Weeds of Boise: Railroad Tracks Between Kootenai Street and Overland Road

Walking along railroad tracks is a pretty cool feeling. It’s also a good place to look for weeds. Active railroad tracks are managed for optimum visibility and fire prevention, which means that trees and shrubs near the tracks are removed creating plenty of open space on either side. Open areas in full sun are ideal places for a wide variety of weed species to grow. Trains passing through can also be sources or dispersal agents of seeds, so there’s a chance that you may see things growing alongside railroad tracks that you don’t often see elsewhere. All this means that railroad tracks in urban areas are great locations to familiarize yourself with your city’s wild urban flora.

I visited a small section of railroad tracks between Kootenai Street and Overland Road in Boise. At one point, this was a pretty active railroad. Passenger trains once moved along these tracks, and the Boise Depot, which is less than a mile from this location, was one of several stops between Portland, OR and Salt Lake City, UT. Unfortunately, those services ended in 1997 and have yet to resume, despite continued support for bringing passenger rail back to the region. Still, freight trains pass by with some frequency.

Managing weeds along railroad tracks in urban areas can be tricky. There is little else in the way of vegetation to compete with the weeds. The tracks are also adjacent to parks, homes, schools, gardens, and other locations that make herbicide applications complicated. The species of weeds can also vary widely from one mile to the next, so management decisions must also vary. It’s especially important that the ballast directly beneath and on either side of the tracks is kept weed free in order to prevent fires and improve visibility. All of this and more makes weed control along railroad tracks one of the most challenging jobs around. Luckily, for someone that likes to look at weeds, it means there will always be interesting things to see near the tracks, including for example this colony of harvester ants that I came across while identifying weeds. I was happy to see that they were collecting the samaras of Siberian elm (Ulmus pumila), one of several weedy trees in the Treasure Valley.

What follows are a few images of some of the weeds I encountered along the railroad tracks between Kootenai Street and Overland Road, as well as a list of the weeds I was able to identify. The list will grow as I identify the mystery weeds and encounter others that I missed, as is the case with all posts in the Weeds of Boise series.

Virginia creeper (Parthenocissus quinquefolia)
blue mustard (Chorispora tenella)
cleavers (Galium aparine)
whitetop (Lepidium sp.)
Himalayan blackberry (Rubus bifrons)
bush honeysuckle (Lonicera sp.)
Siberian elm (Ulmus pumila)
English ivy (Hedera helix)
kochia seedlings (Bassia scoparia)
  • Arctium minus (common burdock)
  • Bassia scoparia (kochia)
  • Bromus diandrus (ripgut brome)
  • Bromus tectorum (cheatgrass)
  • Chorispora tenella (blue mustard)
  • Conium maculatum (poison hemlock)
  • Convolvulus arvensis (field bindweed)
  • Cirsium arvense (creeping thistle)
  • Dactylis glomerata (orchardgrass)
  • Descurainia sophia (flixweed)
  • Elaeagnus angustifolia (Russian olive)
  • Epilobium ciliatum (northern willowherb)
  • Equisetum sp. (horsetail)
  • Erodium cicutarium (redstem filaree)
  • Galium aparine (cleavers)
  • Hedera helix (English ivy)
  • Hordeum murinum (wild barley)
  • Lactuca serriola (prickly lettuce)
  • Lepidium sp. (whitetop)
  • Lonicera sp. (bush honeysuckle)
  • Parthenocissus quinquefolia (Virginia creeper)
  • Poa bulbosa (bulbous bluegrass)
  • Poa pratensis (Kentucky bluegrass)
  • Rubus bifrons (Himalayan blackberry)
  • Rumex crispus (curly dock)
  • Secale cereale (feral rye)
  • Taraxacum officinale (dandelion)
  • Ulmus pumila (Siberian elm)

Do you live near railroad tracks? What weeds are growing there, and do you feel as cool as I do when you walk the tracks?

Eating Weeds: Japanese Knotweed

When I first learned that Japanese knotweed was edible, I had my doubts. Sure, lots of plants may be edible, but are they really something you’d want to eat? I know Japanese knotweed as one of the most notorious weeds on the planet. Its destructive, relentless, and prolific nature has landed it on the world’s 100 worst invasive species list, right up there with black rats, Dutch elm disease, and killer algae. Having encountered a fair number of Japanese knotweed stands, the first thing to come to mind has never been, “that looks delicious.” Mature stalks stand as tall as 3 meters with broad, leathery leaves and hollow, bamboo-like stems. Their late summer flowers – a mess of tiny white florets on sprawling flower stalks – are a pollinator’s delight and favored by beekeepers for their abundant nectar. I don’t doubt that the honey produced from such an encounter is tasty, but the plant itself? I needed convincing.

Finally, I looked into it. I came across recipes of Japanese knotweed pickles and learned that it was the young, early emerging shoots that were sought after. That changed my perspective. Certainly you wouldn’t want to gnaw on a woody, 4 foot tall Japanese knotweed stalk, but the tender stems as they’re just beginning to re-emerge from the ground in the spring? Now those might be worth trying.

emerging stems of Japanese knotweed (Reynoutria japonica)

Japanese knotweed (Reynoutria japonica) was introduced to Europe from Japan in the 1800’s, arriving at Royal Botanic Gardens Kew by 1850. At that point, it was a prized ornamental. Its thick stems spotted with reds and purples, its broad, shiny leaves, and its showy flower heads all gave it garden appeal. It was also found to be useful for stabilizing hillsides and reducing erosion, honey production, and as a rhubarb substitute (it’s in the same plant family as rhubarb after all). Not long after that, it made its way to North America. Certainly people must have been aware of its propagative prowess as they moved the plant around. It readily roots from root and stem fragments, plus it produces extensive rhizomes, working their way as deep as 3 meters into the soil and as far as 7 meters away from the parent plant. Perhaps that should have been cause for alarm, but how could anyone have predicted just how aggressive and widespread it would soon become?

Thanks to the plant’s rhizomes, Japanese knotweed grows in thick, many-stemmed stands, pushing out, shading out, and leaving very little room for other plants. The rhizomes are also tough and can push up through gravel, cement, and asphalt. They are notorious for damaging foundations, pipes, and even pushing their way through floorboards. If that’s not enough, Japanese knotweed is pretty much impossible to kill. Herbicides may set it back, but they generally don’t take it out. Cutting it down repeatedly can slow it down, but it may also encourage it to grow more thickly and spread out more widely. Smothering it can work, but you have to be prepared to keep it smothered for quite a while. The deep rhizomes are slow to die, and they may eventually find their way outside of the smothered area, popping up to destroy your efforts to contain it. You can try to dig it out, but the amount of dirt you’d have to dig to get every last root and rhizome really isn’t feasible in most circumstances.

But hey, you can eat it, and perhaps you should. A quick internet search reveals a number of ways the plant can be consumed – purees, chutneys, compotes, sorbets. I chose to go with pickled Japanese knotweed. It seemed simple and approachable enough and a good way to determine if I was going to like it or not. Room temperature brine fermentation is pretty easy. You basically put whatever you’re wanting to pickle in a jar, add whatever spices and things you’d like, fill the jar with salty water, then seal it shut and let it sit there for a few days. Before you know it, you’ve got pickles.

There are several recipes for pickled Japanese knotweed to choose from. I went with this one. The seasonings I used were a bit different, and the stalks I had weren’t as “chubby” as recommended, but otherwise my approach was the same. After a few days, I gave them a try. I was pleasantly surprised. I thought they tasted a little like nopales. Sierra reluctantly tried them and was also surprised by how good they were. They reminded her of pickled asparagus. Other sources describe them as lemony, crunchy, tart and suggest serving them with fish, ramen, or even adding them to a cocktail made with purslane. Many of the weeds I’ve tried have been a fun experience, but not necessarily something I need to repeat. Japanese knotweed pickles, on the other hand, could become a spring tradition for me, and since we’re pretty much stuck with this plant, I’m sure to have a steady supply.

More Eating Weeds Posts on Awkward Botany:

Weeds of Boise: Awkward Botany Headquarters

Weeds of Boise: Awkward Botany Headquarters

Last December, Sierra and I left apartment living behind and embarked on a new journey as homeowners, which you can read about in this January’s Year in Review post. This means that Awkward Botany Headquarters now has a yard, and having a yard means we also have weeds.

For many people living in urban areas, the weeds of most concern to them are the ones found in their yards, especially for those that garden or like to keep a tidy yard. Removing weeds is a constant chore. They are always popping up and getting in the way of our plans. In fact, that’s the very definition of a weed – an uninvited plant growing in a location where it isn’t wanted. Despite our best efforts, our yards are always going to have some amount of weeds in them, so what better place to familiarize yourself with your wild urban flora than in your own yard? Or, in this case, our yard.

Our house is located in an area of Boise called the Bench. The Boise Bench, which is actually a series of benches or terraces, is located south of the Boise River and overlooks downtown Boise. The formation of the benches began 2 million years ago as the Boise River cut through the valley. Over time, sediments were deposited at the south bank of the river as it cut further and further northward, leaving behind the series of large terraces. Early in Boise’s history, the Bench was largely agricultural land thanks to the construction of canals. As the city grew, housing and commercial developments expanded across the Bench and have now displaced most of the farmland. Urbanization of the Boise Bench continues today at a steady clip.

While I haven’t had a chance to explore every square inch of the yard, and the growing season is just getting started, what follows are a few photos and a short list of some of the weeds I’ve encountered so far.

  • Arctium minus (burdock)
  • Bromus tectorum (cheatgrass)
  • Capsella bursa-pastoris (shepherd’s purse)
  • Cirsium arvense (creeping thistle)
  • Chondrilla juncea (rush skeletonweed)
  • Digitaria sanguinalis (crabgrass)
  • Draba verna (spring draba)
  • Elymus repens (quackgras)
  • Epilobium sp. (willowherb)
  • Erodium cicutarium (redstem filaree)
  • Euphorbia maculata (spotted spurge)
  • Hordeum murinum (wild barley)
  • Lactuca serriola (prickly lettuce)
  • Lepidium sp. (white top)
  • Malva neglecta (common mallow)
  • Poa bulbosa (bulbous bluegrass)
  • Polygonum sp. (knotweed)
  • Portulaca oleracea (purslane)
  • Sonchus sp. (sowthistle)
  • Taraxacum officinale (dandelion)
  • Tragopogon dubius (salsify)
  • Ulmus pumila (Siberian elm)
  • Veronica sp. (speedwell)

Like all posts in the Weeds of Boise series, this will be updated as I identify and photograph more of the weeds found in this location. Do you have a yard in an urban area? What weeds are you seeing in your yard this year? Let us know in the comment section below.

Seed Shattering Lost – The Story of Foxtail Millet

For a plant to disperse its seeds, it must first let go of them. Sounds obvious, but it is a key step in the dispersal process and an act that is actually coded in a plant’s DNA. As fruits ripen and seeds mature, an abscission layer is formed that separates the seed-bearing fruits from the plant. No longer attached to their parents, seeds are left to their own devices. If all goes well, they will find themselves in a suitable location where they can germinate and grow into a whole new plant, fully equipped to make seed babies of their own.

The releasing of mature seeds is known as shattering, a term most commonly used in reference to grasses and plants with dehiscent seed pods (i.e. fruits that split open when ripe, such as those in the bean and mustard families). In grasses, seeds form along a central stem called a rachis. As the seeds ripen, they separate from the rachis and drop from the plant. In some cases, the rachis is brittle and a section of it breaks off with each seed that falls.

Seed shattering is not a desirable trait when it comes to food crops. It’s easy to see how yields can be poor if seeds disperse before they are harvested. Thus, an essential step in domesticating certain agricultural crops was selecting plants that lacked this particular trait. Instead of dropping mature seeds, such plants hold on to them, making them easy to collect. A simple and naturally occurring mutation in the genes of these plants allowed early farmers to select varieties that were more ideal for agriculture than their wild progenitors.

Genetic studies of agricultural crops have located genes in a number of species that code for seed shattering, confirming that domestication in many cases involved selecting plants with this gene turned off. A recent study, published in Nature Biotechnology (October 2020), took a different route in locating this gene, looking instead at a weedy, wild relative of a crop that was domesticated at least 8000 years ago. Green foxtail (Setaria viridis) is the wild antecedent of foxtail millet (Setaria italica), a crop that, while still commonly grown for food in parts of Asia, is mostly grown for hay, silage, and bird seed in North America. Recently, interest in foxtail millet and other millets (a term used to refer to the grains of several different species of grasses) is on the rise due to the ability of these crops to tolerate drought and heat.

Illustration of three Setaria species from Selected Weeds of the United States (Agriculture Handbook No. 366) published in 1970

Setaria viridis is an abundant, widespread weed adapted to human disturbance. It’s of Eurasian origin but has been present in North America since the early 1800’s and was likely introduced both intentionally and accidentally. It’s an annual grass with prominent, bristly flowerheads that are easily recognizable and the reason for its common name, green foxtail. A handful of other closely related, similar-looking species are also common weeds in North America. Due to useful traits including its short life cycle, small genome, and self-fertility, S. viridis has been used frequently as a model species to carry out a variety of scientific studies. The study referred to above aimed to further enhance the use of green foxtail, particularly when it comes to crop science.

Researchers traveled across the United States collecting nearly 600 samples of green foxtail in order to better understand its genome. They found that the North American population of green foxtail is composed of multiple introductions and that, as the species has followed humans around, it has quickly adapted to diverse climates found across the continent. In examining the genome, they were able to identify the genetic underpinnings for three traits that have importance to agriculture: response to climate, leaf angle (which is used as a predictor of yield in grain crops), and seed shattering.

foxtail millet (Setaria italica) via wikimedia commons

The seed shattering gene – which the researchers named Less Shattering 1 (SvLes1) – was an especially interesting discovery. When compared to the orthologous gene found in foxtail millet, they found that a frameshift mutation had caused a disruption in the gene, turning it off. Using CRISPR (a gene editing tool) they were able to recreate a similar interruption in green foxtail, which resulted in a loss of seed shattering similar to that of foxtail millet. It became clear that selecting plants with this mutation was an essential step in the domestication of this ancient grain.

An excerpt about seed shattering from Fruit from the Sands by Robert N. Spengler III: 

In many of the world’s domesticated grains, especially those from the founder crops of southwest Asia (i.e. wheat and barley), the earliest phenotypical trait of domestication that archaeobotanists look for is a tough rachis, the small stem by which an individual grain or small cluster of grains is attached to the ear. In their wild form, most grains are programmed to detach easily after the grain ripens; however, in domesticated cereals, the grains remain attached to the ear throughout the harvesting process. This change is an inadvertent result of human harvesting with sickles: as people reap their harvest, the grains with a brittle rachis are dropped and those with a tough rachis are collected, stored, and replanted for successive harvests.

Further Reading:

Tea Time: Lemon Balm Tea

Cooler weather has me thinking about hot tea again. This time around I decided to go with something I’ve already tried and know that I like. Despite the fact that lemon balm can be quite abundant and readily available, I don’t really drink it that often. Yet, considering claims made regarding its calming nature, this is definitely the year to have it.

lemon balm (Melissa officinalis)

Melissa officinalis is an herbaceous perennial native to the Mediterranean Basin and beyond. It has been widely planted outside of its native range and has become naturalized – some might say weedy – in many parts of the world. It self-sows easily and also spreads readily via stolons and/or rhizomes. It isn’t picky about soil type and grows well in both sun and part shade. Lemon balm is in the mint family and acts in a similarly aggresive way to some of its relatives, but luckily isn’t nearly as tenacious as mint in its tendency to dominate a garden bed.

The leaves of lemon balm have a wrinkled appearance, are triangular or wedge-shaped with toothed margins, and are arranged oppositely on square stems up to three feet tall. Small, white or pale yellow (sometimes pale pink) flowers are inconspicuous and produced in the axils of leaves. They are often sparse enough to be hardly noticeable. This plant’s aesthetic appeal is all about its pleasant and prolific green foliage. Yet, despite the simplicity of its flowers, lemon balm is known for being attractive to bees and is often propagated specifically to feed honeybees. In fact, the genus name Melissa apparently means honeybee in Ancient Greek.

lemon balm flower

The leaves of lemon balm can be consumed fresh or dried and have a number of other uses besides tea. They have a sweet, lemon-like scent and, like so many other herbs with a long history of human use, have a wide array of medicinal claims associated with them. Many sources agree on lemon balm’s ability to calm the nerves, reduce stress and anxiety, and fight off insomnia. According to The Herb Society of America’s Essential Guide to Growing and Cooking with Herbs, lemon balm “has been used as a relaxing agent and as an aid to restful, nightmare-free sleep.” Sounds like I could use more lemon balm in my life.

dried lemon balm leaves

Lemon balm tea can be made with either fresh or dried leaves, but fresh leaves seem to make a more flavorful tea. I had only tried tea made from dried leaves until recently and have decided that I prefer fresh leaves. Simply harvest a few leaves, cut or tear them apart to release the lemony flavor, place them in a cup, and cover them in hot water. Some recipes (like this one) suggest adding honey, while others mix lemon balm with additional herbs known for their lemon-like flavor or relaxing nature (lemon thyme and lemon verbena, for example). Sierra was immediately taken by lemon balm tea when she tried it – in contrast to her experience with violet leaf tea – and even said it was right up there with her preferred black teas. I’m not surprised, as it is one of my favorite teas as well.

lemon balm tea made with freshly harvested leaves

More Tea Time Posts on Awkward Botany:

Weeds of Boise: Ahavath Beth Israel Synagogue Garden

Anyone who has maintained a garden or small farm knows that with all the work it takes to keep up on the garden itself, outlying areas can quickly become overtaken by weeds. Low on the list of priorities, areas outside of our garden borders are ideal locations for wild urban vegetation to thrive. Pulling all the weeds within the garden is a big enough task as it is; thus, weeds out of our reach are left to their own devices, occasionally getting mown down by a string trimmer or brush mower (if time allows), but otherwise living largely unscathed. And so, places such as these are excellent for familiarizing oneself with our wild urban flora.

I found an example of this scenario at the Ahavath Beth Israel Synagogue Garden in Boise, Idaho. This community garden is a partnership between Congregation Ahavath Beth Israel (CABI) and Global Gardens, providing refugees in the area an opportunity to grow food for their families and participate in community activities.

When I visited this site, it was clear that the weeds on the edge of the garden had been mowed down at some point. New plants had popped up after the fact while others were in the process of recovering from the “haircut” and putting on new, shrubbier growth. The mowing and the fact that it was late in the summer made identifying remnants of earlier weeds too difficult to bother. Most of the weeds that I did find were either summer annuals or perennials. A visit in the spring would reveal an entirely different cast of characters.

I stayed on the border of the garden, not wanting to invade anyone’s plot or snoop around too much. The point of the visit was to highlight weeds found outside of the borders of a garden anyway. I would imagine that, since the garden is used to grow annual fruits and vegetables, most of the weeds in the beds would be annuals as well. Longer-lived weeds don’t generally tolerate regular disturbance and instead find refuge in unkept areas outside of cultivation.

Below are a few photos from the site along with a preliminary list of the weeds that I found.

salsify (Tragopogon dubius)

puncture vine (Tribulus terrestris)

field bindweed (Convolvulus arvensis)

Siberian elm (Ulmus pumila)

common mallow (Malva neglecta)

black medic (Medicago lupulina)

Weeds found at the Ahavath Beth Israel Synagogue Garden:

  • Amaranthus spp. (pigweed)
  • Bassia scoparia (kochia)
  • Chenopodium album (lamb’s quarters)
  • Chondrilla juncea (rush skeletonweed)
  • Convolvulus arvensis (field bindweed)
  • Conyza canadensis (horseweed)
  • Digitaria sanguinalis (crabgrass)
  • Epilobium brachycarpum (tall annual willowherb)
  • Euphorbia maculata (spotted spurge)
  • Hordeum jubatum (foxtail barley)
  • Lactuca serriola (prickly lettuce)
  • Malva neglecta (common mallow)
  • Medicago lupulina (black medic)
  • Oenothera biennis (common evening-primrose)
  • Plantago lanceolata (narrowleaf plantain)
  • Polygonum aviculare (prostrate knotweed)
  • Rumex crispus (curly dock)
  • Setaria sp. (foxtail)
  • Sonchus sp. (sow thistle)
  • Taraxacum officinale (dandelion)
  • Tragopogon dubius (salsify)
  • Trifolium pratense (red clover)
  • Ulmus pumila (Siberian elm)
  • Verbena bracteata (prostrate vervain)

Like all posts in the Weeds of Boise series, this will be updated as I identify and photograph more of the weeds found in this location.

Dispersal by Bulbils – A Bulbous Bluegrass Story

The main way that a plant gets from place to place is in the form of a seed. As seeds, plants have the ability to travel miles from home, especially with the assistance of outside forces like wind, water, and animals. They could also simply drop to the ground at the base of their parent plant and stay there. The possibilities are endless, really.

But what about plants that don’t even bother making seeds? How do they get around? In the case of bulbous bluegrass, miniature bulbs produced in place of flowers function exactly like seeds. They are formed in the same location as seeds, reach maturity and drop from the plant just like seed-bearing fruits, and are then dispersed in the same ways that seeds are. They even experience a period of dormancy similar to seeds, in that they lie in wait for months or years until the right environmental conditions “tell” them to sprout. And so, bulbils are basically seeds, but different.

bulbous bluegrass (Poa bulbosa)

Bulbous bluegrass (Poa bulbosa) is a Eurasian native but is widely distributed outside of its native range having been repeatedly spread around by humans both intentionally and accidentally. It’s a short-lived, perennial grass that can reach up to 2 feet tall but is often considerably shorter. Its leaves are similar to other bluegrasses – narrow, flat or slightly rolled, with boat-shaped tips and membranous ligules – yet the plants are easy to distinguish thanks to their bulbous bases and the bulbils that form in their flower heads. Their bulbous bases are actually true bulbs, and bulbous bluegrass is said to be the only grass species that has this trait. Just like other bulb-producing plants, the production of these basal bulbs is one way that bulbous bluegrass propagates itself.

basal bulbs of bulbous bluegrass

Bulbous bluegrass is also propagated by seeds and bulbils. Seeds form, like any other plant species, in the ovary of a pollinated flower. But sometimes bulbous bluegrass doesn’t make flowers, and instead modifies its flower parts to form bulbils in their place. Bulbils are essentially tiny, immature plants that, once separated from their parent plant, can form roots and grow into a full size plant. The drawback is that, unlike with most seeds, no sexual recombination has occurred, and so bulbils are essentially clones of a single parent.

The bulbils of bulbous bluegrass sit atop the glumes (bracts) of a spikelet, which would otherwise consist of multiple florets. They have dark purple bases and long, slender, grass-like tips. Bulbils are a type of pseudovivipary, in that they are little plantlets attached to a parent plant. True vivipary occurs when a seed germinates inside of a fruit while still attached to its parent.

Like seeds, bulbils are small packets of starch and fat, and so they are sought ought by small mammals and birds as a source of food. Ants and small rodents are said to collect and cache the bulbils, which is one way they get dispersed. Otherwise, the bulbils rely mostly on wind to get around. They then lie dormant for as long as 2 or 3 years, awaiting the ideal time to take root.

bulbils of bulbous bluegrass

Bulbous bluegrass was accidentally brought to North America as a contaminant in alfalfa and clover seed. It was also intentionally planted as early as 1907 and has been evaluated repeatedly by the USDA and other organizations for use as a forage crop or turfgrass. It has been used in restoration to stabilize soils and reduce erosion. Despite numerous trials, it has consistently underperformed mainly due to its short growth cycle and long dormancy period. It is one of the first grasses to green up in the spring, but by the start of summer it has often gone completely dormant, limiting its value as forage and making for a pretty pathetic turfgrass. Otherwise, it’s pretty good at propagating itself and persisting in locations where it hasn’t been invited and is now mostly considered a weed – a noxious one at that according to some states. Due to its preference for dry climates, it is found most commonly in western North America.

In its native range, bulbous bluegrass frequently reproduces sexually. In North America, however, sexual reproduction is rare, and bulbils are the most common method of reproduction. Prolific asexual reproduction suggests that bulbous bluegress populations in North America should have low genetic diversity. Researchers set out to examine this by comparing populations found in Washington, Oregon, and Idaho. Their results, published in Northwest Science (1997), showed a surprising amount of genetic variation within and among populations. They concluded that multiple introductions, some sexual reproduction, and the autopolyploidy nature of the species help explain this high level of diversity.

———————

Interested in learning more about how plants get around? Check out the first issue of our new zine Dispersal Stories.

Zine Review: An Urban Field Guide to the Plants in Your Path

Depending on where you live in the world, it’s probably not too difficult to find a field guide to the plants native to your region. In fact, there may be several of them. They may not cover all the plants you’ll encounter in natural areas near you, but they’ll be a good starting point. Yet, considering that most of us live in cities these days, field guides to the wild plants of urban areas are sorely lacking. Perhaps that’s no surprise, as plants growing wild in urban areas are generally considered weeds and are often the same species that frustrate us in our yards and gardens. Few (if any) of these maligned plants are considered native, so that doesn’t help their case any. Why would we need to know or pay attention to these nuisance plants anyway?

I argue that we should know them, and not just so that we know our enemy. Weeds are the wild flora of our cities – they grow on their own without direct human intervention. In doing so, they green up derelict and neglected sites, creating habitat for all kinds of other organisms and providing a number of ecosystem services along the way. Regardless of how we feel about them for invading our cultivated spaces and interfering with our picture-perfect vision of how we feel our cities should look, they deserve a bit more respect for the work they do. If we’re not willing to go that far, we at least ought to hand it to them for how crafty and tenacious they can be. These plants are amazing whether we want to admit it or not.

Luckily I’m not the only who feels this way. Enter An Urban Field Guide to the Plants in Your Path, a zine written and illustrated by Maggie Herskovits and published by Microcosm Publishing. This zine is just one example of the resources we need to better familiarize ourselves with our urban floras. While there are many weed identification books out there, a field guide like this differs because it doesn’t demonize the plants or suggest ways that they can be brought under control or eliminated. Instead, it treats them more like welcome guests and celebrates some of their finer qualities. That being said, this is probably not a zine for everyone, particularly those that despise these plants, but take a look anyway. If you keep an open mind, perhaps you can be swayed.

Illustration of Pennsylvania smartweed (Polygonum pensylvanicum) from An Urban Field Guide to the Plants in Your Path

After a brief introduction, Herskovits profiles fifteen common urban weeds. Each entry includes an illustration of the plant, a short list of its “Urban Survival Techniques,” a small drawing of the plant in its urban habitat, and a few other details. The text is all handwritten, and the illustrations are simple but accurate enough to be helpful when identifying plants in the wild. The descriptions of each plant include interesting facts and background information, and even if you are already familiar with all the plants in the guide, you may learn something new. For example, I wasn’t aware that spotted spurge (Euphorbia maculata) was native to North America.

some urban survival techniques of common mullein (Verbascum thapsus)

Capsella bursa-pastoris in its urban habitat

Urban weeds often go ignored. They may not be as attractive as some of the plants found in gardens and parks around the city, and since they are often seen growing right alongside garbage, they end up getting treated that way. But if you’re convinced that they may actually have value and you want to learn a bit more about them, this guide is a great place to start. Perhaps you’ll come to feel, as Herskovits does, that “there is hope in these city plants.”

See Also: 

From Cut Flower to Noxious Weed – The Story of Baby’s Breath

One of the most ubiquitous plants in cut flower arrangements hails from the steppes of Turkey and neighboring countries in Europe and Asia. It’s a perennial plant with a deep taproot and a globe-shaped, multi-branched inflorescence loaded with tiny white flowers. In full bloom it looks like a small cloud hovering above the ground. It’s airy appearance earns it the common name baby’s breath, and the attractive and durable nature of its flowers and flower stalks, both fresh and dried, have made it a staple in the floral industry. Sadly, additional traits have led to it becoming a troublesome weed outside of its native range.

baby’s breath (Gypsophila paniculata) via wikimedia commons

Gypsophila paniculata is in the family Caryophyllaceae – sharing this distinction with other cut flowers like carnations and pinks, as well as other weeds like chickweed and soapwort. At maturity and in full bloom, baby’s breath might reach three to four feet tall; however, its thick taproot extends deep into the ground as much as four times its height. Its leaves are unremarkable and sparse, found mostly towards the base of the plant and sometimes with a blue or purplish hue. The flowers are numerous and small, have a sweet scent to them (though not appreciated by everyone), and are pure white (sometimes light purple or pink).

Each flower produces just a few seeds that are black, kidney-shaped, and minuscule. Many of them drop from their fruits and land near their parent plant, but some are retained within their little capsules as the flower stalk dries and becomes brittle. Eventually a stiff breeze knocks the entire inflorescence loose and sends it tumbling across the ground. Its rounded shape makes it an effective tumbleweed, as the remaining seeds are shaken free and scattered far and wide.

baby’s breath flowers close up (via wikimedia commons)

Being a tumbleweed gives it an advantage when it comes to dispersing itself and establishing in new locations, but this is not the only trait that makes baby’s breath a successful weed. Its substantial taproot, tolerance to drought and a variety of soil conditions, and proclivity to grow along roadsides, in ditches, and abandoned fields also make it a formidable opponent. Mowing the plant down does little to stop it, as it grows right back from the crown. Best bets for control are repeated chemical treatments or digging out the top portion of the taproots. Luckily its seeds are fairly short-lived in the soil, so vigilant removal of seedlings and not allowing the plant to reproduce can help keep it in check. Baby’s breath doesn’t persist in regularly disturbed soil, so it’s generally not a problem in locations that are often cultivated like agricultural fields and gardens.

The first introductions of baby’s breath to North America occurred in the 1800’s. It was planted as an ornamental, but it wasn’t long before reports of its weedy nature were being made. One source lists Manitoba in 1887 as the location and year of the first report. It is now found growing wild across North America and is featured in the noxious weed lists in a few states, including Washington and California. It has been a particular problem on sand dunes in northwest Michigan, where it has been so successful in establishing itself that surveys have reported that 80% of all vegetation in certain areas is composed of baby’s breath.

baby’s breath in the wild (via wikimedia commons)

Invading sand dune habitats is particularly problematic because extensive stands of such a deep-rooted plant can over-stabilize the soil in an ecosystem adapted to regular wind disturbance. Plants native to the sand dunes can be negatively affected by the lack of soil movement. One species of particular concern is Pitcher’s thistle (Cirsium pitcheri), a federally threatened plant native to sand dunes along the upper Great Lakes. Much of the research on the invasive nature of baby’s breath and its removal comes from research being done in this region.

Among numerous concerns that invasive plants raise are the affects they can have on pollinator activity. Will introduced plants draw pollinators away from native plants or in some other way limit their reproductive success? Or might they help increase the number of pollinators in the area, which in turn could benefit native plants (something known as the magnet species effect)? The flowers of baby’s breath rarely self-pollinate; they require insect visitors to help move their pollen and are highly attractive to pollinating insects. A study published in the International Journal of Plant Sciences found that sand dune sites invaded by baby’s breath attracted significantly more pollinators compared to uninvaded sites, yet this did not result in more pollinator visits to Pitcher’s thistle. According to the researchers, “a reduction in pollinator visitation does not directly translate to a reduction in reproductive success,” but the findings are still a concern when it comes to the future of this threatened thistle.

Perhaps it’s no surprise that a plant commonly found in flower arrangements is also an invasive species, as so many of the plants we’ve grown for our own pleasure or use have gone on to cause problems in areas where they’ve been introduced. However, could the demand for this flower actually be a new business opportunity? Noxious weed flower bouquets anyone?

Related Posts:

Using Weeds: Soapwort

Over the past year or so I have written about several edible weeds in an effort to highlight useful weeds. However, weeds don’t have to be edible to be useful. In fact, many weeds are most certainly not edible, but that doesn’t mean they are of no use to humans. Soapwort, for example, is poisonous, and while it does have a history of being used internally as medicine, ingesting it is not advised and should only be done under the direction of a doctor. A much less risky activity would be to make soap out of it.

soapwort (Saponaria officinalis)

Saponaria officinalis, commonly known as bouncing bet, hedge pink, fuller’s herb, scourwort, and soapweed or soapwort, is an herbaceous perennial native to Europe. It has been planted widely in flower beds and herb gardens outside of its native range, desired both for its beauty and utility. Capitalizing on our appreciation for it, soapwort has expanded beyond our garden borders and into natural areas, as well as vacant lots, roadsides, and other neglected spaces. Even in a garden setting it can be a bit of a bully, especially if ignored for a season or two.

The stems of soapwort grow to about two feet tall, are unbranched, and sometimes tinged with pink, purple, or red. The leaves are oblong and oppositely-arranged, and their bases form prominent collars around the stems. Showy clusters of flowers are found atop the stems throughout the summer. Like other flowers in the pink family (Caryophyllaceae), they are cigar-shaped at the base and opened wide at the end, showing off 5 distinct petals with notches at their tips. The petals of soapwort flowers bend backwards, with their sex parts protruding outwards. In his description of the flowers, John Eastman remarks in The Book of Field and Roadside that “the reflexed petals surrounding the sexual organs give the impression of flagrant thrust; this is a gaudy, unshy flower.”

collared stem of soapwort (Saponaria officinalis)

The fragrant flowers are pink to white in color. They open in the evening and remain open for a few short days. In an individual flower, pollen matures and is mostly shed before the stigma is ready to accept it. This helps reduce the chance of self-pollination. Cross pollination occurs with the assistance of moths who visit the flowers at night, as well as bees and other flower-visiting insects that come along during the daytime. Soapwort fruits are oval capsules containing as many as 500 kidney-shaped seeds. Seeds aren’t essential to the plants spread though, as much of its colonization occurs via vigorous rhizomes.

In fact, vegetative reproduction is the means by which soapwort forms such expansive, thick patches. It also helps that it’s poisonous. The saponins – its soap making compounds – that it produces in its roots, shoots, and leaves deter most insects and other animals from eating it. It has a reputation for poisoning horses, cows, and other livestock, and so is unwelcome in pastures and rangelands. Saponins are also poisonous to fish, so growing soapwort near fish ponds is not advised.

soapwort (Saponaria officinalis)

Soapwort occurs in a variety of soils including sandy, dry, and rocky sites and is surprisingly drough-tolerant, fine qualities to have when colonizing neglected sites. While most other organisms ignore soapwort, it has a friend in humans. Eastman sums this up well: “Soapwort’s most important associate – as is true of most plants we label weeds – is undoubtedly humankind, without whose helpful interventions the plant would surely be much rarer than it is.”

I made a soapy liquid out of soapwort by following a recipe that can be found on various blogs and websites by searching “saponaria soap recipe.” Basically it’s a cup of fresh leaves and stems along with a cup of dried leaves and stems added to a quart of distilled water brought to a boil. After simmering for 15 minutes and then allowing it to cool, strain the mixture through cheese cloth, and it’s ready to go.

This gentle but effective soap can be used for cleaning countertops and other surfaces, as well as dishes, fabrics, and skin. Several sources say it is particularly useful for cleaning delicate fabrics. Sierra and I both found it to have a cooked cabbage or spinach scent to it. This can be masked by adding a few drops of essential oil. Despite its odd aroma, both Sierra and I were impressed by its cleansing power and plan to use it more often.

dried leaves of soapwort

soapwort soap