Summer of Weeds: Pineapple Weed

“The spread of the fruitily perfumed pineapple weed, which arrived in Britain from Oregon in 1871, exactly tracked the adoption of the treaded motor tyre, to which its ribbed seeds clung as if they were the soles of small climbing boots.” – Richard Mabey, Weeds: In Defense of Nature’s Most Unloved Plants

Can a plant that is native to North America be considered a weed in North America? Sure. If it is acting “weedy” according to whatever definition we decide to assign to the word, then why not? Can “weeds” from North America invade Europe the same way that so many “weeds” from there have invaded here? Of course! Pineapple weed is just one such example.

Native to western North America and northeastern Asia, this diminutive but tough annual plant in the aster family can now be found around the globe. Matricaria discoidea gets its common name from the distinctive fruity scent it gives off when its leaves and flowers are crushed. Its scent is not deceptive, as it is yet another edible weed (see Eat the Weeds). Teas made from its leaves have historically been used to treat upset stomachs, colds, fevers, and other ailments.

pineapple weed (Matricaria discoidea)

Pineapple weed reaches as few as a couple centimeters to a little over a foot tall. Its leaves are finely divided and fern-like in appearance. Its flower heads are cone or egg-shaped, yellow-green, and cupped in light-colored, papery bracts. The flower heads lack ray florets and are composed purely of tightly packed disc florets. The fruits (i.e. seeds) are tiny, ribbed achenes that lack a pappus.

Compacted soils are no match for pineapple weed. It is often seen growing in hard-packed roadways and through small cracks in pavement, and it is undeterred by regular trampling. It is a master of disturbed sites and is commonly found in home gardens and agriculture fields. It flowers throughout the summer and is often confused with mayweed (Anthemis cotula); the telltale difference is that mayweed gives off a foul odor when crushed.

Meriwether Lewis collected pineapple weed along the Clearwater River during the Lewis and Clark Expedition. In their book, Lewis and Clark’s Green World, Scott Earle and James Reveal write, “There is nothing in the expedition’s journals about the plant, but it would seem that there was little reason for Lewis to collect the two specimens that he brought back other than for its ‘agreeable sweet scent.’ It is otherwise an unremarkable, rayless member of the aster family.” The authors continue their mild ribbing with this statement: “The pineapple weed deserves its appellation, for it is a common weed – although a relatively innocuous one – that grows in disturbed places, along roadsides, and as an unwanted garden guest.”

pineapple weed (Matricaria discoidea) – photo credit: wikimedia commons

More Resources:

Quote of the Week:

From Weeds and What They Tell (ed. 1970) by Ehrenfried Pfeiffer

“Weeds are WEEDS only from our human egotistical point of view, because they grow where we do not want them. In Nature, however, they play an important and interesting role. They resist conditions which cultivated plants cannot resist, such as drought, acidity of soil, lack of humus, mineral deficiencies, as well as a one-sidedness of minerals, etc. They are witness of [humanity’s] failure to master the soil, and they grow abundantly wherever [humans] have ‘missed the train’ – they only indicate our errors and Nature’s corrections. Weeds want to tell a story – they are natures way of teaching [us] – and their story is interesting. If we would only listen to it we could apprehend a great deal of the finer forces through which Nature helps and heals and balances and, sometimes, also has fun with us.”

When Alien Plants Invade – The Four Stages of Invasion, part two

In a review published in New Phytologist (2007), Kathleen Theoharides and Jeffrey Dukes examine four stages of invasion as they relate to alien (i.e. introduced or non-indigenous) plant species. In part one we discussed transport and colonization, in which species must survive being transported long distances and then take root and reach maturity in an unfamiliar location. Alien plant species don’t become invasive until they have reached the last two stages: establishment and landscape spread. Removal of the species upon reaching these stages is no easy task. Luckily, introduced species have a few barriers to overcome before this point.

An established population is one that is self-sustaining and expanding. Environmental conditions may be a limiting factor, as they were during colonization, but the main constraints at this stage are “biotic filters.” Theoharides and Dukes define these as “barriers to invasion created by the actions or presence of living organisms.” Through competition for various resources, as well as herbivory and disease, neighboring organisms affect the survival, growth, and reproduction of introduced plant species. Thus, “traits that enhance competitive performance, reduce niche overlap between [introduced species] and natives, or increase enemy resistance may be most important during establishment… Other advantageous traits include secondary chemical compounds that deter herbivores, ‘novel weapons’ such as root exudates that negatively impact other plants, fast growth, and high fecundity.”

Plants compete for light, moisture, and soil nutrients, as well as for pollinators and seed dispersers. Competition inhibits the establishment of invaders when neighboring plants consume available resources more efficiently. Introduced plants risk being outcompeted by plants that are of the same functional type (plants that are “morphologically, phenologically, and physiologically similar”). They also risk competition by a single dominant species (or group of similar species) or by “an assemblage of species with different traits.” As a general rule, plant communities with greater diversity are more resistant to invasion.

“In forests of the northeastern USA, Alliaria petiolata, an herbaceous mustard species, contains a type of phytotoxic glucosinolate that appears to disrupt the mutualism between arbuscular mycorrhizal fungi and hardwood canopy trees.” – – Theoharides and Dukes (2007) [photo credit: eol.org]

Two hypotheses postulate the success of some plant invaders in establishing themselves: the enemy release hypothesis and the evolution of increased competitive ability hypothesis. In the first hypothesis, plant species – having been removed from their native habitat – are freed from their natural enemies and are thus able to allocate more resources to growth and reproduction. The second hypothesis states that, in light of “reduced enemy pressure,” introduced species quickly evolve to allocate resources “from enemy defense to faster growth.” Escape from herbivory and diseases, however, is likely not the only factor in the success of invaders, and much still depends on the competitiveness of the plant and the availability of key resources.

After introduced plants become established, a lag phase generally occurs before landscape spread. This can be a result of a lack of genetic variation, a dearth of suitable habitat, unfavorable environmental conditions, or some combination of the three. New introductions may occur, and the population may continue to adapt and expand. Suitable habitat may be made available, and environmental conditions may shift. In time, landscape spread becomes a possibility.

Landscape spread occurs when multiple populations of a species are connected via long-distance dispersal. At this “metacommunity scale,” populations of an introduced plant species interact across a large area, with each population in a different stage of colonization and establishment. This means that transport, colonization, and establishment are all at play during the landscape spread stage.

Abutilon theophrasti (velvetleaf) was originally introduced before 1700 in the USA. This species has only recently become an aggressive invader as a result of the evolution of different life-history strategies based on the nature of competition in its new environment.” — Theoharides and Dukes (2007) [photo credit: wikimedia commons]

Dispersal ability and habitat connectivity are key factors in determining the success of an introduced plant species during landscape spread. Long-distance dispersal can occur via wind, water, or animals. Species that depend on animals to spread their seeds rely on specific animals to be present. The seeds of Prunus serotina (black cherry), for example, are dispersed by birds. So, landscape spread is reliant on birds and “roosting trees” where the birds can perch and defacate the seeds. In many cases, “humans also play a large role in intraregional dispersal.”

Habitats vary across the landscape due to a combination of numerous geological and biological processes. The disturbance regime – “the frequency, spatial extent, severity, and intensity of killing events over time” – also helps determine landscape patterns. Natural disturbances, such as fire, weather, and natural disasters, are differentiated from disturbances caused by human activity. Large scale development and disturbance of natural areas by humans disrupts the natural disturbance regime and alters historical landscape patterns. As the authors write, “alterations of the disturbance regime that increase resource availability or change landscape patterns can promote non-indigenous plant species spread by creating favorable patches for colonization and establishment.”

Fragmented landscapes consisting of small patches of natural areas dispersed among large areas of human development are particularly prone to invasion by introduced plant species for many reasons, including increased influx of propagules and a high degree of edge effects (habitat edges have environmental conditions that are generally more prone to invasion than habitat interiors).

Habitat patches can be connected via corridors. It is through these corridors that dispersal can occur between populations in a metacommunity. Corridors connect populations of both introduced and native plant species. However, “native plants often require wide undisturbed corridors of intact habitat, while [introduced plant species] may disperse best through strips of human-disturbed habitat or ‘disturbance corridors.'” The environmental conditions in disturbance corridors and the presence of dispersal agents (including humans and domesticated animals) help facilitate the connectivity of populations of introduced plant species and promote the colonization and establishment of new populations.

In their abstract, Theoharides and Dukes write, “both research and management programs may benefit from employing multiscale and stage approaches to studying and controlling invasion.” With their conclusion they provide a list of potential management strategies for each stage, and they advise employing “natural filters in order to prevent invasion succees.” Examples include reducing habitat fragmentation and edge effects, promoting intact native communities, reducing human disturbances, promoting natural disturbance regimes, and minimizing disturbance corridors.

More Posts about Invasive Species:

In Praise of Poison Ivy

This is a guest post by Margaret Gargiullo. Visit her website, Plants of Suburbia, and check out her books for sale on Amazon.

———————

No one seems to like Toxicodendron radicans, but poison ivy is an important plant in our urban and suburban natural areas. Poison ivy (Anacardiaceae, the cashew family) is a common woody vine, native to the United States and Canada from Nova Scotia to Florida, west to Michigan and Texas. It is also found in Central America as far south as Guatemala. It is all but ubiquitous in natural areas in the Mid-Atlantic United States. It has been recorded in over 70 wooded parks and other natural areas in New York City.

Leaflets of three? Let if be. Poison ivy (Toxicodendron radicans). photo credit: wikimedia commons

Leaflets of three? Let if be. Poison ivy (Toxicodendron radicans) – photo credit: wikimedia commons

Poison ivy does have certain drawbacks for many people who are allergic to its oily sap. The toxins in poison ivy sap are called urushiols, chemicals containing a benzene ring with two hydroxyl groups (catechol) and an alkyl group of various sorts (CnHn+1).

These chemicals can cause itching and blistering of skin but they are made by the plant to protect it from being eaten by insects and vertebrate herbivores such as rabbits and deer.

Poison ivy is recognized in summer by its alternate leaves with three, shiny leaflets and by the hairy-looking aerial roots growing along its stems. In autumn the leaves rival those of sugar maple for red and orange colors. Winter leaf buds are narrow and pointed, without scales (naked). It forms extensive colonies from underground stems and can cover large areas of the forest floor with an understory of vertical stems, especially in disturbed woodlands and edges. However, It generally only blooms and sets fruit when it finds a tree to climb. When a poison ivy stem encounters a tree trunk, or other vertical surface, it clings tightly with its aerial roots and climbs upward, reaching for the light (unlike several notorious exotic vines, it does not twine around or strangle trees). Once it has found enough light, it sends out long, horizontal branches that produce flowers and fruit.

Flowers of poison ivy are small and greenish-white, not often noticed, except by the honeybees and native bees which visit them for nectar and exchange pollen among the flowers. Honey made from poison ivy nectar is not toxic. Fruits of poison ivy are small, gray-white, waxy-coated berries that can remain on the vine well into winter. They are eaten by woodpeckers, yellow-rumped warblers, and other birds. Crows use poison ivy berries as crop grist (instead of, or along with, small stones) and are major dispersers of the seeds.

The fruits of poison ivy (Toxicodendron radicans) - photo credit: Daniel Murphy

The fruits of poison ivy (Toxicodendron radicans) – photo credit: Daniel Murphy

It is as a ground cover that poison ivy performs its most vital functions in urban and suburban woodlands. It can grow in almost any soil from dry, sterile, black dune sand, to swamp forest edges, to concrete rubble in fill soils, and along highways. It enjoys full sun but can grow just fine in closed canopy woodlands. It is an ideal ground cover, holding soil in place on the steepest slopes, while collecting and holding leaf litter and sticks that decay to form rich humus. It captures rain, causing the water to sink into the ground, slowing runoff, renewing groundwater, filtering out pollutants, and helping to prevent flooding.

Poison ivy is usually found with many other plants growing up through it – larger herbs, shrubs, and tree seedlings that also live in the forest understory. It seems to “get along” with other plants, unlike Japanese honeysuckle or Asian bittersweet, which crowd out or smother other plants. Poison ivy is also important as shelter for birds and many invertebrates.

While those who are severely allergic to poison ivy have reason to dislike and avoid it, Toxicodendron radicans has an important place in our natural areas. No one would advocate letting it grow in playgrounds, picnic areas, or along heavily used trail margins, but it belongs in our woods and fields and should be treated with respect, not hatred. Recognize it but don’t root it out.

———————

Further Reading: Uva, R. H., J.C. Neal and J. M. DiTomaso. 1997. Weeds of the Northeast. Comstock Publishing. Ithaca, NY.

This piece was originally published in the New York City Dept. of Parks & Recreation, Daily Plant.

Alien Plant Invasions and the Extinction Trajectory

One of the concerns about introduced species becoming invasive is that they threaten to reduce the biodiversity of the ecosystems they have invaded. They do this by spreading rampantly, using up resources and space, altering ecosystem functions, and ultimately pushing other species out. In the case of certain invasive animals, species may be eliminated via predation; but plants don’t eat each other (generally), so if one plant species is to snuff out another plant species it must use other means. Presently, we have no evidence that a native plant species has been rendered extinct solely as a result of an invasive plant species. That does not mean, however, that invasive plants are not doing harm.

In a paper published in AoB Plants in August 2016, Paul O. Downey and David M. Richardson argue that, when it comes to plants, focusing our attention on extinctions masks the real impact that invasive species can have. In general, plants go extinct more slowly than animals, and it is difficult to determine that a plant species has truly gone extinct. Some plants are very long-lived, so the march towards extinction can extend across centuries. But the real challenge – after determining that there are no above-ground signs of life – is determining that no viable seeds remain in the soil (i.e. seed bank). Depending on the species, seeds can remain viable for dozens (even hundreds) of years, so when conditions are right, a species thought to be extinct can emerge once again. (Consider the story of the Kankakee mallow.)

On the other hand, there is plenty of evidence that invasive plant species have had significant impacts on certain native plant populations and have placed such species on, what Downey and Richardson call, an extinction trajectory. It is this trajectory that deserves our attention if our goal is to save native plant species from extinction. As described in the paper, the extinction trajectory has six steps – or thresholds – which are defined in the infographic below:

6-threshold-extinction-trajectory

Downey and Richardson spend a portion of the paper summarizing research that demonstrates how invasive plants have driven native plants into thresholds 1-3, thereby placing them on an extinction trajectory. In New Zealand, Lantana camara (introduced from the American tropics) creates dense thickets, outcompeting native plants. Researchers found that species richness of native plants declined once L. camara achieved 75% cover in the test sites. In the U.S., researchers found reduced seed set in three native perennial herbs as a result of sharing space with Lonicera mackii (introduced from Asia), suggesting that the alien species is likely to have a negative impact on the long-term survivability of these native plants. Citing such research, Downy and Richardson conclude that “it is the direction of change that is fundamentally important – the extinction trajectory and the thresholds that have been breached – not whether a native plant species has actually been documented as going extinct due to an alien plant species based on a snapshot view.”

Introduced to New Zealand from the American tropics, largeleaf lantana (Lantana camara) forms dense thickets that can outcompete native plant species. (photo credit: wikimedia commons)

Introduced to New Zealand from the American tropics, largeleaf lantana (Lantana camara) forms dense thickets that can outcompete native plant species. (photo credit: wikimedia commons)

In support of their argument, they also address problems with the way some research is done (“in many instances appropriate data are not collected over sufficiently long periods,” etc.), and they highlight the dearth of data and research (“impacts associated with most invasive alien plants have not been studied or are poorly understood or documented”). With those things in mind, they make recommendations for improving research and they encourage long-term studies and collaboration in order to address the current “lack of meta analyses or global datasets.” A similar recommendation was made in American Journal of Botany in June 2015.

The language in this report makes it clear that the authors are responding to a certain group of people that have questioned whether or not the threat of invasive plants has been overstated and if the measures we are taking to control invasive plants are justified. The following cartoon that appeared along with a summary of the article way oversimplifies the debate:

04_figure2

Boy: There are no studies that show weeds cause native plants to go extinct, thus we should not control them. Plant: If we wait until then, we’ll all be gone!!! Girl: Just because no one has demonstrated it does not mean that extinctions do not occur. The problem is not overstated!

It seems to me that a big part of why we have not linked an invasive plant species to a native plant species extinction (apart from the difficulty of determining with certainty that a plant has gone extinct) is that extinctions are often the result of a number of factors. The authors do eventually say that: “it is rare that one threatening process in isolation leads to the extinction of a species.” So, as much as it is important to fully understand the impacts that invasive plant species are having, it is also important to look at the larger picture. What else is going on that may be contributing to population declines?

Observing invaded plant populations over a long period seems like our best bet in determining the real effects that invasive species are having. In some cases, as Downey and Richardson admit, “decreased effects over time” have been documented, and so “the effects [of invasive species] are dynamic, not static.” And speaking of things that are dynamic, extinction is a dynamic process and one that we generally consider to be wholly negative. But why? What if that isn’t always the case? Extinctions have been a part of life on earth as long as life has been around. Is there anything “good” that can come out of them?

What Do Desert Tortoises Eat?

Desert conditions are not intuitively conducive to life. In many regards they are extreme. Blistering, bleak, dry, and barren. The desert is a place unsuited for the faint of heart and the ill-equipped. Broadly speaking, life in the desert is reliant on one of two things: technology or evolutionary adaptation. Like many species native to desert environments, the desert tortoise employs the latter. It is at home in the desert because it evolved there. That is not to say that life is always easy for the desert tortoise and species like it, but it is possible, thanks to hundreds of thousands of years of making it work. As John Alcock puts it in, Sonoran Desert Spring, “the tortoise will deal with its environment through evolved design rather than seek to deny the desert its due.”

Perhaps it is because the desert is such a harsh environment, requiring finely tuned adaptations for survival, that sweeping changes can put resident species in peril – threatening their long-term existence. The desert tortoise is an example of this. Since 1990, Gopherus agassizii has found itself listed as threatened under the U.S. Endangered Species Act [it is categorized as vulnerable by the IUCN] due to significant population declines and loss of habitat. Getting there did not happen overnight, and it is impossible to pinpoint a sole cause of the tortoise’s decline. Instead, a suite of things have conspired against it, making it difficult to decide on the best route towards conservation.

In an October 2012 issue of BioScience, Averill-Murray, et al. enumerate some of the human-medaited threats that act both simultaneously and synergistically against desert tortoise populations:

Habitat conversion occurs as a result of urban development, mining, waste disposal, energy development, and road construction. Habitat modification is caused by military training, off-highway vehicle use, utility corridors, livestock grazing, and the proliferation of invasive plants. … Direct losses of tortoises also occur through predation, disease, collection from the wild, and recreational killing.

Apart from climate change, which is projected to substantially reduce the historical range of the desert tortoise in the coming years, the proliferation of introduced grasses is particularly disconcerting. Such grasses tend to increase wildfire frequency in areas where wildfire is historically rare and the native flora is ill-adapted to frequent fire. This can alter plant communities in a way that favors introduced plants over plants native to the region.

Desert Tortoise (Gopherus agassizii) - photo credit: wikimedia commons

Desert Tortoise (Gopherus agassizii) – photo credit: wikimedia commons

The desert tortoise is the largest terrestrial turtle in the United States, measuring up to 15 inches long and weighing up to 15 pounds. Their carapaces are generally dull brown or gray, although those of young tortoises may have orange markings. Their limbs are stocky and elephantine, and their front legs are shovel-like and equipped with claws for digging. They reach sexual maturity between ages 15-20, generally living for at least 35 years and as many as 50-100 years.

Desert tortoises are distributed throughout the Mohave and Sonoran Deserts of southeastern United States and into the Sonaron Desert and Sinaloan foothills of northwestern Mexico. Their habitat varies widely across their range. In general, tortoises prefer sites where the soil is loamy and easy to dig as they spend much of their time in underground dens; however, they also occur in rocky foothills where shelter can be found among the rocks. In the Mohave Desert, they are commonly found in plant communities that are dominated by creosote bush (Larrea tridentata), which they use for shade and an occasional food source.

Creasote Bush (Larrea tridentata) - photo credit: wikimedia commons

Creosote Bush (Larrea tridentata) – photo credit: wikimedia commons

Recently the species known as Gopherus agassizii was determined to consist of at least two (possibly four) distinct species. Desert tortoises that occur north and west of the Colorado River have retained the scientific name G. agassizii and are commonly referred to as Agassiz’s desert tortoise. Desert tortoises occurring east of the Colorado river have been given the name G. morafkai, commonly known as Morafka’s desert tortoise. In light of this, G. agassizii may find itself uplisted to endangered, as its range has been reduced to about 30% of its former self and its southern cousins can no longer be considered a genetic reservoir.

Seeing that desert tortoises have plenty of the right foods to eat ensures their immediate survival and holds them back from the precipice of extinction. The question, “What does a desert tortoise eat?,” was what peaked my curiosity in this subject to begin with. I knew they were herbivores (for the most part), so I assumed they must have a favorite food – something that composed the majority of their diet. Finding an answer to this question led me down a rabbit hole [or should I say a tortoise hole? Some tortoise dens can extend 30 feet or more into the banks of desert dry washes.] that led me to discover the complexity of these creatures. It turns out, there is no easy answer to my initial question. What a desert tortoise eats depends on where in its expansive range it resides, what time of year it is, what plants are available in a particular year, whether or not it’s a drought year, etc.

The desert tortoise is “one of the most studied reptiles in the world,” so hundreds of observations have been made, leading to dozens of reports and studies that examine the diet of the desert tortoise; however, the results are highly variable. Due to such variability, this fact sheet from the San Diego Zoo states matter-of-factly, “an ‘average’ tortoise diet [is] hard to characterize.” But let’s try.

The desert tortoise emerges from its winter den in early spring. At the same time, annual wildflowers are also emerging, taking advantage of warming temperatures and rare soil moisture accumulated during winter precipitation. This is the desert tortoise’s preferred banquet. Because there will be little water available the rest of the year, desert tortoises hydrate themselves mainly through the plants they eat. The lush stems, leaves, and flowers of annual wildflowers provide both nutrients and the water necessary to sustain themselves throughout much of the year and aid in their growth and reproduction.

As spring turns to summer, the tortoises switch to eating herbaceous perennials and grasses. By this point, both introduced annual grasses and native perennial bunchgrasses are drying up, but tortoises are still able to extract some nutrients and moisture by eating their dry stems and leaves. Cactus pads and fruits (particularly those in the genus Opuntia) as well as young leaves of shrubs also help tortoises subsist through the long, hot summers, which are mostly spent deep in their dens away from predators and the blistering heat.

A paper published in a March 1986 issue of Herpetologica follows a group of tortoises over the period of a year and makes a number of lifestyle observations, including their diet. The authors noted that much of their diet consisted of two annual wildflowers (Camissonia munzii and Langloisia setosissima), a perennial bunchgrass (Achnatherum hymenoides), and a non-native annual grass (Bromus rubens). A paper published in a 2010 issue of Journal of Herpetology compared the nutritional quality of four plant species commonly consumed by desert tortoises: a native and non-native grass (Achnatherum hymenoides and Schismus barbatus) and a native and non-native annual forb (Malacothrix glabrata and Erodium cicutarium). They found little difference between the native and non-native species in either catagory, but determined that the forbs were significantly more nutritious than the grasses, which lead them to recommend managament practices that would increase the availability of forbs (regardless of provenance) in tortoise habitat. Numerous studies have documented the frequent consumption of introduced plant species by desert tortoises.

Redstem stork's bill (Erodium cicutarium) is an introduced species commonly consumed by desert tortoises - image credit: wikimedia commons

Redstem stork’s bill (Erodium cicutarium) is an introduced species commonly consumed by desert tortoises – image credit: wikimedia commons

For me, one of the most interesting things to learn was the variety of “non-food” items that tortoises may consume. Tortoises are often observed eating soil and rocks, and are also known to eat bones, arthropods, feces, feathers, hair, and egg shells. The rocks are thought to act as a gastrolith, aiding in digestion. The other items may help supplement minerals and nutrients the tortoises are lacking in their plant-based diet, particularly calcium which is greatly needed for growth and reproduction. Shockingly, a report that appeared in a 2007 issue of The Southern Naturalist details incidences of tortoises eating the skeletal remains of other tortoises.

Desert tortoises are an engrossing subject of study, and so much more could be said about them. For now, I leave you with this passage from Alcock’s book:

To see a tortoise with wrinkled neck and solemn eyes, moving like an animated rock, is an essential part of the experience of the desert. The removal of even a single adult extinguishes a presence that was meant to persist for years to come and snuffs out a prehistoric spark of life in a spartan environment where life, so hard-won, should be celebrated.

Additional Resources:

The Problem with ‘Yes’ Landscapes

This is a guest post by Jeremiah Sandler. Follow Jeremiah on Instagram @j4.sandler

———————

I don’t work for a landscape company, nor have I ever worked for one. The company I do work for contracts with these companies to do health care on their landscapes. For example, we scout for insects and diseases, spray pesticides when necessary, make recommendations of proper cultural practices, and fertilize.

Something has been bothering me for the past two years about the landscapes in metropolitan southeast Michigan. Both commercial and residential landscapes have at least two things in common: the same plants, and the same poor management of these plants. The clients have no idea they’re being ripped off.

The landscape companies I have experience with seem to think the homeowner is always right.

The ‘Yes’ Conversation

You want a Colorado blue spruce in humid Michigan? Sure, no problem. Let’s put six trees within 15 square feet. Don’t bother removing the cage and burlap. We also won’t tell you the massive expense you’ll pay in the future to spray fungicides on your spruce to keep it alive. If one dies, we’ll just replace it with the same plant.

You want a green hedge? Boxwoods or yews. They’ll be sheared multiple times a year by our crew of expert (and underpaid and exhausted) workers. At the first sign of new growth, we’ll be there mutilating your plants to ensure that they stay at right angles. You see all of those ripped apart, discolored leaves on your shrubs? Ignore that; plants are meant to be tamed into perfect geometry. Oh, that’ll be an extra charge to spray insecticides and fungicides.

Here’s a list of plants you can get to add to the monotony in your neighborhood: crabapple, hawthorn, cherry, honeylocust, blue spruce, oak, red maple, Japanese maple, pear, white pine, boxwood, yew, hydrangea, arborvitae, burning bush, and wax begonias.

Why is your hemlock tree neon yellow? We don’t know, let’s just replace it. Why is your Norway maple declining? Well, when we planted it, we kept the cage on its root ball, despite this tree having notorious girdling roots. Let’s get you a new one. Why are some of your shrubs rotting out? We left the soaker hoses on them for years and kept them running regularly. Yes we can spray all of your plants. We can kill everything before it’s a problem.

We’re the best landscapers in town! Our services are top of the line, and we guarantee your landscape will look exactly the same as your neighbor’s.

That’s a very sardonic, hypothetical conversation between a homeowner and a landscape company. A sensible company knows you don’t know best. As a homeowner, it is wise to heed the advice of a company’s horticulturist. Cost is always a consideration for the homeowner. However, the more expensive company is not always the highest quality. Here’s why.

So, you want a Colorado blue spruce?

A responsible company won’t let you plant a blue spruce in a place with wet springs and humid summers. They will tell you why it is not a good idea, and they will suggest alternatives. For example, a concolor fir (Abies concolor) looks similar to a blue spruce. They are resistant to needle cast diseases and cytospora canker, and they can tolerate southeast Michigan’s alkaline soils. In the long run, it is much cheaper to get the right plant in the right place.

You will pay more for your blue spruce because, not only are you paying for installation, you are paying to spray fungicides year after year to avoid having a skeleton in your yard. Companies know there is a likelihood of replacing your newly planted blue spruces, so you are charged for it.

We love boxwoods and so do you

Maybe you do like the classic, formal look of hedges. And maybe you do like the texture offered by a boxwood or yew. That’s fine. This is the problem I see literally every single day: over-shearing.

An appropriate cultivar selection is the answer. Cultivars and hybrids exist which only grow to x-amount tall and x-amount wide. Simply read the tag from the nursery. If your landscape company planted the proper plants the first time, they wouldn’t be able to charge you as much as they do to “maintain” them. The right plants in the right places need very little maintenance. I will concede, a few plants can tolerate being sheared. Once in a great while is acceptable; not three times a year.

Excessive shearing stresses out a plant. In fact, certain chemicals released by the open wounds of the leaves attract insects. Wet, exposed tissue serves as a breeding ground for fungi. Some of the problems your shrubs face are directly caused by the shearing itself.

PlantAmnesty, a website dedicated to stopping bad pruning practices states:

Any pruning book will explain that one prunes to open up the center of the plant, allowing air and light penetration to make the plant healthy. Shearing, on the other hand, creates a twiggy outer shell that gets ever denser and collects more deadwood and dead leaves every year, the opposite of a healthy condition. The results create the perfect protected place for pests and diseases, akin to locking up the house so the garbage can’t be removed. After many years, this treatment can lead to disease and general bad health without actually being a disease itself. If plants have mites and blights, bugs and mildews galore, how they were pruned may be the root of the problem.

Not to mention, the plant is spending all of its energy regrowing those leaves you continually cut off. There are correct ways to prune plants, and none of them include the excessive use of motorized shears. A plant grows to reach an equilibrium with its environment. If the environment is adequate, the plant will grow. If the environment is unfavorable, the plant will decline. In other words, if it is growing, let it grow!

What’s a monoculture?

There seems to be only 15 plants which are acceptable to the landscaper. The plant selection is predictable. Certainly there are more than 15 different species of plants you can have on your property. Sure, some redundant species are okay: white pines, oaks, maples (except that damned Norway maple). I don’t want to discourage people from exploring new options, though.

Native plants offer easy beauty. They have evolved in your region for millennia and are therefore adapted to your environmental conditions. These plants often tolerate both biological and environmental stressors better than non-native plants. Expenses are saved when you don’t have to pay for disease control. You wouldn’t buy a vehicle, for example, that you know would break down and require fixing all the time.

There are dozens of other shrub options for texture, winter interest, privacy walls, etc., that you don’t have to hire a crew to shear every month. Surprisingly, some large yucca species are hardy in colder zones, which offer a different texture. Red-twig dogwoods provide colorful winter interest; there are red, green, and yellow-stemmed cultivars. Coyote willow is native to southeast Michigan. It is a thin-leafed, rhizomatous Salix species which forms beautiful yellow walls in the fall. An entire, separate article can be written on the subject of alternatives. Just know there are plenty of species to choose from no matter where you live.

Ask, and you shall receive

This request comes from homeowners and is often fulfilled by companies: “Can’t you just spray it?” Granting this request is entirely wrong. One cannot, by law and by principle, go around as a pesticide desperado. You live in that environment. Why would you want pesticides in excess? Chemicals are used as a last resort and strictly on an as needed basis.

Appropriate timing, safety precautions, and proper insect identification are all legally required before insecticides can be applied. Some of the ‘yes’-type companies will comply with all uneducated (and sometimes unsafe) requests.

Some of the appointments I have with customers address very rudimentary horticultural problems. The homeowner’s concerns are legitimate. Most problems they are having, though, can be avoided with an ounce of foresight. Issues include planting hemlock trees in full sun, or replacing a Japanese maple killed by verticillium wilt with another Japanese maple. The list goes on…

Saying ‘No’

There’s a myriad of things that can go wrong in a landscape. It is an artificial environment containing plants which evolved continents apart. Plants often don’t have the capacity to combat pathogens that they are not exposed to in their native habitats, but certain issues are impossible to predict. There is a base knowledge one should have before making these kinds of decisions. The “customer is always right” philosophy doesn’t apply in this domain. You should have some creative influence on your landscape; it’s yours, after all. Spend the time in the nursery looking for interesting plants, make a list, and run it by your landscaper. If they say ‘yes’ to all of your choices, fire them. The people you hire cannot be too timid to tell you ‘no’ sometimes.

“Right plant, right place” is the mantra among plant health care technicians. We are the people who have to clean up the messes made by your landscapers. If your landscaper did their job with longevity in mind, I probably wouldn’t have much to do.

What’s in a Packet of Wildflower Seeds? – An Introduction

Occasionally I receive packets of wildflower seeds from companies that are not in the business of growing plants. They are promotional items – encouraging people to plant flowers while simultaneously marketing their wares. Often the seed packet lacks a list of the seeds included in the mix, and so it remains unclear what “wildflowers” are actually in there. My guess is that most seed packets like this go unplanted, and those that do get planted, may go uncared for. After all, the company that supplied them isn’t all that concerned about what gets done with them anyway.

As it is, generic packets of wildflower seeds like this may not actually contain any wildflower seeds. The term wildflower generally refers to a flowering plant that grows in the wild and was not intentionally planted by humans. It is synonymous with native plant, but it can also refer to non-native plants that have become naturalized. By this definition, a packet of wildflower seeds should only include seeds of native or naturalized plants and should not include horticultural selections, hybrids, or cultivated varieties. Ideally, the seed mix would be specific to a particular region, as each region throughout the world has its own suite of native wildflowers.

With that in my mind, I was immediately curious about an unlabeled packet of wildflower seeds I recently received as a promotional item from a company that has nothing to do with plants. This is a company that ships items nationwide and around the world, which leads me to believe that hundreds of people received similar packets of seeds around the same time I did. The seed packet is not labeled for a particular region, so all of us likely received a similar mix of seeds. “Wildflowers” then, at least in this case, means a random assortment of flowering plants with questionable provenance and no sense of geographic location.

The seed packet in question.

The seed packet in question.

Curiousity is killing me; so I am determined to find out what is in this mysterious packet of seeds. Using a pair of magnifying glasses, I seperated the seeds into 26 groups. Each group, from as best as I can tell, should be a unique species (or at least from the same genus). The next step will be to grow the seeds out and see what they actually are. I have limited space and time, so this is going to take a while. Since “wildflower” is not an exact term, I have decided that in order to be considered a wildflower the plant will have to be native to North America. (I should probably say western North America or Intermountain West, since that is where I am located, but that’s pushing it.)

The amount of seeds that each of the 26 groups consists of varies greatly, from a single seed to 52 seeds. Some of the seeds may not be viable, and some of the seedlings are sure to perish along the way. Despite losses, it should be clear in the end what this packet of seeds mainly consists of and whether or not it is indeed a wildflower seed mix. If I were skilled at identifying species simply by observing their seeds, I might be able to avoid growing them out, but I am not confident enough to do that. However, one group of seeds is almost certainly calendula. Calendula is a genus native to parts of Asia, Europe, and North Africa that has been introduced to North America. So, we’re already off to a bad start.

seed packets_experiment

To be clear, I have no intention of disclosing or calling out the company that sent the seeds. This is all in good fun. No hard feelings. I’m satisfying my own curiosity, and perhaps yours, too. Until the next update (which could be a while), go run through a field of wildflowers. Enjoy yourself.