The Serotinous Cones of Lodgepole Pine

Behind the scales of a pine cone lie the seeds that promise future generations of pine trees. Even though the seeds are not housed within fruits as they are in angiosperms (i.e. flowering plants), the tough scales of pine cones help protect the developing seeds and keep them secure until the time comes for dispersal. In some species, scales open on their own as the cone matures, at which point winged seeds fall from the tree, taking flight towards their new homes. In other species, the scales must be pried open by an animal in order to free the seed. A third group of species have what are called serotinous cones, the scales of which are sealed shut with resin. High temperatures are required to soften the resin and expose the seeds.

Serotinous cones are a common trait of pine species located in regions where wildfire naturally and regularly occurs. One such species is lodgepole pine (Pinus contorta), which is found in abundance in forests across much of western North America. Lodgepole pine is a thin-barked tree species that burns easily and is often one of the first plants to recolonize after a stand-replacing wildfire. There are 3 or 4 subspecies of lodgepole pine. The one with the largest distribution and the one that most commonly exhibits serotinous cones is P. contorta subsp. latifolia, which occurs throughout the Rocky Mountains, north into the Yukon, and just west of the Cascade Range.

needles of lodgpole pine (Pinus contorta)

Lodgepole pine grows tall and straight, generally maxing out at around 80 feet tall. Its needles are about two and a half inches long, are borne in bundles of two, and tend to twist away from each other, which is one explanation for the specific epithet, contorta. Its cones are egg-shaped with asymmetrical bases, measuring less than two inches long with prickly tips at the ends of each scale. The seeds of lodgepole pine are tiny with little, papery wings that aid in dispersal. The cones can remain attached to the tree for 15-20 years (sometimes much longer), and the seeds remain viable for decades. In non-serotinous cones, the scales start opening on their own in early autumn. Serotinous cones require temperatures of 45-50°C (113-122°F), to release the resin bond between the scales. Some cones that happen to fall from the tree can open when exposed to particularly warm temperatures on the ground. Otherwise, it takes fire to free the seeds.

Serotinous cones aren’t a guarantee, and the percentage of trees with serotinous cones compared to those with non-serotinous cones varies widely across the range of lodgepole pine, both in space and in time. One reason for this is that trees with serotinous cones don’t develop them until they reach a certain age, generally around 20-30 years old, or perhaps as old as 50 or 60. The cones of young trees are all non-serotinous. But some trees never develop serotinous cones at all. Serotiny is a genetic trait, and there are various factors that either select for or against it. A number of factors are at play simultaneously over the life of a tree and across a population of trees, so it is difficult to determine exactly why the percentage of serotinous cones is so variable across the range of the species. What follows are a few potential explanations for this phenomenon.

closed cone of lodgepole pine (Pinus contorta)

As a fire-adapted, pioneer species, lodgepole pine has evolved to live in environments where fire is predictably common. Serotinous cones help ensure that a population won’t be wiped out when a massive wildfire comes through. After the fire has passed and the seeds are released, lodgepole pine can quickly repopulate the barren ground. As long as fire occurs within the lifespan of a population of similarly aged trees, it is advantageous for the majority of individuals to maintain their serotinous trait. If the population is located in an area that historically does not see much fire, serotinous cones may be a disadvantage and can have adverse effects on the longevity of that population.

A study published in Ecology in 2003 looked at the influence that the frequency of fire has on lodgepole pine stands found at low and high elevations in Yellowstone National Park. At lower elevations, where summer temperatures are warmer and precipitation is relatively minimal, fires occur more frequently compared to higher elevations, which tend to be cooler and wetter. The researchers found that at lower elevations when fires occurred at short intervals (less than 100 years between each fire), lodgepole pine was slower to repopulate compared to longer intervals. This suggests that the percentage of serotiny found in stands that experienced short fire intervals was low, and that stands with long fire intervals exhibit a higher percentage of serotiny. After all, as mentioned above, lodgepole pines don’t start developing serotinous cones until later in life.

At higher elevations, where fire occurs less frequently, lodgepole pines were found to have a low percentage of serotinous cones regardless of the age of the stand. Because the trees at high elevations are more likely to die of old age rather than fire, maintaining serotinous cones would be a disadvantage. Open cones are preferred. Thus, at least in this study, a greater percentage of serotinous cones was found in lodgepole pines at lower elevations compared to those at higher elevations. Latitude, elevation, mountain pine beetle attacks, and other environmental factors have all been used to explain differences in serotiny. However, the factor that seems to have the greatest influence is the frequency of fire. As James Lotan writes in a 1976 report: “A high degree of cone serotiny would be expected where repeated, high-intensity fires occur. Where forest canopies are disrupted by factors other than fire, open cones annually supply [seed] for restocking disturbances such as windfalls.”

That being said, one other factor does appear to play a critical role in whether or not lodgepole pines produce serotinous cones, and that is seed predation by squirrels. In a paper published in Ecology in 2004, researchers wondered why the percentage of serotinous cones wasn’t even higher in populations where fire reliably occurred during the lifetime of the stand. To help answer this question they looked at the activities of pine squirrels, which are the main seed predator of lodgepole pine seeds. Pine squirrels visit the canopy of lodgepole pines and consume the seeds found in serotinous cones. Because non-serotinous cones quickly shed their seeds, serotinous cones are a more reliable and accessible food source, and because pine squirrels are so effective at harvesting the seeds of serotinous cones, the researchers concluded that, “in the presence of pine squirrels, the frequency of serotiny is lower and more variable, presumably reflecting,” among a variety of other factors, “the strength of selection exerted by pine squirrels.”

A study published in PNAS in 2014 added evidence to this conclusion. While acknowledging that fire plays a major role in the frequency of serotinous cones, the researchers asserted that “squirrels select against serotiny and that the strength of selection increases with increasing squirrel density.” However, despite making it easier for squirrels to access their seeds, lodgepole pines maintain a degree of serotinous cones, since clearly their main advantage is retaining a canopy-level seed bank from which seeds are released after a fire and by which a new generation of lodgepole pines is born.

open cones of lodgepole pine (Pinus contorta)

Further Reading and Viewing:

Meet Erigeron linearis

Erigeron is a genus of herbaceous, flowering plants consisting of between 390 and 460 species and is a member of the aster/sunflower family (Asteraceae). Plants in this genus are annuals, biennials, or perennials and are mainly found in temperate regions around the world. At least 163 species occur in the contiguous United States. Erigeron diversity is particularly high in western states; however, each state is home to at least one Erigeron species.

A common name for plants in this genus is fleabane. This name comes from an outdated belief that the plants can be used to repel or poison fleas, flies, gnats, and other tiny insects, a belief for which there is no evidence. In Ancient Greek, the name Erigeron is said to mean something akin to “old man in the early morning,” likely referring to the appearance of the seed heads which look like little tufts of white hair. Some Erigeron species are also commonly referred to as daisies.

desert yellow fleabane (Erigeron linearis)

One species of Erigeron that I would like you to meet is Erigeron linearis. While most of the plants in this genus have flowers that are white, pink, or various shades of purple, E. linearis is a yellow-flowered species, hence the common name, desert yellow fleabane. Another common name for this plant is narrow leaved fleabane, a reference to its linear leaves. E. linearis is a small plant with a prominent taproot that reaches up to 20 centimeters tall and forms a leafy, rounded mat or cushion of whitish or gray-green, alternately arranged leaves. The white appearance is due to numerous, fine, appressed hairs on the leaves and stems. Flower stalks are produced in abundance in late spring through early summer and are mostly leafless. They reach above the mound of leaves and are each topped with at least one flower head, which nods at first, but then straightens out as the flowers open. Each flower head is about 2 centimeters wide and is typical of plants in the sunflower family, with a cluster of deep yellow disc florets in the center, surrounded by ray florets that are lighter in color. Both disc and ray florets are fertile; however, the disc florets have both “male” (stamens) and “female” (pistils) flower parts, while the ray florets have only “female” parts. The involucre, which sits at the base of the flowers, is egg-shaped or hemispheric and made up of a series of tiny, fuzzy bracts called phyllaries.

the flower head of desert yellow fleabane (Erigeron linearis)

The fruit of Erigeron linearis is called a cypsela, an achene-like fruit that is characteristic of plants in the sunflower family. The fruits are miniscule and topped with a pappus composed of short outer bristles and longer, pale, inner bristles. The two types of pappus bristles (or double pappus) must be the reason for the scientific name this species was originally given in 1834, Diplopappus linearis. While the seeds of more than 80% of flowering plant species found in dryland regions exhibit some form of dormancy, a study published in Plant Biology (2019), found that E. linearis is one of the few species with non-dormant seeds. This means that for those of us interested in growing plants native to the Intermountain West, E. linearis is a pretty easy one to grow and is a great addition to water-wise gardens, pollinator gardens, and rock gardens.

Erigeron linearis seedling

Erigeron linearis is distributed across several western states and into Canada. It is found in northern California, eastern Oregon and Washington, southern British Columbia, across Idaho and east into southern Montana, western Wyoming and northwestern Utah. It is found at low to moderate elevations in open, rocky foothills, grasslands, sagebrush steppe, and juniper woodlands. It prefers well-drained soils and full sun. It is one of many interesting plants found on lithosols (also known as orthents), which are shallow, poorly develop soils consisting of partially weathered rock fragments. In the book Sagebrush Country, Ronald Taylor calls lithosols “the rock gardens of the sagebrush steppe,” and refers to E. linearis and other members of its genus as “some of the more colorful components of the lithosol gardens.” E. linearis is a food source for pronghorn, mule deer, and greater sage-grouse, and the flowers are visited by several species of bees and butterflies. The plant is also a larval host for sagebrush checkerspots.

desert yellow fleabane (Erigeron linearis)

Additional Resources:

Zine Review: An Urban Field Guide to the Plants in Your Path

Depending on where you live in the world, it’s probably not too difficult to find a field guide to the plants native to your region. In fact, there may be several of them. They may not cover all the plants you’ll encounter in natural areas near you, but they’ll be a good starting point. Yet, considering that most of us live in cities these days, field guides to the wild plants of urban areas are sorely lacking. Perhaps that’s no surprise, as plants growing wild in urban areas are generally considered weeds and are often the same species that frustrate us in our yards and gardens. Few (if any) of these maligned plants are considered native, so that doesn’t help their case any. Why would we need to know or pay attention to these nuisance plants anyway?

I argue that we should know them, and not just so that we know our enemy. Weeds are the wild flora of our cities – they grow on their own without direct human intervention. In doing so, they green up derelict and neglected sites, creating habitat for all kinds of other organisms and providing a number of ecosystem services along the way. Regardless of how we feel about them for invading our cultivated spaces and interfering with our picture-perfect vision of how we feel our cities should look, they deserve a bit more respect for the work they do. If we’re not willing to go that far, we at least ought to hand it to them for how crafty and tenacious they can be. These plants are amazing whether we want to admit it or not.

Luckily I’m not the only who feels this way. Enter An Urban Field Guide to the Plants in Your Path, a zine written and illustrated by Maggie Herskovits and published by Microcosm Publishing. This zine is just one example of the resources we need to better familiarize ourselves with our urban floras. While there are many weed identification books out there, a field guide like this differs because it doesn’t demonize the plants or suggest ways that they can be brought under control or eliminated. Instead, it treats them more like welcome guests and celebrates some of their finer qualities. That being said, this is probably not a zine for everyone, particularly those that despise these plants, but take a look anyway. If you keep an open mind, perhaps you can be swayed.

Illustration of Pennsylvania smartweed (Polygonum pensylvanicum) from An Urban Field Guide to the Plants in Your Path

After a brief introduction, Herskovits profiles fifteen common urban weeds. Each entry includes an illustration of the plant, a short list of its “Urban Survival Techniques,” a small drawing of the plant in its urban habitat, and a few other details. The text is all handwritten, and the illustrations are simple but accurate enough to be helpful when identifying plants in the wild. The descriptions of each plant include interesting facts and background information, and even if you are already familiar with all the plants in the guide, you may learn something new. For example, I wasn’t aware that spotted spurge (Euphorbia maculata) was native to North America.

some urban survival techniques of common mullein (Verbascum thapsus)

Capsella bursa-pastoris in its urban habitat

Urban weeds often go ignored. They may not be as attractive as some of the plants found in gardens and parks around the city, and since they are often seen growing right alongside garbage, they end up getting treated that way. But if you’re convinced that they may actually have value and you want to learn a bit more about them, this guide is a great place to start. Perhaps you’ll come to feel, as Herskovits does, that “there is hope in these city plants.”

See Also: 

Idaho’s Native Milkweeds (Updated)

As David Epstein said in an interview on Longform Podcast, “Any time you write about science, somethings is going to be wrong; the problem is you don’t know what it is yet, so you better be ready to update your beliefs as you learn more.” Thanks to the newly published Guide to the Native Milkweeds of Idaho by Cecilia Lynn Kinter, lead botanist for Idaho Department of Fish and Game, I’ve been made aware of some things I got wrong in the first version of this post. I appreciate being corrected though, because I want to get things right. What follows is an updated version of the original post. The most substantial change is that there are actually five milkweed species native to Idaho rather than six. Be sure to check out Kinter’s free guide to learn more about this remarkable group of plants.

———————

Concern for monarch butterflies has resulted in increased interest in milkweeds. Understandably so, as they are the host plants and food source for the larval stage of these migrating butterflies. But milkweeds are an impressive group of plants in their own right, and their ecological role extends far beyond a single charismatic insect. Work to save the monarch butterfly, which requires halting milkweed losses and restoring milkweed populations, will in turn provide habitat for countless other organisms. A patch of milkweed teems with life, and our pursuits to protect a single caterpillar invite us to explore that.

Asclepias – also known as the milkweeds – is a genus consisting of around 140 species, 72 of which are native to the United States and Canada. Alaska and Hawaii are the only states in the U.S. that don’t have a native species of milkweed. The ranges of some species native to the United States extend down into Mexico where there are numerous other milkweed species. Central America and South America are also home to many distinct milkweed species. Asclepias species found in southern Africa are considered by many to actually belong in the genus Gomphocarpus.

The habitats milkweeds occupy are about as diverse as the genus itself – from wetlands to prairies, from deserts to forests, and practically anywhere in between. Some species occupy disturbed and/or neglected sites like roadsides, agricultural fields, and vacant lots. For this reason they are frequently viewed as a weed; however, such populations are easily managed, and with such an important ecological role to play, they don’t deserve to be vilified in this way.

Milkweed species are not distributed across the United States evenly. Texas and Arizona are home to the highest diversity with 37 and 29 species respectively. Idaho, my home state, is on the low end with five native species. The most abundant species found in Idaho is Asclepias speciosa, commonly known as showy milkweed.

showy milkweed (Asclepias speciosa)

Showy milkweed is distributed from central U.S. westward and can be found in all western states. It occurs throughout Idaho and is easily the best place to look for monarch caterpillars. In fact, the monarch butterfly is Idaho’s state insect, thanks in part to the abundance of showy milkweed, which is frequently found growing in large colonies due to its ability to reproduce vegetatively via adventitious shoots produced on lateral roots or underground stems. Only a handful of milkweed species reproduce this way. Showy milkweed reaches up to five feet tall and has large ovate, gray-green leaves. Like all milkweed species except one (Asclepias tuberosa), its stems and leaves contain milky, latex sap. In early summer, the stems are topped with large umbrella-shaped inflorescences composed of pale pink to pink-purple flowers.

The flowers of milkweed deserve a close examination. Right away you will notice unique features not seen on most other flowers. The petals of milkweed flowers bend backwards, which would otherwise allow easy access to the flower’s sex parts if it wasn’t for a series of hoods and horns protecting them. Collectively, these hoods and horns are called the corona, which houses glands that produce abundant nectar and has a series of slits where the anthers are exposed. The pollen grains of milkweed are contained in waxy sacs called pollinia. Two pollinia are connected together by a corpusculum giving this structure a wishbone appearance. An insect visiting the flower for nectar slips its leg into the slit, and the pollen sacs become attached with the help of the corpusculum. When the insect leaves, the pollen sacs follow. Pollination is successful when the pollen sacs are inadvertently deposited on the stigmas of another flower.

Milkweed flowers are not self-fertile, so they require assistance by insects to sexually reproduce. They are not picky about who does it either, and their profuse nectar draws in all kinds of insects including bees, butterflies, moths, beetles, wasps, and ants. Certain insects – like bumble bees and other large bees – are more efficient pollinators than others. Once pollinated, seeds are formed inside a pod-like fruit called a follicle. The follicles of showy milkweed can be around 5 inches long and house dozens to hundreds of seeds. When the follicle matures, it splits open to release the seeds, which are small, brown, papery disks with a tuft of soft, white, silky hair attached. The seeds of showy milkweed go airborne in late summer.

follicles forming on showy milkweed (Asclepias speciosa)

Whorled or narrowleaf milkweed (Asclepias fascicularis) occurs across western and southern Idaho. Its distribution continues into neighboring states. It is adapted to dry locations, but can be found in a variety of habitats. Like showy milkweed, it spreads rhizomatously as well as by seed. It’s a wispy plant that reaches one to three feet tall and occasionally taller. It has long, narrow leaves and produces tight clusters of greenish-white to pink-purple flowers. Its seed pods are long and slender and its seeds are about 1/4 inch long.

flowers of narrowleaf milkweed (Asclepias fascicularis)

seeds escaping from the follicle of narrowleaf milkweed (Asclepias fascicularis)

Swamp or rose milkweed (Asclepias incarnata) is more common east of Idaho, but occurs occasionally in southwestern Idaho. As its common name suggests, it prefers moist soils and is found in wetlands, wet meadows, and along streambanks. It can spread rhizomatously, but generally doesn’t spread very far. It reaches up to four feet tall, has deep green, lance-shaped leaves, and produces attractive, fragrant, pink to mauve, dome-shaped flower heads at the tops of its stems. Its seed pods are narrow and around 3 inches long.

swamp milkweed (Asclepias incarnata)

Asclepias cryptoceras ssp. davisii, or Davis’s milkweed, is a low-growing, drought-adapted, diminutive species that occurs in southwestern Idaho. It has round or oval-shaped leaves and produces flowers on a short stalk. The flowers have white or cream-colored petals and pink-purple hoods. The range of Asclepias cryptoceras – commonly known as pallid milkweed or jewel milkweed – extends beyond Idaho’s borders into Oregon and Nevada, creeping north into Washington and south into California. Another subspecies – cryptoceras – can be found in Nevada, Utah, and their bordering states.

Davis’s milkweed (Asclepias cryptoceras ssp. davisii)

The final species is rare in Idaho, as Idaho sits at the top of its native range. Asclepias asperula ssp. asperula, or spider milkweed, has a single documented location in Franklin County (southeastern Idaho). Keep your eyes peeled though, because this plant may occur elsewhere, either in Franklin County or neighboring counties. It grows up to two feet tall with an upright or sprawling habit and produces clusters of white to green-yellow flowers with maroon highlights. Its common name comes from the crab spiders frequently found hunting in its flower heads.

A sixth species, horsetail milkweed (Asclepias subverticillata), has been falsely reported in Idaho. Collections previously labeled as A. subverticillata have been determined to actually be the similar looking A. fascicularis.

Tiny Plants: Idahoa

This is a post I wrote three years ago as a guest writer for a blog called Closet Botanist. That blog has since dissolved, hence the re-post.

This year, we returned to the location in the Boise Foothills where I encountered the plant that inspired this post. I found what might be seedlings of the tiny plant. If that’s the case, the phenology is a bit delayed compared to three years ago. I’ll check again in a week or so. Until then, meet Idahoa.

———————

I have taken a real liking to tiny plants. So many of the plants we regularly interact with are relatively big. Large trees loom above us. Tall shrubs greet us at eye level. Flowering perennials come up around our knees or higher. But how often do we get down low and observe the plants that hug the ground or that reach just a few centimeters above it? Turf grass is ubiquitous and groundcovers are common, but among such low growing plants (or plants kept low), even more diminutive species lurk.

It was a hunt for a tiny plant that sent me down a certain trail in the Boise Foothills earlier this spring. Listening to a talk by a local botanist at an Idaho Native Plant Society meeting, I learned about Idahoa scapigera. A genus named after Idaho!? I was immediately intrigued. Polecat Gulch was the place to see it, so off I went.

Commonly known as oldstem idahoa, flatpod, or Scapose scalepod, Idahoa scapigera is the only species in its genus. It is an annual plant in the mustard family, which means it is related to other small, annual mustard species like Draba verna. It is native to far western North America and is distributed from British Columbia down to California and east into Montana. It occurs in a variety of habitat types found in meadows, mountains, and foothills.

Idahoa scapigera is truly tiny. Before it flowers, it forms a basal rosette of leaves that max out at about 3 centimeters long. Next it sends up several skinny flower stalks that reach maybe 10 centimeters high (some are much shorter). One single flower is born atop each stalk. Its petite petals are white and are cupped by red to purple sepals. Its fruit is a flat round or oblong disk held vertically as though it is ready to give neighboring fruits a high five. Happening upon a patch of these plants in fruit is a real joy.

Which brings me to my hunt. It was the morning of March 20th (the first day of Spring) when I headed down the Polecat Gulch trail in search of Idahoa, among other things. The trail forms a loop around the gulch and is about 6 miles long with options for shortening the loop by taking trails that cut through the middle. I have yet to make it all the way around. Stopping every 10 yards to look at plants, insects, and other things makes for slow hiking.

I was about a half mile – 1 hour or more – into the hike when Idahoa entered my view. A group of them were growing on the upslope side of the trail, greeting me just below waist level. Many of them had already finished flowering and had fresh green fruits topping their thin stalks. At this location they are a late winter/early spring ephemeral. I made a mental note of the site and decided to return when the fruits had matured. Next year, I will head out earlier in hopes of catching more of them in flower.

On the way to Idahoa, I noted numerous other small, green things growing in the sandy soil. It turns out there are countless other tiny plants to see and explore. It got me thinking about all the small things that go unnoticed right underneath our feet or outside of our view. I resolved to move slower and get down lower to observe the wonders I’ve been overlooking all this time.

Further Reading:

Introducing Herbology Hunt

This is a guest post by Jane Wilson.

———————

Many people are “plant blind”. They walk through areas of fantastic wildlife or just down their street without noticing what grows there. Even plants growing in the gutter have an interesting backstory.

The term “Plant Blindness” was first put forth by Wandersee and Schlusser in 1998. Without an appreciation of plants in the ecosystem, people will be less likely to support plant research and conservation.

Herbology Hunt was born out of a love of plants and wild places and a determination to get kids outdoors and really looking at their environment. One of the founders started Wildflower Hour on Twitter – a place for people to share photos of wildflowers found in Britain and Ireland – and from this was stemmed a children’s version, which became Herbology Hunt. The Herbology Hunt team put together spotter sheets for each month of the year. Each sheet includes five plants that can be found throughout the month. They were made available as a free download, so schools and individuals can print them for use on a plant hunt.

By the end of 2018, we had created a year’s worth of spotter sheets. We are now looking to promote their use throughout Great Britain. Eventually we want to reward children who find 50 of the plants with a free T-shirt, and we will be looking for sponsors to support this. We have been supported by the Botanical Society of Britain and Ireland and the Wild Flower Society who have made the monthly spotter sheets available. They can be downloaded here or here.

Herbology Hunt Spotter Sheet for January

The Wild Flower Society has a great offer for Juniors interested in plants – it costs £3 to join and you get a diary to record your finds.

Going outdoors and noticing wildlife has been shown in some scientific studies to improve cardio-vascular health and mental health. A herbology hunt must surely be a good thing to do with children to help them get into a better lifestyle that will benefit their future health. We hope that many families and schools will use our spotter sheets as a way to help children become more passionate about the environment and enjoy the benefits of being outdoors.

Check out the Wildflower Hour website for more information about Herbology Hunt, along with instructions on how to get involved in #wildflowerhour, plus links to social media accounts and the Wild Flower (Half) Hour podcast.

———————

Also: Check out Jane Wilson’s website – Practical Science Teaching – for more botany-themed educational activities.

Field Trip: UBC Botanical Garden and VanDusen Botanical Garden

Last week, we found ourselves in Vancouver, British Columbia for a work-related conference put on by American Public Gardens Association. In addition to learning heaps about plant collections and (among other things) the record keeping involved in maintaining such collections, we got a chance to visit two Vancouver botanical gardens. Both gardens were pretty big, so covering the entire area in the pace we generally like to go in the time that was allotted was simply not possible. Still, we were smitten by what we were able to see and would happily return given the chance. What follows are a few photos from each of the gardens.

UBC Botanical Garden

UBC Botanical Garden is located at the University of British Columbia. Established in 1916, it is Canada’s oldest university botanical garden. We saw a small fraction of the Asian Garden, which is expansive, and instead spent most of our time in other areas, including the Alpine Garden, the Carolinian Forest Garden, the Food Garden, and one of my favorite spots, the BC Rainforest Garden. The Rainforest Garden is a collection of plants native to British Columbia, which was the original focus of UBC Botanical Garden’s first director, John Davidson.

fall foliage of redvein enkianthus (Enkianthus campanulatus)

Franklin tree in bloom (Franklinia alatamaha) in the Carolinian Forest Garden

alpine troughs

bellflower smartweed (Aconogonon campanulatum)

cutleaf smooth sumac (Rhus glabra ‘Laciniata’) in the BC Rainforest Garden

the fruits of Gaultheria pumila in the E.H. Lohbrunner Alpine Garden

Himalayan blueberry (Vaccinium moupinense) in the E.H. Lohbrunner Alpine Garden

VanDusen Botanical Garden

VanDusen Botanical Garden is a 55 acre garden that opened in 1975 and is located on land that was once a golf course. It features an extensive collection of plants from around the world accompanied by a series of lakes and ponds as well as lots of other interesting features (like a Scottish Shelter, a Korean Pavilion, an Elizabethan Maze, and more). Our time there was far too brief. The whirlwind tour we joined, led by the education director, was a lot of fun, and if the threat of missing our bus wasn’t looming, we would have been happy to stay much longer.

Japanese anemone (Anemone x hybrida ‘Whirlwind’)

fall color on the shore of Heron Lake

knees of bald cypress (Taxodium distichum) in R. Roy Forster Cypress Pond

witch hazel (Hamamelis x intermedia ‘Pallida’)

a grove of giant redwoods (Sequoiadendron giganteum)

We tried the fruit of dead man’s fingers (Decaisnea insignis). It tastes a bit like watermelon.

Japanese stewartia (Stewartia pseudocamellia)

More Awkward Botany Field Trips:

How to Identify Puncture Vine (a.k.a. the Goathead Monster)

This post originally appeared on Idaho Botanical Garden’s blog. With the first annual Boise Goathead Fest fast approaching, the purpose of this post is to help people in the Treasure Valley identify goatheads so that they can collect them for drink tokens to use at the event. I’m reposting it here in hopes that people around the globe who are tormented by goatheads might benefit from it. All photos in this post were taken by Anna Lindquist.

———————

If you have spent much time on a bicycle in Boise, chances are you have been the victim of a goathead-induced flat tire. You probably even got a good look at the spiky nutlet as you went to remove it from your tire. But where did the culprit come from? No doubt, it came from a plant. But which one?

This is particularly useful to know right now because the first annual Boise Goathead Fest is coming up, and if you manage to fill a garbage bag full of these noxious weeds before the end of July, you will earn yourself a drink token. Fortunately, this plant is fairly easy to identify; however, there are a few look-a-likes, so it is important to familiarize yourself with the plant in question so you can be sure you are pulling the right one.

puncture vine (Tribulus terrestris)

Puncture vine, also known as goathead or Tribulus terrestris, is a warm season annual that is native to the Mediterranean region of southern Europe. It was introduced to North America unintentionally by early European settlers when the plant’s blasted burs snuck their way across the ocean in sheep wool. Since then, puncture vine has spread across the continent prolifically thanks to the hitchhiking prowess of its seeds.

Behold, the infamous Goathead Monster.

Puncture vine has a prostrate habit, meaning that its branches lie flat on the ground, spreading outward from a central location. It grows upward only when it is being shaded or crowded out. Its leaves are divided into several tiny leaflets, and its flowers are small and bright yellow with five petals. It is an otherwise pretty plant were it not for the threatening, jagged fruits that follow the flowers. As these fruits dry, they dislodge from the plant, split into five pieces, and lay in wait to puncture your tire, work their way into the bottom of your shoe or the foot of an animal, or latch onto some errant fur.

puncture vine (Tribulus terrestris)

Depending on the conditions, puncture vine either remains fairly small or spreads as much as six feet wide. Fruits start forming shortly after flowering, and seeds ripen soon after that, so if the plant isn’t removed quickly – nutlets and all – future populations are guaranteed. Luckily the plants are fairly easy to remove. Unless the ground is particularly compact, they pull up easily, and if they break off at the root, they generally don’t sprout back.

Virtually any plant that has a prostrate growth habit and is actively growing in the summer could, at first glance, be mistaken for puncture vine. Closer inspection will help confirm the plant’s true identity. Two plants that might confuse you are purslane and spotted spurge. Both of these species can be found growing in full sun in disturbed or neglected sites in close company with puncture vine.

Purslane has tiny, yellow, five-petaled flowers similar to puncture vine; however, its leaves are glossy and succulent-like and its stems and leaves often have a red to purple hue to them. Purslane seeds are miniscule, and while the plant can be a nuisance in a garden bed, it poses no threat to bicycles or wildlife.

purslane (Portulaca oleracea)

Spotted spurge, also known as prostrate spurge, can be quickly distinguished by the milky sap that oozes from its broken stems. Its leaves are generally reddish purple on the undersides with a purple spot on top. Its flowers are minute and its seeds even smaller. Because its sap contains latex and other chemicals, it can irritate the skin and poison creatures that dare eat it.

spotted spurge (Euphorbia maculata)

Both of these plants are introduced, weedy species, so even if they won’t count towards your drink token, it still doesn’t hurt to pull them. Puncture vine, however, is included on Idaho’s noxious weed list, which means it is particularly problematic. So take this opportunity to pull as many as you can, and hopefully we can put a sizeable dent in the population of a plant that has tormented Boise bicyclists for far too long.

See Also: Plant vs. Bike

Idaho’s Native Milkweeds

An updated version of this post was posted on August 14, 2019. See it here.

———————-

Concern for monarch butterflies has resulted in increasing interest in milkweeds. Understandably so, as they are the host plants and food source for the larval stage of these migrating butterflies. But milkweeds are an impressive group of plants in their own right, and their ecological role extends far beyond a single charismatic insect. Work to save the monarch butterfly, which requires the expansion of milkweed populations, will in turn provide habitat for countless other organisms. A patch of milkweed teems with life, and the pursuit of a single caterpillar helps us discover and explore that.

Asclepias – also known as the milkweeds – is a genus consisting of around 140 species, 72 of which are native to the United States and Canada. Alaska and Hawaii are the only states in the United States that don’t have a native species of milkweed. The ranges of some species native to the United States extend down into Mexico where there are numerous other milkweed species. Central America and South America are also home to many distinct milkweed species.

The habitats milkweeds occupy are about as diverse as the genus itself – from wetlands to prairies, from deserts to forests, and practically anywhere in between. Some species occupy disturbed and/or neglected sites like roadsides, agricultural fields, and vacant lots. For this reason they are frequently viewed as a weed; however, such populations are easily managed, and with such an important ecological role to play, they don’t deserve to be vilified in this way.

Milkweed species are not distributed across the United States evenly. Texas and Arizona are home to the highest diversity with 37 and 29 species respectively. Idaho, my home state, is on the low end with six native species, most of which are relatively rare. The most common species found in Idaho is Asclepias speciosa commonly known as showy milkweed.

showy milkweed (Asclepias speciosa)

Showy milkweed is distributed from central U.S. westward and can be found in all western states. It occurs throughout Idaho and is easily the best place to look for monarch caterpillars. Side note: the monarch butterfly is Idaho’s state insect, thanks in part to the abundance of showy milkweed. This species is frequently found growing in large colonies due to its ability to reproduce vegetatively via adventitious shoots produced on lateral roots or underground stems. Only a handful of milkweed species reproduce this way. Showy milkweed reaches up to five feet tall and has large ovate, gray-green leaves. Like all milkweed species except one (Asclepias tuberosa), its stems and leaves contain milky, latex sap. In early summer, the stems are topped with large umbrella-shaped inflorescences composed of pale pink to pink-purple flowers.

The flowers of milkweed deserve a close examination. Right away you will notice unique features not seen on most other flowers. The petals of milkweed flowers bend backwards, allowing easy access to the flower’s sex parts if it wasn’t for a series of hoods and horns protecting them. Collectively, these hoods and horns are called the corona, which houses glands that produce abundant nectar and has a series of slits where the anthers are exposed. The pollen grains of milkweed are contained in waxy sacs called pollinia. Two pollinia are connected together by a corpusculum giving this structure a wishbone appearance. An insect visiting the flower for nectar slips its leg into the slit, and the pollen sacs become attached with the help of the corpusculum. When the insect leaves, the pollen sacs follow where they can be inadvertently deposited on the stigmas of another flower.

Milkweed flowers are not self-fertile, so they require assistance by insects to sexually reproduce. They are not picky about who does it either, and their profuse nectar draws in all kinds of insects including bees, butterflies, moths, beetles, wasps, and ants. Certain insects – like bumble bees and other large bees – are more efficient pollinators than others. Once pollinated, seeds are formed inside a pod-like fruit called a follicle. The follicles of showy milkweed can be around 5 inches long and house dozens to hundreds of seeds. When the follicle matures, it splits open to release the seeds, which are small, brown, papery disks with a tuft of soft, white, silky hair attached. The seeds of showy milkweed go airborne in late summer.

follicles forming on showy milkweed (Asclepias speciosa)

Whorled or narrowleaf milkweed (Asclepias fascicularis) is widespread in western Idaho and neighboring states. It is adapted to dry locations, but can be found in a variety of habitats. Like showy milkweed, it spreads rhizomatously as well as by seed. Its a whispy plant that can get as tall as four feet. It has long, narrow leaves and produces tight clusters of greenish-white to pink-purple flowers. Its seed pods are long and slender and its seeds are about 1/4 inch long.

flowers of Mexican whorled milkweed (Asclepias fascicularis)

seeds escaping from the follicle of Mexican whorled milkweed (Asclepias fascicularis)

Swamp or rose milkweed (Asclepias incarnata) is more common east of Idaho, but occurs occasionally in southwestern Idaho. As its common names suggests, it prefers moist soils and is found in wetlands, wet meadows, and along streambanks. It can spread rhizomatously, but generally doesn’t spread very far. It reaches up to four feet tall, has deep green, lance-shaped leaves, and produces attractive, fragrant, pink to mauve, dome-shaped inflorescenses at the tops of its stems. Its seed pods are narrow and around 3 inches long.

swamp milkweed (Asclepias incarnata)

Asclepias cryptoceras, or pallid milkweed, is a low-growing, drought-adapted, diminutive species that occurs in southwestern Idaho. It can be found in the Owyhee mountain range as well as in the Boise Foothills. It has round or oval-shaped leaves and produces flowers on a short stalk. The flowers have white or cream-colored petals and pink-purple hoods.

pallid milkweed (Asclepias cryptoceras)

The two remaining species are fairly rare in Idaho. Antelope horns (Asclepias asperula) is found in Franklin County located in southeastern Idaho. It grows up to two feet tall with an upright or sprawling habit and produces clusters of white to green-yellow flowers with maroon highlights. Horsetail milkweed (Asclepias subverticillata) occurs in at least two counties in central to southeastern Idaho and is similar in appearance to A. fascicularis. Its white flowers help to distinguish between the two. Additional common names for this plant include western whorled milkweed and poison milkweed.

Eating Weeds: Pineapple Weed

When I wrote about pineapple weed (Matricaria discoidea) last year during the Summer of Weeds, I knew that it was edible but I didn’t bother trying it. Pineapple weed is one of my favorite native weeds (yes, it happens to be a native of northwestern North America). I enjoy its sweet fragrance, its frilly leaves, its “petal”-less flowers, and its diminutive size. I also appreciate its tough nature. Now that I have tried pineapple weed tea, I have another thing to add to this list of pros.

pineapple weed (Matricaria discoidea)

One thing about pineapple weed that always impresses me is its ability to grow in the most compacted soils. It actually seems to prefer them. It is consistently found in abundance in highly trafficked areas, like driveways, parking lots, and pathways, seemingly unfazed by regular trampling. Referring to pineapple weed in one of his books about wildflowers, botanist John Hutchinson wrote, “the more it is trodden on the better it seems to thrive.” This is not something you can say about too many other plants.

Both the leaves and flowers of pineapple weed are edible. The flowers seem to be the more common of the two to consume, generally in tea form. In his book Wild Edible and Useful Plants of Idaho, Ray Vizgirdas writes, “A delicious tea can be made from the dried flowers of the plant. The leaves are edible, but bitter. The medicinal uses of pineapple weed are identical to that of chamomile (Anthemis). Used as a tea it is a carminative, antispasmodic, and mild sedative.” In Wild Urban Plants of the Northeast, Peter Del Tredici writes, “A tea made from the leaves has been used in traditional medicine for stomachaches and colds.”

I harvested my pineapple weed at the end of a dirt parking lot and in an adjacent driveway/pathway. I noted how the pineapple weed’s presence waned as I reached the edges of the parking lot and pathway where, presumably, the ground was less compact. Maybe it has more to compete with there – other weeds – and so it shows up less, or maybe its roots simply “prefer” compact soils. Perhaps a little of both. Once I got my harvest home, I rinsed it off and left it to dry. Later, I snipped off the flower heads and made a tea.

I probably used more water than I needed to, so it was a bit diluted, but it was still delicious. It smelled and tasted a lot like chamomile. Sierra agreed. With a little honey added, it was especially nice. Sierra agreed again. The flowers of pineapple weed can be used fresh or dried. They can also be mixed with other ingredients to make a more interesting tea, like the recipe found here.

If you are hesitant to take the leap into eating weeds, a tea may be the simplest thing you can try. Pineapple weed tea is a great way to ease yourself into it. Apart from maybe having to harvest it from strange places, it probably isn’t much different from other teas you have tried, and, from my experience, it’s delightful.