Field Trip: UBC Botanical Garden and VanDusen Botanical Garden

Last week, we found ourselves in Vancouver, British Columbia for a work-related conference put on by American Public Gardens Association. In addition to learning heaps about plant collections and (among other things) the record keeping involved in maintaining such collections, we got a chance to visit two Vancouver botanical gardens. Both gardens were pretty big, so covering the entire area in the pace we generally like to go in the time that was allotted was simply not possible. Still, we were smitten by what we were able to see and would happily return given the chance. What follows are a few photos from each of the gardens.

UBC Botanical Garden

UBC Botanical Garden is located at the University of British Columbia. Established in 1916, it is Canada’s oldest university botanical garden. We saw a small fraction of the Asian Garden, which is expansive, and instead spent most of our time in other areas, including the Alpine Garden, the Carolinian Forest Garden, the Food Garden, and one of my favorite spots, the BC Rainforest Garden. The Rainforest Garden is a collection of plants native to British Columbia, which was the original focus of UBC Botanical Garden’s first director, John Davidson.

fall foliage of redvein enkianthus (Enkianthus campanulatus)

Franklin tree in bloom (Franklinia alatamaha) in the Carolinian Forest Garden

alpine troughs

bellflower smartweed (Aconogonon campanulatum)

cutleaf smooth sumac (Rhus glabra ‘Laciniata’) in the BC Rainforest Garden

the fruits of Gaultheria pumila in the E.H. Lohbrunner Alpine Garden

Himalayan blueberry (Vaccinium moupinense) in the E.H. Lohbrunner Alpine Garden

VanDusen Botanical Garden

VanDusen Botanical Garden is a 55 acre garden that opened in 1975 and is located on land that was once a golf course. It features an extensive collection of plants from around the world accompanied by a series of lakes and ponds as well as lots of other interesting features (like a Scottish Shelter, a Korean Pavilion, an Elizabethan Maze, and more). Our time there was far too brief. The whirlwind tour we joined, led by the education director, was a lot of fun, and if the threat of missing our bus wasn’t looming, we would have been happy to stay much longer.

Japanese anemone (Anemone x hybrida ‘Whirlwind’)

fall color on the shore of Heron Lake

knees of bald cypress (Taxodium distichum) in R. Roy Forster Cypress Pond

witch hazel (Hamamelis x intermedia ‘Pallida’)

a grove of giant redwoods (Sequoiadendron giganteum)

We tried the fruit of dead man’s fingers (Decaisnea insignis). It tastes a bit like watermelon.

Japanese stewartia (Stewartia pseudocamellia)

More Awkward Botany Field Trips:

Advertisements

Phylogenetic Arts and Crafts

This is a guest post by Rachel Rodman.

———————

The foods we eat – namely fruits, vegetables, and grains – are all products of their own evolutionary stories. Some of the most well-known chapters in these stories are the most recent ones – dramatic changes in size and shape mediated by human selection.

One especially striking example is that of Brassica oleracea –the source of broccoli, cauliflower, kale, Brussels sprouts, kohlrabi, and cabbage. Each of these diverse vegetables belongs to the same species, and each is the product of a different kind of selection, exerted on different descendants of a common ancestor.

Corn is another famous chapter. The derivation of corn – with its thick cobs and juicy kernels developed from the ancestral grain teosinte, which it barely resembles – has been described as “arguably man’s first, and perhaps his greatest, feat of genetic engineering.”

But these, again, are recent chapters. Relatively. They unfolded over the course of consecutive human lifetimes –hundreds of years or thousands at the outset (sometimes much less). They are the final flourishes (for the moment) on a much older story — a story that significantly precedes agriculture as well as humans.

It is this older story that lies at the heart of truly deep differences, like those at play in the idiom “apples and oranges.” The contrast between these two fruits can be mapped according to many measures: taste, smell, texture, visual appearance, and so on. When used colloquially, the phrase serves as a proxy for unmanageable difference — to describe categories that differ along so many axes that they can no longer be meaningfully compared.

However, in evolutionary terms, the difference between apples and oranges is not ineffable. It is not a folksy aphorism or a Zen puzzle at which to throw up one’s hands. To the contrary, it can be temporalized and quantified; or at least estimated. In fact, in evolutionary terms, that difference comes down to about 100 million years. That is, at least, the date (give or take) when the last common ancestor of apples and oranges lived — a flowering plant from the mid-Cretaceous.

The best way to represent these deep stories is with a diagram called a phylogenetic tree. In a phylogenetic tree, each species is assigned its own line, and each of these lines is called a branch. Points at which two branches intersect represent the common ancestor of the species assigned to these branches.

Phylogenetic trees can serve many purposes. Their classical function is to communicate a hypothesis – a pattern of familial relationships supported by a particular set of data based on DNA sequence, fossils, or the physical characteristics of living organisms.

But here are two alternate reasons to build trees:

  • To inspire wonder
  • Or (my favorite) just because

To reflect these additional motivations – this conviction that trees are for everyone and for all occasions and that an evolutionary tree belongs on every street corner – when I build trees, I often avail myself of a range of non-traditional materials. I’ve written previously about creating edible trees using cake frosting and fruit, as well as building trees out of state symbols and popular songs. Now here are two additional building materials, which are arguably even more fun.

First: Stickers. This one is titled: “Like Apples and Oranges…and Bananas.”

Bananas split ways with the common ancestor of apples and oranges about 150 million years ago, 50 million years before the split between apples and oranges. On this tree, these relationships are represented like so: the banana branch diverges from the apple branch at a deeper position on the trunk, and the orange branch diverges from the apple branch at a shallower position. 

All of the data required to build this tree  (and essentially any tree) is available at TimeTree.orgOn TimeTree, select “Get Divergence Time For a Pair of Taxa” at the top of the page. This is where one can obtain a divergence time estimate for most pairs of species. The divergence time is an approximate date, millions of years ago, at which the organisms’ last common ancestors may have lived. For more heavy duty assistance, there is the “Load a List of Species” option at the bottom of the page. Here, one can upload a list of species names (.txt), and TimeTree will generate a complete tree – a schematic that can serve as a guide in patterning one’s own phylogenetic artwork.

Here, by way of additional illustration, are three more sticker trees, equally charming and equally mouthwatering:

Carrot, watermelon, broccoli, strawberry, and pear.

Onion, asparagus, tomato, cucumber, and cherry.

Raspberry, apricot, pea, grape, and green pepper.

Sticker trees are festive takes on traditional trees. They are brighter, livelier, and more lovely. But, like traditional trees, they are also 2D, restricted to a flat sheet of paper. To extend one’s phylogenetic art projects into three dimensions, one must modify the choice of materials. There are many options. The following 3D tree, for example, employs 13 pieces of plastic toy food, the accouterments of a typical play kitchen. Segments of yarn serve as branches.

Trees like these, made of stickers or toys, constitute playful takes on deep questions. In pencil and yarn, they sketch a network of primeval relationships. They tell the history of our foods, a narrative whose origins profoundly precede us, as well as our intention to selectively breed them. To the Way-Before, to the Way-Way-Way-Before, these projects give shape and color. If and where they succeed, it is because they manage to do two things at once: To communicate a vast biological saga extending across many millions of years, and to be completely cute. Perhaps best of all – and let it not go unmentioned – anyone can make them.

———————

Bio: Rachel Rodman has a Ph.D. in Arabidopsis genetics and presently aspires to recast all of art, literature, and popular culture in the form of a phylogenetic tree.

How to Identify Puncture Vine (a.k.a. the Goathead Monster)

This post originally appeared on Idaho Botanical Garden’s blog. With the first annual Boise Goathead Fest fast approaching, the purpose of this post is to help people in the Treasure Valley identify goatheads so that they can collect them for drink tokens to use at the event. I’m reposting it here in hopes that people around the globe who are tormented by goatheads might benefit from it. All photos in this post were taken by Anna Lindquist.

———————

If you have spent much time on a bicycle in Boise, chances are you have been the victim of a goathead-induced flat tire. You probably even got a good look at the spiky nutlet as you went to remove it from your tire. But where did the culprit come from? No doubt, it came from a plant. But which one?

This is particularly useful to know right now because the first annual Boise Goathead Fest is coming up, and if you manage to fill a garbage bag full of these noxious weeds before the end of July, you will earn yourself a drink token. Fortunately, this plant is fairly easy to identify; however, there are a few look-a-likes, so it is important to familiarize yourself with the plant in question so you can be sure you are pulling the right one.

puncture vine (Tribulus terrestris)

Puncture vine, also known as goathead or Tribulus terrestris, is a warm season annual that is native to the Mediterranean region of southern Europe. It was introduced to North America unintentionally by early European settlers when the plant’s blasted burs snuck their way across the ocean in sheep wool. Since then, puncture vine has spread across the continent prolifically thanks to the hitchhiking prowess of its seeds.

Behold, the infamous Goathead Monster.

Puncture vine has a prostrate habit, meaning that its branches lie flat on the ground, spreading outward from a central location. It grows upward only when it is being shaded or crowded out. Its leaves are divided into several tiny leaflets, and its flowers are small and bright yellow with five petals. It is an otherwise pretty plant were it not for the threatening, jagged fruits that follow the flowers. As these fruits dry, they dislodge from the plant, split into five pieces, and lay in wait to puncture your tire, work their way into the bottom of your shoe or the foot of an animal, or latch onto some errant fur.

puncture vine (Tribulus terrestris)

Depending on the conditions, puncture vine either remains fairly small or spreads as much as six feet wide. Fruits start forming shortly after flowering, and seeds ripen soon after that, so if the plant isn’t removed quickly – nutlets and all – future populations are guaranteed. Luckily the plants are fairly easy to remove. Unless the ground is particularly compact, they pull up easily, and if they break off at the root, they generally don’t sprout back.

Virtually any plant that has a prostrate growth habit and is actively growing in the summer could, at first glance, be mistaken for puncture vine. Closer inspection will help confirm the plant’s true identity. Two plants that might confuse you are purslane and spotted spurge. Both of these species can be found growing in full sun in disturbed or neglected sites in close company with puncture vine.

Purslane has tiny, yellow, five-petaled flowers similar to puncture vine; however, its leaves are glossy and succulent-like and its stems and leaves often have a red to purple hue to them. Purslane seeds are miniscule, and while the plant can be a nuisance in a garden bed, it poses no threat to bicycles or wildlife.

purslane (Portulaca oleracea)

Spotted spurge, also known as prostrate spurge, can be quickly distinguished by the milky sap that oozes from its broken stems. Its leaves are generally reddish purple on the undersides with a purple spot on top. Its flowers are minute and its seeds even smaller. Because its sap contains latex and other chemicals, it can irritate the skin and poison creatures that dare eat it.

spotted spurge (Euphorbia maculata)

Both of these plants are introduced, weedy species, so even if they won’t count towards your drink token, it still doesn’t hurt to pull them. Puncture vine, however, is included on Idaho’s noxious weed list, which means it is particularly problematic. So take this opportunity to pull as many as you can, and hopefully we can put a sizeable dent in the population of a plant that has tormented Boise bicyclists for far too long.

See Also: Plant vs. Bike

Field Trip: Hoyt Arboretum and Leach Botanical Garden

Thanks to Sierra having a work-related conference to attend, I got the chance to tag along on a mid-July trip to Oregon. My mission while she was busy with her conference was to visit some gardens in Portland. What follows is a mini photo diary of my visits to Hoyt Arboretum and Leach Botanical Garden. Both are places I had never been to before. My visits may have been brief, but they were long enough to earn big thumbs up and a strong recommendation to pay them a visit.

Much of the Hoyt Arboretum is like walking through a dense forest. Here a Scots pine (Pinus sylvestris) marks a fork in the road. To the right is the White Pine Trail, and to the left is the Bristlecone Pine Trail.

Some of the trees are enormous. This western redcedar (Thuja plicata) is getting up there.

Looking up to admire the canopy was one of my favorite parts. Here I am below the canopy of a vine maple (Acer circinatum).

And now I am below the canopy of a tricolor beech (Fagus sylvatica ‘Tricolor’).

Thimbleberry (Rubus parviflorus) was abundant, and the fruits were at various stages of maturity.

There were a few flowers to look at as well. Bumblebees were all over this Douglas spirea (Spiraea douglasii). 

Ocean spray (Holodiscus discolor) was in its prime.

Leach Botanical Garden is considerably smaller than Hoyt Arboretum but is similarly wooded. There is a creek that runs through a small ravine with pathways winding up both sides and gardens to explore throughout.

In wooded areas like this, there are guaranteed to be ferns (and, of course, moss growing over the fern sign).

There were several fruiting shrubs, like this Japanese skimmia (Skimmia japonica).

And this Alaskan blueberry (Vaccininium ovalifolium, syn. V. alaskaense).

Wood sorrel (Oxalis spp.) was abundant and often attractively displayed.

I found this insect hotel in the upper section of the garden. Apparently some major developments are planned for this area. Learn more here.

———————

Have you visited any public gardens this summer? Leave your story and/or recommendation in the comment section below.

Beavers and Water Lilies – An Introduction to Zoochory

Beavers are classic examples of ecosystem engineers. It is difficult to think of an animal – apart from humans – whose day-to-day activities have more impact on the landscape than beavers. Their dam building activities create wetlands that are used by numerous other species, and their selective harvesting of preferred trees affects species composition in riparian areas. And that’s just the start. Their extensive evolutionary history and once widespread distribution has made them major players in the landscape for millions of years.

Today, the beaver family (Castoridae) consists of just two extant species: Castor fiber (native to Eurasia) and Castor canadensis (native to North America). Both species were hunted by humans to the brink of extinction but, thanks to conservation efforts, enjoy stable populations despite having been eliminated from much of their historical ranges. Before the arrival of Europeans, North American beavers are estimated to have been anywhere from 60 million to 400 million strong. Extensive trapping reduced the population to less than half a million. Today, 10 million or more make their homes in rivers, streams, and wetlands across the continent.

North American beaver (Castor canadensis) - photo credit: wikimedia commons

North American beaver (Castor canadensis) – photo credit: wikimedia commons

Beavers are herbivores, and they harvest trees and shrubs to build dams and lodges. Their interactions with plants are legion, and so what better way to introduce the concept of animal-mediated seed dispersal than beavers. Plants have several strategies for moving their seeds around. Wind and gravity are popular approaches, and water is commonly used by plants both aquatic and terrestrial. Partnering with animals, however, is by far the most compelling method. This strategy is called zoochory.

Zoochory has many facets. Two major distinctions are epizoochory and endozoochory. In epizoochory, seeds become attached in some form or fashion to the outside of an animal. The animal unwittingly picks up, transports, and deposits the seeds. The fruits of such seeds are equipped with hooks, spines, barbs, or stiff hairs that help facilitate attachment to an animal’s fur, feathers, or skin. A well known example of this is the genus Arctium. Commonly known as burdock, the fruits in this genus are called burs – essentially small, round balls covered in a series of hooks. Anyone who has walked through – or has had a pet walk through – a patch of burdocks with mature seed heads knows what a nuisance these plants can be. But their strategy is effective.

The burs of Arctium - photo credit: wikimedia commons

The burs of Arctium – photo credit: wikimedia commons

Endozoochory is less passive. Seeds that are dispersed this way are usually surrounded by fleshy, nutritious fruits desired by animals. The fruits are consumed, and the undigested seeds exit out the other end of the animal with a bit of fertilizer. Certain seeds require passage through an animal’s gut in order to germinate, relying on chemicals produced during the digestion process to help break dormancy. Other seeds contain mild laxatives in their seed coats, resulting in an unscathed passage through the animal and a quick deposit. Some plants have developed mutualistic relationships with specific groups of animals regarding seed dispersal by frugivory. When these animal species disappear, the plants are left without the means to disperse their seeds, which threatens their future survival.

Beavers rely on woody vegetation to get them through the winter, but in warmer months, when herbaceous aquatic vegetation is abundant, such plants become their preferred food source. Water lilies are one of their favorite foods, and through both consumption of the water lilies and construction of wetland habitats, beavers help support water lily populations. This is how John Eastman puts it in The Book of Swamp and Bog: “Beavers relish [water lilies], sometimes storing the rhizomes. Their damming activities create water lily habitat, and they widely disperse the plants by dropping rhizome fragments hither and yon.”

Fragrant water lily (Nympaea odorata) - photo credit: wikimedia commons

Fragrant water lily (Nymphaea odorata) – photo credit: wikimedia commons

The seeds of water lilies (plants in the family Nymphaceae) are generally dispersed by water. Most species (except those in the genera Nuphar and Barclaya) have a fleshy growth around their seeds called an aril that helps them float. Over time the aril becomes waterlogged and begins to disintegrate. At that point, the seed sinks to the bottom of the lake or pond where it germinates in the sediment. The seeds are also eaten by birds and aquatic animals, including beavers. The aril is digestible, but the seed is not.

In her book, Once They Were Hats, Frances Backhouse writes about the relationship between beavers and water lilies. She visits a lake where beavers had long been absent, but were later reintroduced. She noted changes in the vegetation due to beaver activity – water lilies being only one of many plant species impacted.

Every year in late summer, the beavers devoured the seed capsules [of water lilies], digested their soft outer rinds and excreted the ripe undamaged seeds into the lake. Meanwhile, as they dredged mud from the botom of the lake for their construction projects, they were unintentionally preparing the seed bed. Seeing the lilies reminded me that beavers also inadvertantly propagate willows and certain other woody plants. When beavers imbed uneaten sticks into dams or lodges or leave them lying on moist soil, the cuttings sometimes sprout roots and grow.

Other facets of zoochory include animals hoarding fruits and seeds to be eaten later and then not getting back to them, or seeds producing fleshy growths that ants love called elaiosomes, resulting in seed dispersal by ants. Animals and plants are constantly interacting in so many ways. Zoochory is just one way plants use animals and animals use plants, passively or otherwise. These relationships have a long history, and each one of them is worth exploring and celebrating.

Diospyrobezoars, or Persimmons Are Trying to Kill You

Plants that are otherwise perfectly edible can still find a way to kill you. That seems to be the lesson behind phytobezoars. A bezoar is a mass of organic or inorganic material found trapped in the gastrointestinal tract of animals. Bezoars are categorized according to the material they are composed of, so one composed of indigestible plant material is known as a phytobezoar. After learning about bezoars of all kinds on a recent episode of Sawbones, I decided a post about them was in order.

I was particularly intrigued by a very specific type of bezoar known as a diospyrobezoar, a subtype of phytobezoars that can result from eating large quantities of persimmons. The skins of persimmons (Diospyros spp.) are high in tannins. When the tannins mix with stomach acids, a glue-like substance forms and can lead to the creation of a diospyrobezoar.

Fruits of Japanese persimmon (Diospyros kaki) - photo credit: wikimedia commons

Fruits of Japanese persimmon (Diospyros kaki) – photo credit: wikimedia commons

Phytobezoars are the most common type of bezoar and are generally composed of indigestible fibers, such as cellulose, hemicellulose, lignin, and tannins that are found in the skins of fruits and other plant parts. In general, phytobezoars are a rare phenomenon. The risk of obtaining them is higher in people who engage in certain activities (like consuming excessive amounts of high fiber foods or not chewing food properly) or who have certain medical conditions/have undergone certain medical treatments.

A study published in 2012 in Case Reports in Gastroenterology describes a specific incident involving the diagnosis and treatment of a diospyrobezoar. [It also includes a great overview of bezoars and phytobezoars if you feel like navigating through the sea of medical jargon]. The patient was a diabetic man in his 60’s that reported 5 days of abdominal pain after “massive ingestion of persimmons,” although it is not made clear what is meant by “massive” or “excessive” persimmon ingestion. Fourteen years prior, the patient had “undergone hemigastrectomy and associated truncal vagotomy to treat a chronic duodenal ulcer.” After a series of tests and observations, doctors determined that a large bezoar was lodged in the man’s intestines. Surgery was required to remove it. The recovered diospyrobezoar measured 12 cm x 5 cm and weighed 40 grams. Photos are included in the report if you must see them.

The authors of this study cite previous gastric surgery as being commonly associated with diospyrobezoar formation. They also cite previous abdominal surgery and absence of teeth as “predisposing factors.” They list major symptoms of bezoars, which include abdominal pain, bloating, vomiting and nausea, and small bowel obstruction. Phytobezoars most commonly form in the stomach where they can “generate gastric ulcers.” As you might imagine, the situation worsens if the phytobezoar enters the small intestine. Read the study for a more colorful description regarding that.

Surgery was necessary in this case, but not in all cases. The authors describe various medical and endoscopic treatments as alternatives to surgery. One approach is to try dissolving the bezoar using certain enzymes or Coca-Cola. The authors state that “there are several publications describing the successful use of Coca-Cola in treating bezoars.” [Here is a link to one such study.] The phosphoric acid and the carbon dioxide bubbles are suspected to be the active agents in breaking down the intruding masses. The authors warn, though, that “partial dissolution of bezoars located in the stomach can cause them to migrate to the small bowel, resulting in intestinal obstruction.”

Diospyrobezoars aside, persimmons are beautiful trees with lovely fruit. They are not out to get you any more than any other living organism out there, but their fruit should be consumed with caution. As with anything, the dose makes the poison. In the Sawbones episode, Sydnee McElroy specifically advises listeners to avoid unripe persimmons. That being said, the moral of the story is: if you like persimmons, eat them sparingly and make sure they’re ripe.

Want to learn more about persimmons and bezoars? Visit persimmonpudding.com for an excellent summary and lots of additional resources.

Common Persimmon (Diospyros virginiana), native to North America - photo credit: eol.org

Common Persimmon (Diospyros virginiana)  is native to North America. According to the U.S. Forest Service it is “distributed from southern Connecticut and Long Island, New York to southern Florida. Inland it occurs in central Pennsylvania, southern Ohio, southern Indiana, and central Illinois to southeastern Iowa; and southeastern Kansas and Oklahoma to the Valley of the Colorado River in Texas.”   – photo credit: eol.org

 

Year of Pollination: Botanical Terms for Pollination, part two

“The stage is set for reproduction when, by one means or another, compatible pollen comes to rest on a flower’s stigma. Of the two cells within a pollen grain, one is destined to grow into a long tube, a pollen tube, that penetrates the pistil’s tissues in search of a microscopic opening in one of the ovules, located in the ovary. … The second of a pollen grain’s cells divides to become two sperm that move through the pollen tube and enter the ovule.” – Brian Capon, Botany for Gardeners

“Once pollination occurs, the next step is fertilization. Pollen deposited on the sticky stigma generates a fine pollen tube that conveys the sperm through the style to the ovary, where the ovules, or eggs, have developed. After fertilization, the rest of the flower parts wither and are shed as the ovary swells with seed development.” – Rick Imes, The Practical Botanist

Pollination tells the story of a pollen grain leaving an anther by some means – be it wind, water, or animal – and finding itself deposited atop a stigma. As long as the pollen and stigma are compatible, the sex act proceeds. In other words, the pollen grain germinates. One of the pollen grain’s cells – the tube nucleus – grows down the length of the style, forming a tube through which two sperm nuclei can travel. The sperm nuclei enter the ovary and then, by way of a micropyle, enter an ovule. Inside the ovule is the female gametophyte (also referred to as the embryo sac). One sperm nucleus unites with the egg nucleus to form a zygote. The remaining sperm nucleus unites with two polar nuclei to form a triploid cell which becomes the endosperm. The sex act is complete.

The illustration on the left includes the cross-section of a pistil showing the inside the ovary where pollen tubes have made their way to the ovules. The illustration on the right shows pollen grains germinating on a stigma and their pollen tubes begining to work their way down the style. (photo credit: wikimedia commons)

The illustration on the left includes the cross section of a pistil showing the inside of the ovary where pollen tubes have made their way to the ovules. The illustration on the right shows pollen grains germinating on a stigma and pollen tubes as they work their way down the style. (image credit: wikimedia commons)

The zygote divides by mitosis to become an embryo. The endosperm nourishes the development of the embryo. The ovule matures into a seed, and the ovary develops into a fruit. During this process, the remaining parts of the flower wither and fall away. In some cases, certain flower parts remain attached to the fruit or become part of the fruit. The flesh of an apple, for example, is formed from the carpels and the receptacle (the thickened end of a flower stem – peduncle – to which the parts of a flower are attached).

As the seed matures, the endosperm is either used up or persists to help nourish the embryonic plant after germination. Mature seeds that are abundant in endosperm are called albuminous. Examples include wheat, corn, and other grasses and grains. Mature seeds with endosperm that is either highly reduced or absent are called exalbuminous – beans and peas, for example. Certain species – like orchids – do not produce endosperm at all.

The cross section of a corn kernel showing the endosperm and the embryo (image credit: Encyclopedia Britannica Kids)

The cross section of a corn kernel showing the endosperm and the embryo (image credit: Encyclopedia Britannica Kids)

It is fascinating to consider that virtually every seed we encounter is the result of a single pollen grain making its way from an anther to a stigma, growing a narrow tube down a style, and fertilizing a single ovule. [Of course there are always exceptions. Some plants can produce seeds asexually. See apomixis.] Think of this the next time you are eating corn on the cob or popcorn – each kernel is a single seed – or slicing open a pomegranate to reveal the hundreds of juicy seeds inside. Or better yet, when you are eating the flesh or drinking the milk of a coconut. You are enjoying the solid and liquid endosperm of one very large seed.

Much more can be said about pollination and the events surrounding it, but we’ll save that for future posts. The “Year of Pollination” may be coming to an end, but there remains much to discover and report concerning the subject. For now, here is a fun video to help us review what we’ve learned so far:

 

Also, take a look at this TED talk: The Hidden Beauty of Pollination by Louie Schwartzberg

And finally, just as the “Year of Pollination” was coming to an end I was introduced to a superb blog called The Amateur Anthecologist. Not only did it teach me that “anthecology” is a term synonymous with pollination biology, it has a great series of posts called “A Year of Pollinators” that showcases photographs and information that the author has collected for various groups of pollinators over the past year. The series includes posts about Bees, Wasps, Moths and ButterfliesFlies, and Beetles, Bugs, and Spiders.