Seed Dispersal via Caching – The Story of Antelope Bitterbrush

Generally speaking, individual plants produce an enormous amount of seeds. This may seem like a huge waste of resources, but the reality is that while each seed has the potential to grow into an adult plant that will one day produce seeds of its own, relatively few may achieve this. Some seeds will be eaten before they get a chance to germinate. Others germinate and soon die from lack of water, disease, or herbivory. Those that make it past the seedling stage continue to face similar pressures. Reaching adulthood, then, is a remarkable achievement.

Antelope bitterbrush is a shrub that produces hundreds of seeds per individual. Each seed is about the size of an apple seed. Some seeds may be eaten right away. Others fall to the ground and are ignored. But a large number are collected by rodents and either stored in burrows (larder hoarding) or in shallow depressions in the soil (scatter hoarding). It is through caching that antelope bitterbrush seeds are best dispersed. When rodents fail to return to caches during the winter, the seeds are free to sprout in the spring. Some of the seedlings will dry out and others will be eaten, but a few will survive, making the effort to produce all those seeds worth it in the end.

Fruits forming on antelope bitterbrush (Purshia tridentata)

Antelope bitterbrush (Purshia tridentata) is in the rose family and is often simply referred to as bitterbrush. It occurs in grasslands, shrub steppes, and dry woodlands throughout large sections of western North America. It is a deciduous shrub that generally reaches between three and nine feet tall but can grow up to twelve feet. It has wedge-shaped leaves that are green on top, grayish on bottom, and three-lobed. Flowers are yellow, strongly fragrant, and similar in appearance to others in the rose family. Flowering occurs mid-spring to early summer. Fruits are achenes – single seeds surrounded by papery or leathery coverings. The covering must rot away or be removed by animals before the seed can germinate.

Bitterbrush is an important species for wildlife. It is browsed by mule deer, pronghorn antelope, bighorn sheep, and other ungulates, including livestock. It provides cover for birds, rodents, reptiles, and ungulates. Its seeds are collected by harvester ants and rodents, its foliage is consumed by tent caterpillars and other insects, and its flowers are visited by a suite of pollinators. For all that it offers to the animal kingdom, it also relies on it for pollination and seed dispersal. The flowers of bitterbrush are self-incompatible, and if it wasn’t for ants and rodents, the heavy seeds – left to rely on wind and gravity – would have trouble getting any further than just a few feet from the parent plant.

Antelope bitterbrush (Purshia tridentata) in full bloom – photo credit: wikimedia commons

In a study published in The American Naturalist (February 1993), Stephen Vander Wall reported that yellow pine chipmunks were the primary dispersal agents of bitterbrush seeds in his Sierra Nevada study area. The optimal depth for seedling establishment was between 10-30 millimeters. Seeds that are cached too near the surface risk being pushed out of the ground during freeze and thaw cycles where they can desiccate upon germination. Cached bitterbrush seeds benefit when there are several seeds per cache because, as Vander Wall notes, “clumps of seedlings are better able to push through the soil and can establish from greater depths than single seedlings.”

Another study by Vander Wall, published in Ecology (October 1994), reiterated the importance of seed caching by yellow pine chipmunks in the establishment of bitterbrush seedlings. Seed caches, which consisted of anywhere from two to over a hundred seeds, were located as far as 25 meters from the parent plant. Cached seeds are occasionally moved to another location, but Vander Wall found that even these secondary caches produce seedlings. Of course, not all of the seedlings that sprout grow to maturity. Vander Wall states, “attrition over the years gradually reduces the number of seedlings within clumps.” Yet, more than half of the mature shrubs he observed in his study consisted of two or more individuals, leading him to conclude that “they arose from rodent caches.”

A study published in the Journal of Range Management (January 1996) looked at the herbivory of bitterbrush seedlings by rodents. In the introduction the authors discuss how “rodents [may] not only benefit from antelope bitterbrush seed caches as a future seed source, but also benefit from the sprouting of their caches as they return to graze the cotyledons of germinating seeds.”  In this study, Ord’s kangaroo rats, deer mice, and Great Basin pocket mice were all observed consuming bitterbrush seedlings, preferring them even when millet was offered as an alternative. The two species of mice also dug up seedlings, possibly searching for ungerminated seeds. Despite seed dispersal via caching, an overabundance of rodents can result in few bitterbrush seedlings reaching maturity.

A cluster of antelope bitterbrush seedlings that has been browsed. “Succulent, young seedlings are thought to be important in the diets of rodents during early spring because of the nutrients and water they contain.” — Vander Wall (1994)

———————

Photos of antelope bitterbrush seedling clusters were taken at Idaho Botanical Garden, where numerous clusters are presently on display along the pathways of the native plant gardens and the adjoining natural areas. 

Invasive Species vs. The Global Economy

As humans have spread across the globe, other species have followed. The domestication of animals and the advent of agriculture helped speed up this process, but species have been traveling around with humans long before that. Presently, our ability to move species from one corner of the globe to another is unprecedented. As more countries join the global economy, the risk of outsider species establishing themselves in uncharted territory increases. Species introductions via globalization are not likely to decrease, and so the question must be asked: Are we, as a global community, equipped to address this?

A review published in Nature Communications in August 2016 warns that “most countries have limited capacity to act against invasions.” The authors come to this conclusion after analyzing available data about invasive species across the globe and developing a “global, spatial forecast for emerging invasions throughout the twenty-first century.” National responses to invasive species were assessed based on reports to the Convention on Biological Diversity (CBD).

As part of the 2011-2020 CBD Strategic Plan for Biodiversity, nations or states that are parties of the CBD agreed to work towards a series of goals called Aichi Biodiversity Targets. Target 9 addresses invasive species: “By 2020, invasive alien species and pathways are identified and prioritized, priority species are controlled or eradicated and measures are in place to manage pathways to prevent their introduction and establishment.” The authors of the review found that, while most countries have made progress on identifying and prioritizing some of the most prominent and threatening invasive species, “current management practices only target a handful” and “prevention of introduction and establishment lags far behind progress towards the reactive CBD goals.”

Biological invasions are expected to remain high across the globe; however, regions with a high Human Development Index (HDI) face different threats compared to regions with a low HDI. Due to increasing levels of international trade, high-HDI regions will continue to be threatened by introductions via pet and plant imports. Climate change and the coinciding biome shifts and changes in fire frequency are expected to aid in the establishment and perpetuation of invasive species in these regions.

Low-HDI regions have historically been less threatened by invasive species compared to high-HDI regions. As these regions join the global economy, they risk experiencing a much higher level of species introductions. Many of the planet’s biodiversity hotspots are found in low-HDI regions, making these hotspots more vulnerable to invasions as the potential for introductions increases. The authors found that the threat of introductions is at its highest in regions where “high levels of passenger air travel overlap with agriculture conversion.” Low-HDI regions are more limited in their capacity to respond to invasions compared to high-HDI regions and are more vulnerable to food shortages when invasive species disrupt agriculture.

“High risk in low-HDI countries could arise from coincidence between intensifying agriculture sectors and high levels of passenger air travel that is likely to transport arthropod pests. … Low-HDI countries could prioritize screening of passenger baggage for live plants, fruits or vegetables, which could host crop pests and pathogens.” – Early, et al. (2016) – photo credit: wikimedia commons

The authors state: “The intensities and global patterns of introduction and disturbance are changing more rapidly today than at any time during human history.” Introductions are not projected to slow in high-HDI regions, and low-HDI regions will be increasingly threatened as species already well established in high-HDI regions expand their reach. This is grim news, but it also presents an opportunity. Through cooperation and data sharing, our understanding of invasive species can greatly increase, and regions with greater access to resources can share such things with less fortunate regions. This is the hope of the authors as well: “We urge increased exchange of information and skills between regions with a wealth of invasive alien species experts and low-HDI countries that have less expertise.”

For more information about this review, go here. For more information about global trade in the modern era, check out the new podcast Containers.

Learning Lessons from Invaded Forests

In 1946, North American beavers were introduced to the archipelago of Tierra del Fuego at the tip of South America in an attempt to start an industry based on beaver fur. Although this industry has not thrived, beavers have multiplied enormously. By cutting trees and building dams, they have transformed forests into meadows and also fostered the spread of introduced ground cover plants. Now numbering in the tens of thousands in both Chilean and Argentinian parts of the archipelago, beavers are the target of a binational campaign to prevent them from spreading to the mainland of these two nations. — Invasive Species: What Everyone Should Know by Daniel Simberloff

Beavers in South America are just one example of the series of effects a species can have when it is placed in a new environment. Prior to the arrival of beavers, there were no species in the area that were functionally equivalent. Thus, through their felling of trees and damning of streams, the beavers introduced novel disturbances that have, among other things, aided the spread of non-native plant species. Ecologists call this an invasional meltdown, wherein invasion by one organism aids the invasion of another, making restoration that much more difficult.

Complicated interactions like this are explored by David Wardle and Duane Peltzer in a paper published last month in Biological Invasions. Organisms from all walks of life have been introduced to forests around the world, and while many introductions have had no discernable impact, others have had significant effects both above and below ground.

The authors selected forest ecosystems for their investigation because “the imprint of different invaders on long-lived tree species can often be observed directly,” even when the invading organisms are doing their work below ground. Moreover, a greater understanding of “the causes and consequences of invasions is essential for reliably predicting large-scale and long-term changes” in forest ecosystems. Forests do not regenerate quickly, so protecting them from major disturbances is important. Learning how forests respond to invasions can teach us how best to address the situation when it occurs.

The authors begin by introducing the various groups of organisms that invade forests and the potential impacts they can have. This is summarized in the graphic below. One main takeaway is that the effects of introduced species vary dramatically depending on their specific attributes or traits and where they fall within the food chain. If, like the beaver, a novel trait is introduced, “interactions between the various aboveground and belowground components, and ultimately the functioning of the ecosystem” can be significantly altered.

Wardle, D.A., and D.A. Peltzer. Impacts of invasive biota in forest ecosystems in an aboveground-belowground context. Biological Invasions (2017).  doi:10.1007/s10530-017-1372-x

After highlighting some of the impacts that invasive species can have above and below ground, the authors discuss basic tenets of invasion biology as they relate to forest ecosystems. Certain ecosystems are more vulnerable to invasions than others, and it is important to understand why. One hypothesis is that ecosystems with a high level of species diversity are more resistant to invasion than those with low species diversity. This is called biotic resistance.  When it comes to introduced plants, soil properties and other environmental factors come in to play. One species of plant may be highly invasive in one forested ecosystem, but completely unsuccessful in another. The combination of factors that help determine this are worth further exploration.

When it comes to restoring invaded forests, simply eliminating invasive species is not always enough. Because of the ecological impacts they can have above and below ground, “invader legacy effects” may persist. As the authors write, this requires “additional interventions to reduce or remove [an invader’s] legacy.” Care also has to be taken to avoid secondary invasions, because as one invasive species is removed another can take its place.

Nitrogen-fixing plants (which, as the authors explain, “feature disproportionately in invasive floras”) offer a prime example of invader legacy effects. Introducing them to forest ecosystems that lack plants with nitrogen fixing capabilities “leads to substantially greater inputs of nitrogen … and enhanced soil fertility.” Native organisms – decomposer and producer alike – are affected. Simply removing the nitrogen fixing plants does not at once remove the legacy they have left. Examples include Morella faya invasions of forest understories in Hawaii and invasions by Acacia species in South Africa and beyond.

“It has been shown that co-invasion by earthworms enhances the effects that the invasive nitrogen fixing shrub Morella faya has on nitrogen accretion and cycling in a Hawaiian forest, by enhancing burial of nitrogen-rich litter.” – D.A. Wardle and D.A. Peltzer (2017) – photo credit: wikimedia commons

The authors conclude with a list of “unresolved issues” for future research. A common theme among at least a couple of their issues is the need for observing invasive species and invaded environments over a long period. Impacts of invasive species tend to “vary across both time and space,” and it is important to be able to predict “whether impacts are likely to amplify or dampen over time.” In short, “focus should shift from resolving the effects of individual invasive species to a broader consideration of their longer term ecosystem effects.”

This paper does not introduce new findings, but it is a decent overview of invasion biology and is worth reading if you are interested in familiarizing yourself with some of the general concepts and hypotheses. It’s also open access, which is a plus. One thing that is clear after reading this is that despite our growing awareness of the impacts of invasive species, there is still much to be learned, particularly regarding how best to respond to them.

———————

Awkward Botany is now on Facebook and Instagram!

Thanks to a friend of the blog, Awkward Botany now has a Facebook page and an Instagram. Please check them out and like, follow, friend, et al. While you’re at it, check out the Twitter and Tumblr too for all sorts of botanical and botanical-adjacent extras.

Poisonous Plants: Yews

Wildfires last summer followed by a particularly harsh winter has driven herds of elk, deer, antelope, and other ungulates closer to urban and suburban areas in southern Idaho. This has resulted in several of the animals making a meal out of a particularly poisonous plant and then promptly dying. The plant is a yew, an ornamental shrub or tree that is commonly used in residential and commercial landscapes. Seven elk died after eating Japanese yew in the Boise Foothills. Fifty pronghorn antelope died after eating the same plant species in the small city of Payette. Eight more elk were found dead in North Fork and Challis, poisoned by yew; eight others were found dead outside of Idaho Falls having suffered a similar fate. And this is just a sampling. Needless to say, such tragedies have spawned a greater awareness of this and other deadly poisonous plants – plants that were purposely planted in our yards, thought benign, but lying in wait to kill.

Japanese yew (Taxus cuspidata) - photo credit: wikimedia commons

Japanese yew (Taxus cuspidata) – photo credit: wikimedia commons

Yews, plants in the genus Taxus, are in the family Taxaceae, a coniferous family that consists of around 5-7 genera and up to 30 species (sources vary). Taxus is one of the largest genera in the family with between 9 and 11 species. The genus occurs across three continents, with at least four species naturally occurring in North America (T. canadensis, T. brevifolia, T. globosa, and T. floridana). The species most commonly grown as ornamentals include Japanese yew (T. cuspidata), English yew (T. baccata), and a hybrid of the two (T. x media).

Generally speaking, yews are evergreen shrubs or trees with inch long, dark green needles that come to a sharp point. Branches are alternately arranged and the bark is scaly and reddish-brown. As trees they can reach heights of more than 60 feet, but in a garden setting the plants are usually hedged into more managable-sized shrubs. Taxus species are dioecious, which means that individuals are either male or female. The females produce fleshy, round, cup-shaped fruits that are pink, red, or green. This structure is called an aril and is produced by the swelling of the stem around a single seed. All parts of the plant are poisonous, with only one exception – the aril. This is problematic because the bright-colored aril can appear quite appetizing. And it is edible; however, when the seed is consumed along with it, the plant’s poison makes its way into the body.

The fruits of yew (Taxus sp.)

The fruits of yew (Taxus sp.)

Yew poisoning is unfun. Death can occur in a matter of a few hours, depending on the parts of the plant and amount consumed. The North American Guide to Common Poisonous Plants and Mushrooms lists these symptoms: “nausea, dry throat, severe vomiting, diarrhea, rash, pallor, drowsiness, abdominal pain, dizziness, trembling, stiffness, fever, and sometimes allergy symptoms.” Symptoms of severe poisoning include, “acute abdominal pain, irregular heartbeat, dilated pupils, collapse, coma, and convulsions, followed by a slow pulse and weak breathing.” The cause of death is respiratory and heart failure.

Yews contain a number of toxic compounds, including volatile oils and a cyanogenic glycoside. The compound responsible for yew’s high toxicity is taxine, a potent cardiotoxin and, as it turns out, an effective drug against certain types of cancer. Very small doses of this poison can be deadly. One or two yew seeds can kill a small child, and a handful or two of the needles can kill an animal, depending on its size. Even dried branches and leaves remain toxic, so wreaths made with yew should be disposed of in a landfill rather than tossed into a yard or field where domestic animals and livestock can find them. Yew consumption should be promptly addressed by visiting an emergency room or calling the Poison Control Center.

Yew’s deadly reputation is not something to take lightly. They are a popular ornamental because of their attractive fruits and evergreen foliage, their tolerance of shade, and their low maintenance requirements, but homeowners with children, pets, or proximity to horses, cows, or wild animals should consider removing them. If a decision is made to keep them, the shrubs can be wrapped in burlap during the winter to prevent hungry animals from coming in for a bite, particularly on properties that are adjacent to natural areas.

For more information about yew identification and removal, check out this article in the Idaho Statesman. Also, consider this wise counsel by Amy Stewart from her book, Wicked Plants:

Do not experiment with unfamiliar plants or take a plant’s power lightly. Wear gloves in the garden; think twice before swallowing a berry on a trail or throwing a root into the stew pot. If you have small children, teach them not to put plants in their mouths. If you have pets, remove the temptation of poisonous plants from their environment. The nursery industry is woefully lax about identifying poisonous plants; let your garden center know that you’d like to see sensible, accurate labeling of plants that could harm you. Use reliable sources to identify poisonous, medicinal, and edible plants.

More Poisonous Plant Posts on Awkward Botany:

Podcast Review: The Field Guides

Who doesn’t love nature walks and scientific journal articles? Luckily there is a podcast that combines the two. The Field Guides is hosted by two guys who are obsessed with the natural world and the science behind it. For each episode the hosts pick a nature topic to study in depth, then they head out to a natural area to talk about what they learned. The discussion takes place outside as they hike around, giving listeners the experience of being “out in the field, in the woods, and on the trail.”

field-guides

The discussion is conversational as the two hosts (and occasional guests) share things from different studies they have read, inserting personal anecdotes and thoughts as they arise. Observations on what they are seeing as they walk and talk also enter into the conversation. The nature sounds in the background make for a great score, and surprises along the way add a little suspense and intrigue to the experience.

The Field Guides is a young podcast – about a year and a half old – and has averaged around one episode per month. Episodes vary in length from as few as 20 minutes to an hour, so catching up on past episodes is not an insurmountable task. And it’s worth it. The guides have already explored some great topics that shouldn’t be missed, including hibernation, birds in the winter, salamanders, spruce grouse, and ice spikes. A bonus episode takes the listener along on a Christmas bird count, which, speaking for myself, is an inspiration to get involved in this 117 year old tradition. As a plant nerd, the botanically themed episodes are particularly interesting, and have so far included fall foilage, witch hazel, pokeweed, staghorn sumac, and others.

This is a ball gall on a tall goldenrod (Solidago altissima). The first episode of The Field Guides is all about the fascinating world of goldenrod galls. (photo credit: wikimedia commons)

A ball gall on a tall goldenrod (Solidago altissima). The first episode of The Field Guides is all about the fascinating world of goldenrod galls. (photo credit: wikimedia commons)

The notes that accompany each episode are often extensive and include things like references to the journal articles discussed and other resources cited, answers to questions that came up during the episode, and corrections to any mistakes that were made. Clearly the hosts are thorough in their research and passionate about the subjects they cover, but they are not without a sense of humor. The information presented is great, but what makes this podcast so listenable is the way that it is presented. It’s approachable, fun, and light-hearted – drawing the listener in to the conversation and out in to nature.

Check out individual interviews with the hosts of The Field Guides on these two episodes of In Defense of Plants podcast: Environmental Action with Bill Michalek and Reflections on Science with Steven Fleck

More Podcast Reviews on Awkward Botany:

Eating the Invasives

Happy National Invasive Species Awareness Week! It’s a fine time to get educated about invasive species, and perhaps even play a role in mitigating them. Opportunities for getting involved are myriad and include volunteering with local conservation groups, replacing invasive plants in your yard with non-invasive alternatives, and being mindful when you visit natural areas not to bring along weed seeds and other pests and diseases. Another strategy in the battle against invasive species is to eat them, which is precisely what I plan on doing. If you are interested in doing the same, this revised post (originally published in November 2013) will help get you started.

Invasivore: One Who Consumes Invasive Species

Invasive species are a major ecological concern, and considerable effort is spent controlling them. The ultimate goal  – albeit a lofty one in many cases – is to eradicate them and to prevent future outbreaks. The term “invasive species” describes plants, animals, and microorganisms that have been intentionally or unintentionally introduced into an environment outside of their native range. They are “invasive” because they have established themselves and are causing adverse effects in their non-native habitats. Some introduced species cause no discernible adverse effects and so are not considered invasive. Species that are native to a specific habitat and exhibit adverse effects following a disturbance can also be considered invasive. (White-tailed deer are an example of this in areas where human activity and development have reduced or eliminated their natural predators resulting in considerably larger deer populations than would otherwise be expected.) Defining and describing invasive species is a challenging task, and so it will continue to be a topic of debate among ecologists and conservation biologists for the foreseeable future.

The adverse effects of invasive species are also not always straightforward. Typical examples include outcompeting native flora and fauna, disrupting nutrient cycles, shifting the functions of ecosystems, altering fire regimes, and causing genetic pollution. Countless hours of research and observation are required in order to determine the real effects of invaders. The cases are too numerous and the details are too extensive to explore in this post; however, I’m sure I will cover this topic more thoroughly in the future.

There are many approaches to eradicating invasive species, but one fairly unconventional method is to simply eat them. Why not, right? Historically, the voracious appetite of humans has helped drive several species to extinction, so why not employ our stomachs in the removal of introduced species from their non-native habitats? The folks at Invasivore are suggesting just that. By encouraging people to consume invasive species, they are also promoting awareness about them – an awareness they hope “will lead to decreasing the impacts of invasive species by preventing introductions, reducing spread, and encouraging informed management policies.”

“If you can’t beat ’em, eat ’em!” And so they provide recipes in order to encourage people to harvest, prepare, and consume the invasive species in their areas. Some of the invasive plant species they recommend eating are Autumn Olive (Autumn Olive Jam), garlic mustard (Garlic Mustard Ice Cream), Japanese honeysuckle (Honeysuckle Simple Syrup), purslane (Purslane Relish), and Canada goldenrod (Strawberry-Goldenrod Pesto). And that’s just a sampling. One might ask if we are encouraged to eat invasive species and ultimately find them palatable, won’t our demand result in the increased production of these species? The Invasivores have considered this, and that is why their ultimate goal is raising awareness about the deleterious effects of invasive species. In the end, we should expect to see our native habitats restored. Our craving for Burdock Chips on the other hand will have to be satisfied by some other means.

lonicera japonica

Japanese honeysuckle (Lonicera japonica) – photo credit: wikimedia commons

More about eating invasive species:

———————

What are you doing to celebrate National Invasive Species Awareness Week? Let us know in the comment section below.