylis glomerata)
  • Bromus tectorum (cheatgrass)
  • Capsella bursa-pastoris (shepherd’s purse)
  • Dactylis glomerata (orchard grass)
  • Epilobium brachycarpum (tall willowherb)
  • Lactuca serriola (prickly lettuce)
  • Malva neglecta (dwarf mallow)
  • Polygonum sp. (knotweed)
  • Salsola sp. (Russian thistle)
  • Taraxacum officinale (dandelion)
  • Tragopogon dubius (salsify)
  • Trifolium repens (white clover)
  • Vulpia myuros (rattail fescue)

Are there unkept hellstrips in your neighborhood? If so, what weeds have you seen taking up residence there?

Weeds of Boise: Vacant Lot on West Kootenai Street

Every urban area is bound to have its share of vacant lots. These are sites that for whatever reason have been left undeveloped or were at one point developed but whose structures have since been removed. The maintenance on these lots can vary depending on who has ownership of them. Some are regularly mowed and/or treated with herbicide, while others go untouched for long periods of time. Even when there is some weed management occurring, vacant lots are locations where the urban wild flora dominates. Typically no one is coming in and removing weeds in an effort to cultivate something else, and so weeds run the show.

As with any piece of land populated by a diverse suite of wild plants, vacant lots are dynamic ecosystems, which you can read all about in the book Natural History of Vacant Lots by Matthew Vessel and Herbert Wong. The impact of humans can be seen in pretty much any ecosystem, but there are few places where that impact is more apparent than in a vacant lot. In lots located in bustling urban centers, human activity is constant. As Vessel and Wong write, “numerous ecosystem interactions are affected when humans intervene by spraying herbicides or insecticides, by trampling, by physically altering the area, or by depositing garbage and waste products.” These activities “can abruptly alter the availability and types of small habitats; this will in turn affect animal as well as plant diversity and population dynamics.” The dynamic nature of these sites is a reason why vacant lots are excellent places to familiarize yourself with the wild urban flora.

Kōura relaxing in a vacant lot

On our morning walks, Kōura and I have been visiting a small vacant lot on West Kootenai Street. We have watched as early spring weeds have come and gone, summer weeds have sprouted and taken off, perennial weeds have woken up for the year, and grass (much of which appears to have been intentionally planted) has grown tall and then been mowed with some regularity. Someone besides us is looking after this vacant lot, and it’s interesting to see how the plant community is responding. As Vessel and Wong note, “attempts to control weedy plants by mowing, cultivating, or spraying often initiate the beginning of a new cycle of growth.” For plants that are adapted to regular disturbance, measly attempts by humans to keep them in check are only minor setbacks in their path to ultimate dominance.

What follows are a few photos of some of the plants we’ve seen at the vacant lot on Kootenai Street, as well as an inventory of what can be found there. This list is not exhaustive and, as with other Weeds of Boise posts, will continue to be updated as I identify more species at this location.

dandelion (Taraxacum officinale)
grape hyacinth (Muscari armeniacum)
henbit (Lamium amplexicaule)
wild barley (Hordeum murinum) backed by cheatgrass (Bromus tectorum)
narrowleaf plantain (Plantago lanceolata) and broadleaf plantain (Plantago major)
perrennial sweet pea (Lathyrus latifolius) surrounded by redstem filaree (Erodium cicutarium)
whitetop (Lepidium sp.)
white clover (Trifolium repens)
  • Bromus tectorum (cheatgrass)
  • Capsella bursa-pastoris (shepherd’s purse)
  • Ceratocephala testiculata (bur buttercup)
  • Descurainia sophia (flixweed)
  • Draba verna (spring draba)
  • Erodium cicutarium (redstem filaree)
  • Geum urbanum (wood avens)
  • Holosteum umbellatum (jagged chickweed)
  • Hordeum murinum (wild barley)
  • Lactuca serriola (prickly lettuce)
  • Lamium amplexicaule (henbit)
  • Lathyrus latifolius (perennial sweet pea)
  • Lepidium sp. (whitetop)
  • Malva neglecta (dwarf mallow)
  • Muscari armeniacum (grape hyacinth)
  • Plantago lanceolata (narrowleaf plantain)
  • Plantago major (broadleaf plantain)
  • Poa bulbosa (bulbous bluegrass)
  • Poa pratensis (Kentucky bluegrass)
  • Rumex crispus (curly dock)
  • Taraxacum officinale (dandelion)
  • Tragopogon dubius (salsify)
  • Trifolium repens (white clover)
  • Veronica sp. (speedwell)

If you live in an urban area, chances are good there is a vacant lot near you. What have you found growing in your neighborhood vacant lot? Feel free to share in the comment section below.

In Praise of Vagabond Plants – A Book Review

A weed is a highly successful plant that shares a close relationship with humans. In many instances, weeds are seen as nuisance plants, interfering with the goals and intentions we have for a piece of land. In natural areas, they are blamed for, among other things, threatening the existence of the native flora, despite the fact that human activity and disturbance brought them there in the first place and continued human disturbance helps keep them there. In some instances, such as a vacant lot in an urban area, they pose no threat and their existence causes little if any harm, yet they are disparaged for being unsightly, hazardous, and out of place. Nevermind the fact that they are offering a number of ecosystem services free of charge.

For all these reasons and more, weeds get called some pretty nasty things and are the recipient of an unduly amount of ire. The extent that some of us will go to vilify a plant is a bit disturbing to me, so it’s always refreshing to come across a more reasonable approach to weeds. That tempered take is what I found in Gareth Richards’ book, Weeds: The Beauty and Uses of 50 Vagabond Plants, a production of the Royal Horticultural Society and whose vast archives were used to beautifully illustrate the book.

There seems to be a growing trend in the U.K. and other parts of Europe to be more accepting of weeds, to see them as part of our urban, suburban, and exurban flora, and to focus on the value they may bring rather than constantly reviling them as interlopers and thus trying to blast them out of existence with chemical warfare. (See also Wild About Weeds by Jack Wallington). I hope this is true, and I hope the trend continues and catches on in other parts of the world. As Richards writes, “Often the only crime a plant has committed is growing too well.” Thankfully, books like this help bring awareness to these highly fecund and robust plants and their many redeeming qualities.

Richards’ book starts out with a brief introduction and then proceeds with short profiles of 50+ different plant species that are commonly considered weeds. The focus of the book is on weeds found in the U.K.; however, weeds being what they are, at least a few (if not most) of the plants covered are bound to be growing near you regardless of where you live in the world. While there is some discussion of the invasive nature of a few of the plants profiled and the illegality of growing or transporting them – see Japanese knotweed, Himalayan balsam, and pontic rhododendron for example – the focus is not on management nor control. Instead, the discussion revolves around interesting aspects of the plants that makes them worth getting to know rather than something to simply eliminate.

As is often the case when discussing specific plants, medicinal uses and edibility feature heavily in Richards’ plant profiles. It’s interesting to learn about the many ways that humans have thought about and used plants historically, and some of the ways they were historically used are certainly still relevant today; however, many medicinal claims don’t stand the test of time nor do they have empirical evidence to back them up. For this reason, I generally take medicinal uses of plants with a grain of a salt and a healthy dose of skepticism. Edibility, on the other hand, has always been interesting to me, and just when I thought I had heard all the ways that dandelions can be eaten, Richards introduces me to another: “You can even harvest the flower buds for pickling; they make a useful homegrown caper substitute.”

What follows are a few excerpts from the book with accompanying photos of the plants in question.

Ground elder (Aegopodium podagraria) was originally introduced to gardens for its medicinal and edible qualities, but its aggressive behavior can be frustrating. Richards notes, “A useful plant for brave gardeners!”
The rhizomatous nature of yarrow (Achillea millefolium) makes it an excellent addition or alternative to turf grass, and thanks to its drought-tolerance, Richards asserts, “certainly lawns containing yarrow stay greener for longer in dry spells.
Speaking of lawns, “Creeping buttercup (Ranunculus repens) in your lawn is generally a sign that it’s too wet for short grass to thrive.” Richards recommends letting it become a meadow instead. “Sometimes the most rewarding way of gardening is to let nature do it for you.”
Regarding teasel (Dipsacus spp.), Richards writes: “It’s not only bees that adore them; when the seeds ripen they’re loved by birds, especially goldfinches. Try planting some in your garden as a homegrown alternative food source to replace shop-bought nyjer seed.” (photo credit: Sierra Laverty)
“Cats and dogs seek out couch grass (Elymus repens) when they want to chew on something – either for its minerals or to help them vomit to clear their stomachs, often of furballs.” Kōura can frequently be found chewing on it.
“Like many weeds, herb bennet (Geum urbanum) has some clever adaptations. Its nondescript leaves blend seamlessly with other plants, never drawing attention to themselves. And those [clove-scented] roots are really tough, making plants physically difficult to pull up by hand. … The seeds have small hooks and readily attach themselves to fur and clothing to hitch a free ride to pastures new.”

Regardless of how you feel about weeds, if you’re interested in plants at all, this book is worth getting your hands on and these plants are worth getting to know. They may not be the plants you prefer to see growing on your property, but they have interesting stories to tell and, in many cases, may not be as big of a problem as you originally thought. In discussing Spanish bluebells (Hyacinthoides hispanica) and its weedy relatives, Richards hits on a point that for me is one of the main takeaways of this book: “In an age where gardens are becoming wilder and the countryside ever more fragmented, and nature is on the march due to climate change, perhaps we should just learn to treasure the wild plants that thrive in the the new conditions we have made – wherever they originally came from.”

More Weeds Themed Book and Zine Reviews:

The Wonderful World of Plantlets, Bulbils, Cormlets, Tubercles, and Gemmae

Probably the most well known strategy that plants have for dispersal is by way of seeds. Seeds are plants in embryo, and new generations of plants are born when seeds, released from their parent plants, find suitable locations to germinate. But one of the most amazing things about plants in general is that they have the ability to reproduce in a variety of different ways, and many plant species are not limited to seeds as their only means of dispersal. A paper by Scott Zona and Cody Coyotee Howard, published in Flora (February 2022), introduces us to the intriguing world of aerial vegetative diaspores – just one of the many ways that plants have to get around.

A diaspore is a plant structure that facilitates dispersal. Seeds are diaspores, as are spores, which are produced by non-seed bearing plants like mosses and ferns. If you’ve ever planted bulbs, you’ve handled another type of diaspore. Bulbs and corms, which many spring flowering plants are grown from, form little offshoots called bulblets and cormels that, when detached from their parent structure, can grow into new individuals. These vegetative diaspores are produced below ground. Aerial vegetative diaspores, on the other hand, are formed on above ground plant parts. This clunky term encompasses a number of different structures that are often simply called bulbils, which Zona and Howard explain is used as “a catch-all term that obscures their morphological identity.”

Compiling a list of plant species that feature aerial vegetative diaspores is a difficult task when plant descriptions from various sources use a broad selection of terminology for the same or similar plant parts. To help complete this task, Zona and Howard defined five distinct types of aerial vegetative diaspores – plantlets, bulbils, cormlets, tubercles, and gemmae – and came up with a list of 252 taxa that are known to feature at least one of these structures.

plantlets on the leaf margin of Kalanchoe daigremontiana (wikimedia commons; Aurélien Mora)

Plantlets are miniature plants attached to another plant. Once mature, they have clearly visible leaves, stems, and roots (or root initials) and are non-dormant, meaning they are ready to grow on their own as soon as they’re given the opportunity. The tiny plants borne along the margins of the leaves of mother of thousands (Kalanchoe daigremontiana) is a great example of a plantlet.

A bulbil consists of a shortened stem surrounded by scale leaves modified for food and water storage. Sometimes root initials are visible at the base of the bulbil. Bulbils remain dormant until they are dispersed and conditions are suitable for growth. When bulbils start growing but remain attached to the plant, they become a plantlet. A good example of a bulbil can be found on bulbous bluegrass (Poa bulbosa).

Cormlets are comprised of stem tissue and, like plantlets and bulbils, have a single axis of polarity. They have highly reduced scale leaves and are dormant at dispersal. Bulbil bugle lily (Watsonia meriana), despite its misleading common name, is a good example of a plant that produces cormlets.

Tubercles are made up of swollen stem tissue and, like tubers (their underground counterparts), have multiple shoot buds and multiple axes of polarity (meaning there is no right side up like there is in plantlets, bulbils, and cormlets). They lack scale leaves and are dormant at dispersal. Air potato (Dioscorea bulbifera) is an example of a tubercle-producing plant. As you might guess from the common name, potato-like structures are produced aerially on this vining plant that was introduced to North America from Africa and is now invasive in Florida.

A gemma is a tiny cluster of undifferentiated cells. Gemmae are non-dormant and lack polarity. They are the smallest and least common form of aerial vegetative diaspore and can be found on Drosera pygmaea, a species of sundew native to parts of Australia and New Zealand.

Drosera pygmaea (wikimedia commons; Björn S…)

Zona and Howard’s list of plants with aerial vegetative diaspores is the most comprehensive list to date – although it is undoubtedly and understandably missing some – and includes representatives from 42 plant families and 21 plant orders. Plantlets are the most common form of aerial vegetative diaspore at 116 taxa, with bulbils coming in second at 72. Cormlets and tubercles are less common, with 25 and 16 taxa respectively. Their paper includes the full list and offers further information about many of the species listed. It’s worth taking time to explore and is a valuable resource for anyone interested in the topic. In addition, their discussion section highlights a number of questions that warrant further investigation.

Questions surrounding reproductive strategies and the dispersal of aerial vegetative diaspores are particularly interesting. Because these structures are vegetative, they are essentially clones of the parent plant, meaning there is no genetic mixing as occurs when seeds are produced. This can be an advantage when sexual reproduction isn’t possible due to lack of pollinators, environmental restrictions, or chromosomal/polyploidy anomalies. It also assures that new individuals are pre-adapted to the site, and it can help a species colonize an area quickly. This ability to rapidly colonize explains why several of the species on Kona and Howard’s list are known to be invasive in parts of the world outside of their native range.

A species that produces both seeds and aerial vegetative diaspores may have an advantage when it comes to dispersal since both types of diaspores have their strengths. Seeds can remain dormant in the soil and are likely to persist in the environment longer than vegetative diaspores, but vegetative diaspores can be produced without relying on pollinators and can establish new individuals quickly. The modes of dispersal between the two can also vary. Seeds can be dispersed by wind or carried away by animals, while vegetative diaspores often rely solely on gravity to get around. One exception is hitchhiker elephant ear (Remusatia vivipara), whose bulbils are equipped with tiny hooks that cling to animal fur and are transported in a similar manner to burs.

hooked bulbils of hitchhiker elephant ear (Remusatia vivipara) (wikimedia commons; Dinesh Valke)

When the advantages of aerial vegetative diaspores are considered, it is a wonder that we don’t see them more often. Many plants can be easily propagated by taking stem, leaf, and/or root cuttings and placing them in conditions that favor adventitious root and shoot growth. This may suggest that dormant genetic pathways for producing vegetative diaspores exist in most plants. Or maybe not. Genetic studies of species that feature these structures are needed in order to understand why they are found in some species and not others. Kona and Howard leave us with a slew of research questions like this, and it’s a topic I’ll continue to check in on.


Follow and support Awkward Botany here: https://linktr.ee/awkwardbotany

Weeds of Boise: iNaturalist Observations

So far, the lists of weeds at each of the Weeds of Boise sites look pretty similar, with several weed species showing up at nearly every site and other species only occasionally making an appearance. This isn’t a surprise really. The flora of any region typically has several species that are dominant, along with species that occur less frequently. Wild urban flora – or in other words, the naturalized weeds in urban areas – may follow a similar pattern. My unscientific and infrequent surveys, all of which have been pretty close to where I live, aren’t yet representative of the Boise area as a whole. However, something like iNaturalist might help with that. For this reason, I took a look at iNaturalist observations to get a better idea as to which species dominate the wild urban flora of Boise, Idaho.

iNaturalist is a website and app that allows users to identify, map, and share observations of living things with the rest of the world. It has been in use for over a decade and is easily one of the most popular community science, biodiversity mapping, and identification apps around. Even though it is not the primary mission of iNaturalist, the information gathered from user observations is frequently used in scientific research and conservation efforts. With over 80 million observations worldwide, iNaturalist offers a pretty decent picture of the plants, animals, fungi, and other living things found in just about any given location. You don’t even need to a registered user to browse the observations and find out what has been spotted near you or across the globe.

In order to come up with a list of weeds that have been observed in Boise by iNaturalist users, I entered “Boise City Metropolitan Area, ID, USA” into the Location field. It is possible to narrow your search to individual neighborhoods or even broaden your search to include a larger area. Clicking on the map allows you to see the area represented in your search. For my purposes, I figured that the number of observations would change if the area covered was either smaller or larger, but the list of weed species would largely remain the same. After you select your search area, you can filter out the results. Clicking on the plant icon limits the search to plants. At first I selected only introduced plants, but that seemed to eliminate a few of the plants that I would consider weeds, so instead I scanned through the entire list of plants and made a list of each of the weed species and how many times each had been observed.

There are of course limitations to using iNaturalist to create species lists, the main one being that you are relying on decisions made by iNaturalist users when it comes to what gets reported. In my case, in which I’m looking for a list of weed species found in Boise, I know there are plenty of weeds that iNaturalist users either aren’t noticing or aren’t bothering to report. The reported observations are also not likely to match the frequency at which they occur in the environment. Still, it’s interesting to see what gets reported and how often. It’s also interesting to see reports of things that I haven’t seen before. By clicking on individual observations, you can see where those observations were made, which means I know where I can go to find species I haven’t yet encountered.

What follows is a list of the top 25 weeds in the Boise area based on the number of iNaturalist observations, along with photos of some of the most reported weeds. A few of the species on the list, like cornflower, straddle the line between weed and desirable plant. I included them anyway because they are known to be naturalized outside of garden borders, even though some of the reported observations may have been intentionally planted within garden borders.

bittersweet nightshade (Solanum dulcamara)
pink-flowered field bindweed (Convolvulus arvensis)
great mullein (Verbascum thapsus)

Top 25 Weeds in the Boise City Metropolitan Area According to iNaturalist Observations (as of September 21, 2021)

  1. great mullein (Verbascum thapsus) – 110 
  2. common dandelion (Taraxacum officinale) – 98
  3. redstem stork’s-bill (Erodium cicutarium) – 83
  4. chicory (Cichorium intybus) – 62
  5. heart-podded hoary cress (Lepidium draba) – 61
  6. cornflower (Centaurea cyanus) – 58
  7. rush skeletonweed (Chondrilla juncea) – 56
  8. purple loosestrife (Lythrum salicaria) – 49
  9. bittersweet nightshade (Solanum dulcamara) – 47
  10. alfalfa (Medicago sativa) – 46
  11. common soapwort (Saponaria officinalis) – 43
  12. dwarf mallow (Malva neglecta) – 42
  13. donkey tail (Euphorbia myrsinites) – 40 
  14. poison hemlock (Conium maculatum) – 39
  15. field bindweed (Convolvulus arvensis) – 39 
  16. bulbous meadow-grass (Poa bulbosa) – 39
  17. yellow salsify (Tragopogon dubius) – 38
  18. crested wheatgrass (Agropyron cristatum) – 37 
  19. cheatgrass (Bromus tectorum) – 36
  20. moth mullein (Verbascum blattaria) – 36 
  21. hound’s-tongue (Cynoglossum officinale) – 31
  22. Virginia creeper (Parthenocissus quinquefolia) – 30
  23. catnip (Nepeta cataria) – 29
  24. white clover (Trifolium repens) – 29
  25. yellow iris (Iris pseudacorus) – 28
Virginia creeper (Parthenocissus quinquefolia)
catnip (Nepeta cataria)
common soapwort (Saponaria officinalis)

Eating Weeds: Japanese Knotweed

When I first learned that Japanese knotweed was edible, I had my doubts. Sure, lots of plants may be edible, but are they really something you’d want to eat? I know Japanese knotweed as one of the most notorious weeds on the planet. Its destructive, relentless, and prolific nature has landed it on the world’s 100 worst invasive species list, right up there with black rats, Dutch elm disease, and killer algae. Having encountered a fair number of Japanese knotweed stands, the first thing to come to mind has never been, “that looks delicious.” Mature stalks stand as tall as 3 meters with broad, leathery leaves and hollow, bamboo-like stems. Their late summer flowers – a mess of tiny white florets on sprawling flower stalks – are a pollinator’s delight and favored by beekeepers for their abundant nectar. I don’t doubt that the honey produced from such an encounter is tasty, but the plant itself? I needed convincing.

Finally, I looked into it. I came across recipes of Japanese knotweed pickles and learned that it was the young, early emerging shoots that were sought after. That changed my perspective. Certainly you wouldn’t want to gnaw on a woody, 4 foot tall Japanese knotweed stalk, but the tender stems as they’re just beginning to re-emerge from the ground in the spring? Now those might be worth trying.

emerging stems of Japanese knotweed (Reynoutria japonica)

Japanese knotweed (Reynoutria japonica) was introduced to Europe from Japan in the 1800’s, arriving at Royal Botanic Gardens Kew by 1850. At that point, it was a prized ornamental. Its thick stems spotted with reds and purples, its broad, shiny leaves, and its showy flower heads all gave it garden appeal. It was also found to be useful for stabilizing hillsides and reducing erosion, honey production, and as a rhubarb substitute (it’s in the same plant family as rhubarb after all). Not long after that, it made its way to North America. Certainly people must have been aware of its propagative prowess as they moved the plant around. It readily roots from root and stem fragments, plus it produces extensive rhizomes, working their way as deep as 3 meters into the soil and as far as 7 meters away from the parent plant. Perhaps that should have been cause for alarm, but how could anyone have predicted just how aggressive and widespread it would soon become?

Thanks to the plant’s rhizomes, Japanese knotweed grows in thick, many-stemmed stands, pushing out, shading out, and leaving very little room for other plants. The rhizomes are also tough and can push up through gravel, cement, and asphalt. They are notorious for damaging foundations, pipes, and even pushing their way through floorboards. If that’s not enough, Japanese knotweed is pretty much impossible to kill. Herbicides may set it back, but they generally don’t take it out. Cutting it down repeatedly can slow it down, but it may also encourage it to grow more thickly and spread out more widely. Smothering it can work, but you have to be prepared to keep it smothered for quite a while. The deep rhizomes are slow to die, and they may eventually find their way outside of the smothered area, popping up to destroy your efforts to contain it. You can try to dig it out, but the amount of dirt you’d have to dig to get every last root and rhizome really isn’t feasible in most circumstances.

But hey, you can eat it, and perhaps you should. A quick internet search reveals a number of ways the plant can be consumed – purees, chutneys, compotes, sorbets. I chose to go with pickled Japanese knotweed. It seemed simple and approachable enough and a good way to determine if I was going to like it or not. Room temperature brine fermentation is pretty easy. You basically put whatever you’re wanting to pickle in a jar, add whatever spices and things you’d like, fill the jar with salty water, then seal it shut and let it sit there for a few days. Before you know it, you’ve got pickles.

There are several recipes for pickled Japanese knotweed to choose from. I went with this one. The seasonings I used were a bit different, and the stalks I had weren’t as “chubby” as recommended, but otherwise my approach was the same. After a few days, I gave them a try. I was pleasantly surprised. I thought they tasted a little like nopales. Sierra reluctantly tried them and was also surprised by how good they were. They reminded her of pickled asparagus. Other sources describe them as lemony, crunchy, tart and suggest serving them with fish, ramen, or even adding them to a cocktail made with purslane. Many of the weeds I’ve tried have been a fun experience, but not necessarily something I need to repeat. Japanese knotweed pickles, on the other hand, could become a spring tradition for me, and since we’re pretty much stuck with this plant, I’m sure to have a steady supply.

More Eating Weeds Posts on Awkward Botany:

Weeds of Boise: Northwest Corner of Ann Morrison Park

The Boise River, which winds its way through the City of Boise, is flanked by a series of parks known collectively as the Ribbon of Jewels, named in honor of prominent women in the community. Most of these parks are vast expanses of turfgrass scattered with large trees and are meticulously maintained, except near the river where the vegetation is allowed to run a little wild. It is within these narrow strips of land, bordered on one side by the river and the other by regularly mowed turfgrass, that a veritable nature walk can be had right in the heart of the city.

While a few native plant species can be found in these strips, much of the vegetation is introduced. Some of the non-native trees and shrubs may have been intentionally planted, while others came in on their own. Most of the grasses and forbs in the understory are weedy plants commonly seen on all manner of disturbed lands. There are also, of course, a few weeds specific to riparian areas. Due to the wild nature of these strips and the abundance of introduced plants, the river’s edge makes for a great place to become acquainted with our wild urban flora.

Looking at the northwest corner of Ann Morrison Park from the Americana Boulevard Bridge

Because these parks (which include the Boise River Greenbelt) stretch for miles through the city, practically any spot along the way could be a good place to look for weeds. I chose to narrow my search to the northwest corner of Ann Morrison Park. What follows are a few images of some of the plants I found there, along with a list of what I was able to identify during my brief visits this spring. The list will surely grow as I check back from time to time. If you’re interested in learning more about the Boise River and its importance – not just to the humans who call Boise home, but also to myriad other living organisms – check out Boise River Enhancement Network and the work that they are doing to help protect and preserve this invaluable ecosystem.

yellow flag iris (Iris pseudacorus)

Russian olive (Elaeagnus angustifolia)

common mullein (Verbascum thapsus)

climbing nightshade (Solanum dulcamara)

cleavers (Galium aparine)

a strip of cheatgrass (Bromus tectorum)

seed head of dandelion (Taraxacum officinale)

western salsify (Tragopogon dubius)

bull thistle (Cirsium vulgare)

Amur honeysuckle (Lonicera maackii)

creeping buttercup (Ranunculus repens)

Weeds found at the northwest corner of Ann Morrison Park (while several of the trees and shrubs at this location are introduced, I only included those species that are generally considered to be weedy or invasive):

  • Amorpha fruticosa (false indigo bush)
  • Anthriscus caucalis (bur chervil)
  • Arctium minus (common burdock)
  • Bromus tectorum (cheatgrass)
  • Capsella bursa-pastoris (shepherd’s purse)
  • Cerastium vulgatum (mouse-ear chickweed)
  • Cirsium arvense (creeping thistle)
  • Cirsium vulgare (bull thistle)
  • Chondrilla juncea (rush skeletonweed)
  • Convolvulus arvensis (field bindweed)
  • Conyza canadensis (horseweed)
  • Cynoglossum officinale (houndstongue)
  • Descurainia sophia (flixweed)
  • Elaeagnus angustifolia (Russian olive)
  • Erodium cicutarium (redstem filaree)
  • Euonymus fortunei (winter creeper)
  • Galium aparine (cleavers)
  • Hordeum murinum ssp. glaucum (smooth barley)
  • Iris pseudacorus (yellow flag iris)
  • Lactuca serriola (prickly lettuce)
  • Lamium amplexicaule (henbit)
  • Lonicera maackii (Amur honeysuckle)
  • Malva neglecta (common mallow)
  • Medicago lupulina (black medic)
  • Parthenocissus quinquefolia (Virginia creeper)
  • Plantago lanceolata (narrowleaf plantain)
  • Poa bulbosa (bulbous bluegrass)
  • Polygonum aviculare (prostrate knotweed)
  • Ranunculus repens (creeping buttercup)
  • Rumex crispus (curly dock)
  • Sisymbrium altissimum (tumble mustard)
  • Solanum dulcamara (climbing nightshade)
  • Sonchus sp. (annual sow thistle)
  • Taraxacum officinale (dandelion)
  • Tragopogon dubius (salsify)
  • Trifolium repens (white clover)
  • Ulmus pumila (Siberian elm)
  • Verbascum thapsus (common mullein)

Like all posts in the Weeds of Boise series, this will be updated as I identify and photograph more of the weeds found in this location.

Dispersal by Bulbils – A Bulbous Bluegrass Story

The main way that a plant gets from place to place is in the form of a seed. As seeds, plants have the ability to travel miles from home, especially with the assistance of outside forces like wind, water, and animals. They could also simply drop to the ground at the base of their parent plant and stay there. The possibilities are endless, really.

But what about plants that don’t even bother making seeds? How do they get around? In the case of bulbous bluegrass, miniature bulbs produced in place of flowers function exactly like seeds. They are formed in the same location as seeds, reach maturity and drop from the plant just like seed-bearing fruits, and are then dispersed in the same ways that seeds are. They even experience a period of dormancy similar to seeds, in that they lie in wait for months or years until the right environmental conditions “tell” them to sprout. And so, bulbils are basically seeds, but different.

bulbous bluegrass (Poa bulbosa)

Bulbous bluegrass (Poa bulbosa) is a Eurasian native but is widely distributed outside of its native range having been repeatedly spread around by humans both intentionally and accidentally. It’s a short-lived, perennial grass that can reach up to 2 feet tall but is often considerably shorter. Its leaves are similar to other bluegrasses – narrow, flat or slightly rolled, with boat-shaped tips and membranous ligules – yet the plants are easy to distinguish thanks to their bulbous bases and the bulbils that form in their flower heads. Their bulbous bases are actually true bulbs, and bulbous bluegrass is said to be the only grass species that has this trait. Just like other bulb-producing plants, the production of these basal bulbs is one way that bulbous bluegrass propagates itself.

basal bulbs of bulbous bluegrass

Bulbous bluegrass is also propagated by seeds and bulbils. Seeds form, like any other plant species, in the ovary of a pollinated flower. But sometimes bulbous bluegrass doesn’t make flowers, and instead modifies its flower parts to form bulbils in their place. Bulbils are essentially tiny, immature plants that, once separated from their parent plant, can form roots and grow into a full size plant. The drawback is that, unlike with most seeds, no sexual recombination has occurred, and so bulbils are essentially clones of a single parent.

The bulbils of bulbous bluegrass sit atop the glumes (bracts) of a spikelet, which would otherwise consist of multiple florets. They have dark purple bases and long, slender, grass-like tips. Bulbils are a type of pseudovivipary, in that they are little plantlets attached to a parent plant. True vivipary occurs when a seed germinates inside of a fruit while still attached to its parent.

Like seeds, bulbils are small packets of starch and fat, and so they are sought ought by small mammals and birds as a source of food. Ants and small rodents are said to collect and cache the bulbils, which is one way they get dispersed. Otherwise, the bulbils rely mostly on wind to get around. They then lie dormant for as long as 2 or 3 years, awaiting the ideal time to take root.

bulbils of bulbous bluegrass

Bulbous bluegrass was accidentally brought to North America as a contaminant in alfalfa and clover seed. It was also intentionally planted as early as 1907 and has been evaluated repeatedly by the USDA and other organizations for use as a forage crop or turfgrass. It has been used in restoration to stabilize soils and reduce erosion. Despite numerous trials, it has consistently underperformed mainly due to its short growth cycle and long dormancy period. It is one of the first grasses to green up in the spring, but by the start of summer it has often gone completely dormant, limiting its value as forage and making for a pretty pathetic turfgrass. Otherwise, it’s pretty good at propagating itself and persisting in locations where it hasn’t been invited and is now mostly considered a weed – a noxious one at that according to some states. Due to its preference for dry climates, it is found most commonly in western North America.

In its native range, bulbous bluegrass frequently reproduces sexually. In North America, however, sexual reproduction is rare, and bulbils are the most common method of reproduction. Prolific asexual reproduction suggests that bulbous bluegress populations in North America should have low genetic diversity. Researchers set out to examine this by comparing populations found in Washington, Oregon, and Idaho. Their results, published in Northwest Science (1997), showed a surprising amount of genetic variation within and among populations. They concluded that multiple introductions, some sexual reproduction, and the autopolyploidy nature of the species help explain this high level of diversity.

———————

Interested in learning more about how plants get around? Check out the first issue of our new zine Dispersal Stories.

Winter Interest in the Lower Boise Foothills

The Boise Foothills, a hilly landscape largely dominated by shrubs and grasses, are a picturesque setting any time of the year. They are particularly beautiful in the spring when a wide array of spring flowering plants are in bloom, and then again in late summer and early fall when a smaller selection of plants flower. But even when there aren’t flowers to see, plants and other features in the Foothills continue to offer interest. Their beauty may be more subtle and not as immediately striking as certain flowers can be, but they catch the eye nonetheless. Appeal can be found in things like gnarled, dead sagebrush branches, lichen covered rocks, and fading seed heads. Because the lower Boise Foothills in particular have endured a long history of plant introductions, an abundance of weeds and invasive plants residing among the natives also provide interest.

This winter has been another mild one. I was hoping for more snow, less rain, and deeper freezes. Mild, wet conditions make exploring the Foothills difficult and ill-advised. Rather than frozen and/or snow covered, the trails are thick with mud. Walking on them in this state is too destructive. Avoiding trails and walking instead on trail side vegetation is even more destructive, and so Foothills hiking is put on hold until the ground freezes or the trails dry out. This means I haven’t gotten into the Foothills as much as I would like. Still, I managed to get a few photos of some of the interesting things the lower Boise Foothills have to offer during the winter. What follows is a selection of those photos.

snow melting on the fruit of an introduced rose (Rosa sp.)

fading seed heads of hoary tansyaster (Machaeranthera canescens)

samaras of box elder (Acer negundo)

snow on seed heads of yarrow (Achillea millefolium)

gall on introduced rose (Rosa sp.)

sunflower seed heads (Helianthus annuus)

sunflower seed head in the snow (Helianthus annuus)

snow falling in the lower Boise Foothills

fading seed heads of salsify (Tragopogon dubius)

lichen on dead box elder log

seed head of curlycup gumweed (Grindelia squarrosa)

lichen and moss on rock in the snow

fruits of poison ivy (Toxicodendron radicans)

See Also: Weeds and Wildflowers of the Boise Foothills (June 2015)

———————-

The first issue of our new zine, Dispersal Stories, is available now. It’s an ode to traveling plants. You can find it in our Etsy Shop

From Cut Flower to Noxious Weed – The Story of Baby’s Breath

One of the most ubiquitous plants in cut flower arrangements hails from the steppes of Turkey and neighboring countries in Europe and Asia. It’s a perennial plant with a deep taproot and a globe-shaped, multi-branched inflorescence loaded with tiny white flowers. In full bloom it looks like a small cloud hovering above the ground. It’s airy appearance earns it the common name baby’s breath, and the attractive and durable nature of its flowers and flower stalks, both fresh and dried, have made it a staple in the floral industry. Sadly, additional traits have led to it becoming a troublesome weed outside of its native range.

baby’s breath (Gypsophila paniculata) via wikimedia commons

Gypsophila paniculata is in the family Caryophyllaceae – sharing this distinction with other cut flowers like carnations and pinks, as well as other weeds like chickweed and soapwort. At maturity and in full bloom, baby’s breath might reach three to four feet tall; however, its thick taproot extends deep into the ground as much as four times its height. Its leaves are unremarkable and sparse, found mostly towards the base of the plant and sometimes with a blue or purplish hue. The flowers are numerous and small, have a sweet scent to them (though not appreciated by everyone), and are pure white (sometimes light purple or pink).

Each flower produces just a few seeds that are black, kidney-shaped, and minuscule. Many of them drop from their fruits and land near their parent plant, but some are retained within their little capsules as the flower stalk dries and becomes brittle. Eventually a stiff breeze knocks the entire inflorescence loose and sends it tumbling across the ground. Its rounded shape makes it an effective tumbleweed, as the remaining seeds are shaken free and scattered far and wide.

baby’s breath flowers close up (via wikimedia commons)

Being a tumbleweed gives it an advantage when it comes to dispersing itself and establishing in new locations, but this is not the only trait that makes baby’s breath a successful weed. Its substantial taproot, tolerance to drought and a variety of soil conditions, and proclivity to grow along roadsides, in ditches, and abandoned fields also make it a formidable opponent. Mowing the plant down does little to stop it, as it grows right back from the crown. Best bets for control are repeated chemical treatments or digging out the top portion of the taproots. Luckily its seeds are fairly short-lived in the soil, so vigilant removal of seedlings and not allowing the plant to reproduce can help keep it in check. Baby’s breath doesn’t persist in regularly disturbed soil, so it’s generally not a problem in locations that are often cultivated like agricultural fields and gardens.

The first introductions of baby’s breath to North America occurred in the 1800’s. It was planted as an ornamental, but it wasn’t long before reports of its weedy nature were being made. One source lists Manitoba in 1887 as the location and year of the first report. It is now found growing wild across North America and is featured in the noxious weed lists in a few states, including Washington and California. It has been a particular problem on sand dunes in northwest Michigan, where it has been so successful in establishing itself that surveys have reported that 80% of all vegetation in certain areas is composed of baby’s breath.

baby’s breath in the wild (via wikimedia commons)

Invading sand dune habitats is particularly problematic because extensive stands of such a deep-rooted plant can over-stabilize the soil in an ecosystem adapted to regular wind disturbance. Plants native to the sand dunes can be negatively affected by the lack of soil movement. One species of particular concern is Pitcher’s thistle (Cirsium pitcheri), a federally threatened plant native to sand dunes along the upper Great Lakes. Much of the research on the invasive nature of baby’s breath and its removal comes from research being done in this region.

Among numerous concerns that invasive plants raise are the affects they can have on pollinator activity. Will introduced plants draw pollinators away from native plants or in some other way limit their reproductive success? Or might they help increase the number of pollinators in the area, which in turn could benefit native plants (something known as the magnet species effect)? The flowers of baby’s breath rarely self-pollinate; they require insect visitors to help move their pollen and are highly attractive to pollinating insects. A study published in the International Journal of Plant Sciences found that sand dune sites invaded by baby’s breath attracted significantly more pollinators compared to uninvaded sites, yet this did not result in more pollinator visits to Pitcher’s thistle. According to the researchers, “a reduction in pollinator visitation does not directly translate to a reduction in reproductive success,” but the findings are still a concern when it comes to the future of this threatened thistle.

Perhaps it’s no surprise that a plant commonly found in flower arrangements is also an invasive species, as so many of the plants we’ve grown for our own pleasure or use have gone on to cause problems in areas where they’ve been introduced. However, could the demand for this flower actually be a new business opportunity? Noxious weed flower bouquets anyone?

Related Posts: