When Sunflowers Follow the Sun

Tropisms are widely studied biological phenomena that involve the growth of an organism in response to environmental stimuli. Phototropism is the growth and development of plants in response to light. Heliotropism, a specific form of phototropism, describes growth in response to the sun. Discussions of heliotropism frequently include sunflowers and their ability to “track the sun.” This conjures up images of a field of sunflowers in full bloom following the sun across the sky. However cool this might sound, it simply doesn’t happen. Young sunflowers, before they bloom, track the sun. At maturity and in bloom, the plants hold still.

What is happening in these plants is still pretty cool though, and a report published in an August 2016 issue of Science sheds some light on the heliotropic movements of young sunflowers. They begin the morning facing east. As the sun progresses across the sky, the plants follow, ending the evening facing west. Over night, they reorient themselves to face east again. As they reach maturity, this movement slows, and most of the flowers bloom facing east. Over a series of experiments, researchers were able to determine the cellular and genetic mechanisms involved in this spectacular instance of solar tracking.

Helianthus annuus (common sunflower) is a native of North America, sharing this distinction with dozens of other members of this recognizable genus. It is commonly cultivated for its edible seeds (and the oil produced from them) as well as for its ornamental value. It is a highly variable species and hybridizes readily. Wild populations often cross with cultivated ones, and in many instances the common sunflower is considered a pesky weed. Whether crop, wildflower, or weed, its phototropic movements are easy to detect, making it an excellent subject of study.

Researchers began by tying plants to stakes so that they couldn’t move. Other plants were grown in pots and turned to face west in the morning. The growth of these plants was significantly stunted compared to plants that were not manipulated in these ways, suggesting that solar tracking promotes growth.

The researchers wondered if a circadian system was involved in the movements, and so they took sunflowers that had been growing in pots in a field and placed them indoors beneath a fixed overhead light source. For several days, the plants continued their east to west and back again movements. Over time, the movements became less detectable. This and other experiments led the researchers to conclude that a “circadian clock guides solar tracking in sunflowers.”

Another series of experiments helped the researchers determine what was happening at a cellular level that was causing the eastern side of the stem to grow during the day and the western side to grow during the night. Gene expression and growth hormone levels differed on either side of the stem depending on what time of day it was. In an online article published by University of California Berkeley, Andy Fell summarizes the findings: “[T]here appear to be two growth mechanisms at work in the sunflower stem. The first sets a basic rate of growth for the plant, based on available light. The second, controlled by the circadian clock and influenced by the direction of light, causes the stem to grow more on one side than another, and therefore sway east to west during the day.”

The researchers observed that as the plants reach maturity, they move towards the west less and less. This results in most of the flowers opening in an eastward facing direction. This led them to ask if this behavior offers any sort of ecological advantage. Because flowers are warmer when they are facing the sun, they wondered if they might see an increase in pollinator visits during morning hours on flowers facing east versus those facing west. Indeed, they did: “pollinators visited east-facing heads fivefold more often than west-facing heads.” When west-facing flowers where warmed with a heater in the morning, they received more pollinator visits than west-facing flowers that were not artificially warmed, “albeit [still] fewer than east-facing flowers.” However, increased pollinator visits may be only part of the story, so further investigations are necessary.

———————

I’m writing a book about weeds, and you can help. For more information, check out my Weeds Poll.

Advertisements

Summer of Weeds: Eating Purslane

If it wasn’t so prolific and persistent, purslane would probably be a welcome guest in our vegetable gardens and edible landscapes. Easily among the most nutritious and versatile of the edible weeds, Portulaca oleracea is an annoyingly abundant annual that has inserted itself into garden beds and croplands in temperate climates across the globe. Thought to have originated in India or somewhere in Eurasia, purslane invaded North America long before Europeans did and has been naturalized across much of the continent for hundreds of years.

common purslane (Portulaca oleracea)

There are over 100 known species in the genus Portulaca, the only genus in the family Portulacaceae (otherwise known as the purslane family). Common purslane is a succulent plant with paddle- or teardrop-shaped leaves that generally grows low to the ground, forming a thick mat. It reaches for the sky when grown in shade or when competing with other plants for space. It produces little, yellow flowers that only open in bright sun and are typically self-pollinated. A small capsule containing dozens of tiny, black seeds quickly follows each flower. Each plant can produce tens of thousands of seeds, which remain viable for around 40 years.

Attempts to remove purslane by cultivation may only aid its survival. Broken pieces of the plant can take root in the soil, and uprooted plants can re-root if they are in contact with soil. Stirring up the ground brings to the surface seeds from purslane’s extensive seed bank. These freshly exposed seeds can then germinate, taking advantage of disturbance and open space. For all these reasons and more, John Eastman writes in The Book of Field and Roadside: “Purslane knows how to live and linger.”

The ever-urban and ever-common purslane.

The seeds of purslane germinate in late spring and throughout the summer when the soil has reached at least 75 – 80° Fahrenheit. It is adapted to high heat and dry soils. In order to conserve water, it switches to CAM photosynthesis when conditions are particularly hot and dry. In this photosynthetic pathway, carbon dioxide is stored as malic acid during the night and then converted back during the day. This means that, when it comes to eating purslane, the flavor changes depending on when the plant is harvested. In The Wild Wisdom of Weeds, Katrina Blair discusses this phenomenon: “In the morning purslane leaves contain as much as ten times more malic acid, making them very sour tasting. If you prefer a milder tasting purslane, harvest your greens in late afternoon and if you want more zing to your recipes, gather the leaves at dawn.”

Speaking of eating purslane, if all the claims are to be trusted, there may not be a more nutritious weed. In A Feast of Weeds, Luigi Ballerina calls it “a health bomb” because “it contains more omega-3 fatty acids than almost any other green, not to mention vitamins A, B, and C and beta carotene.” Blair calls it “one of the most nutritious plants on Earth,” and goes on to sing praises about its richness in dietary fiber, vitamins, minerals, protein, etc. Funnily enough, in describing the health benefits of purslane, Ballerina also quotes ancient sources claiming that “purslane calms sexual excitement.” Apparently it not only “eliminate[s] sensual dreams, but if used too much, it often extinguishes all ardor and even the capacity to procreate.”

With that caveat in mind, I tried it anyway. I had eaten it before, but nothing more than a leaf here and there and once in a green salad. I picked two recipes to try: Walnut Purslane Coleslaw from The Wild Wisdom of Weeds and Potatoes and Purslane from A Feast of Weeds. I’m generally a big fan of coleslaw, but for whatever reason I found this recipe to be a little bland. It was missing something, but I couldn’t put my finger on it. The purslane seemed to add a vague slimy-ness to it, which it will do on account of its mucilaginous nature.

Walnut Purslane Coleslaw

The Potatoes and Purslane recipe involved cooking the purslane. I enjoyed the finished product both hot and cold. The purslane added a sort of lemon-y spinach flavor. Those who tried it with me also liked it. The potato recipe was made with purslane that had been harvested in the morning, which may explain the strong lemon-y flavor. The coleslaw was made with purslane harvested in late afternoon, which may explain its blandness. I will have to try it the other way around for comparison. Purslane recipes abound in books and on the internet; browsing through them, I am intrigued enough to consider trying others. I think I’ll start with pickled purslane, purslane pesto, and perhaps, purslane sauerkraut.

Potatoes and Purslane

More Resources:

———————

Do you have a favorite purslane recipe? Share it in the comment section below.

Introducing the Summer of Weeds

I spent the first five months of this year posting almost exclusively about invasive species. There is still plenty more to say on the topic, and I’m sure I will get back to that. However, it is time now to dive into the topic that I really want to explore. Weeds.

There is definitely crossover between the two topics – many weeds are invasive species – but there are clear distinctions, too. Oftentimes, weeds as a category of plants are unfairly and unjustly lumped under the title “invasive,” but any plant can be a weed at any moment in time if a human says so. That’s the difference. A plant does not have to prove that it is causing any sort of ecological or economic damage to be called a “weed;” it just has to be growing where a human doesn’t want it to. Yet, too quickly a plant “out of place” is cursed at using words like “invasive” or “noxious” regardless of its origin or behavior. I know I’m being overly semantic about this, but it seems unfair (and incorrect) to lump any and all plants that are bothering us for whatever reason into categories that have legal definitions.

If you can’t already tell, I am obsessed with weeds. It’s a topic I have been thinking about fairly consistently for much of my adult life. For one thing, as part of my career I spend a huge portion of my time killing and controlling weeds. I comprehend fully the visceral reaction of seeing a garden overcome by weeds – the vile thoughts one can have towards a group of plants that are soiling what could otherwise be a beautiful landscape – and I know very well the backbreaking work and countless hours that go into removing uninvited plants (cursing the intruders along the way). I get why weeds are a problem, and I understand why they are a subject of so much vitriol. Yet, over the years I have developed a respect – even a love – for weeds (despite the fact that I still must remove them and that removing them continues to be an overwhelming task).

Unwanted plants have been following us around and getting in our way for millenia. Essentially, we are partners in crime. We intentionally and unintentionally bring plants from various parts of the world on our travels, and through disturbance we create conditions where introduced plants can settle in and thrive. Over time, some once beloved plants grow out of favor and transition from desirable to weedy. As our cycles of disturbance continue, we give early successional, opportunistic plant species a chance to perpetuate themselves, guaranteeing that we will keep such “weeds” with us forever. We reap what we sow; even though we generally don’t plant weeds on purpose, other actions ensure that they will be our constant companions.

The importance of weed control goes beyond the aesthetic. In horticulture and agriculture, weeds compete with crops for light, space, water, and nutrients. They also harbor pests and diseases, and their seeds can contaminate crops. In pastures and rangelands, some weeds poison livestock. Certain weeds are harmful to people, too. Other weeds are simply disruptive – getting tangled up in machinery, damaging infrastructure, blocking our vision along roadways, and even giving cyclists flat tires. Apart from all that, even if all weeds did was make our gardens look unsightly, I imagine we would still be pretty angry with them.

I am interested in weeds wherever they are, but the weeds that fascinate me the most are those that thrive in urban environments. Not necessarily the weeds in our yards, but the weeds that have escaped our fences and property lines; the ones in the margins. We see them in abandoned lots, along roadways, near irrigation channels, and in other neglected spaces. They pop up in the cracks of sidewalks, on rooftops, in the middle of decaying buildings, and anywhere else that people haven’t paid attention to in a while. Urban areas have, for the most part, been scraped of their native flora. Introduced species move in to fill that void. As Richard Mabey writes in his book about weeds, these plants “insinuate the idea of wild nature into places otherwise quite shorn of it;” they are “the very essence of wildness.” Novel ecosystems, like those created by urbanization and human development, are with us whether we like it or not. There is a “wildness” to them that is unlike other cultivated and manicured areas maintained by humans. These urban wild places are worth a closer look.

So, what is the Summer of Weeds?

Put simply, it’s an exploration of weeds. Throughout the summer I will be profiling some of the weeds I come across in my daily life. I will include photos, a brief description, and some interesting facts about each species. I will also include quotes about weeds from various sources, as well as videos, links, resources, and whatever else I come across that seems worth sharing. I hope you enjoy it. If you have anything to add along the way – specifically any personal thoughts or stories to share about weeds – please do. You can contact me via the usual ways: in the comment section below, through the Contact page, or on Twitter, Tumblr, Facebook, or Instagram. Happy Summer!

Poisonous Plants: Buttercups

Hold a buttercup flower under your chin. If your chin glows yellow, you love butter. That is according to a classic childhood game anyway. Recent research explored the cellular structure of buttercup petals and revealed the anatomical reason behind their yellow glow. Apart from helping to warm the flower’s sex organs, this glow is thought to draw in pollinating insects to ensure proper pollination.

Now take the fresh green leaves of buttercups, crush them up, and rub them against your skin. On second thought, DON’T DO THAT! This is not a childhood game and should absolutely be avoided…unless, of course, you derive some sort of pleasure from painful blisters.

Buttercups, also commonly known as crowfoots, are in the genus Ranunculus and the family Ranunculaceae. Ranunculus consists of a few hundred species and is a common group of annual and perennial herbaceous plants with alternately arranged, palmately veined leaves that are either entire, lobed, or finely divided. Buttercup flowers are usually yellow (sometimes white) with 5 petals (sometimes 3 or 7) that are either borne singly or in loose clusters. The flowers are complete, having both male and female reproductive structures that are easily identifiable. Flowering usually occurs in the spring.

bulbous buttercup (Ranunculus bulbosus) – photo credit: wikimedia commons

Ranunculus species are found throughout the world. Common habitats include moist woods, meadows, open fields, wetlands and other riparian areas, as well as drier sites like roadsides and neglected, urban lots. Several species are commonly grown as ornamentals, and others are common weeds in natural areas, urban landscapes, and agricultural fields.

All buttercups contain a compound called ranunculin. When the leaves are crushed or bruised, ranunculin breaks down to form an acrid, toxic oil called protoanemonin. Contact with this oil causes dermatitis. Symptoms occur within an hour of contact and include burning and itching along with rashes and blisters. When the leaves are chewed, blisters can form on the lips and face. If swallowed, severe gastrointestinal irritation can follow, accompanied by dizziness, spasms, and paralysis. The toxic oil is also irritating to the eyes.

Ranunculus species vary in their levels of this toxic compound, and individual plants are said to be more toxic in the spring when they are actively growing and flowering. Protoanemonin breaks down further into an innocuous compound called anemonin, so dead and dried out plants are generally safe. Commonly encountered (and particularly toxic) species in North America include tall buttercup (R. acris), cursed buttercup (R. sceleratus), creeping buttercup (R. repens), littleleaf buttercup (R. arbortivus), and sagebrush buttercup (R. glaberrimus). Bulbous buttercup (R. bulbosus) has bulbous roots that are toxic when fresh but are said to be edible after they are well boiled or completely dried.

cursed buttercup (Ranunculus sceleratus)

The toxicity of Ranunculus species seems to be more of an issue for livestock than for humans. Grazing animals tend to avoid it since it tastes so bad. Those that do eat it exhibit responses similar to humans – blistering around the mouth, gastrointestinal issues, etc. In The Book of Field and Roadside, John Eastman writes about Ranunculus acris: “Cattle usually avoid the plant – its acrid juices can blister their mouths – though they can also develop something like an addiction to it, consuming it until it kills them.” Buttercups becoming dominant in pastures and rangelands is often a sign of overgrazing.

Despite – and likely due to – their toxicity, buttercups have a long history of medicinal uses. Civilizations in many parts of the world have used the leaves and roots of the plant to treat numerous ailments including rheumatism, arthritis, cuts, bruises, and even hemorrhoids. A report published in 2011 describes three patients in Turkey that had applied poultices of corn buttercup (R. arvensis) to parts of their body to treat rheumatism. The patients were treated for chemical burns caused by the applications. The report concludes by advising against treatments “whose therapeutic effects have not been proven yet by scientific studies.”

In The North American Guide to Common Poisonous Plants and Mushrooms, buttercups are listed among plant species that are skin and eye irritants, honey poisons, and milk poisons (see Appendices 3, 4, and 5). Other genera in the buttercup family may also contain high levels of protoanemonin, including popular ornamentals like Clematis, Helleborus, Anemone, and Pulsatilla. Thus, the moral of this story: handle these plants with care.

sagebrush buttercup (Ranunculus glaberrimus)

More Poisonous Plant Posts on Awkward Botany:

Love and Hate – The Story of Purple Loosestrife

In the early 1800’s, seeds of purple loosestrife found their way to North America. They arrived from Europe several times by various means – accidentally embedded in the ballast of ships, inadvertently tucked in sheep’s wool, and purposely carried in the hands of humans. Native to much of Europe and parts of Asia and commonly found growing in wetlands and other riparian areas, purple loosestrife’s appealing spikes of magenta flowers, sturdy, upright growth habit, and ease of propagation made it a prized ornamental; its abundant nectar made it a favorite of beekeepers.

During its first 150 years or so in North America, purple loosestrife became naturalized in ditches, wet meadows, and the banks of streams, rivers, lakes, and ponds while also enjoying a place in our gardens. Concern about its spread was raised in the first half of the twentieth century, but it wasn’t until the 1980’s after an extensive survey was done and a special report was issued by the U.S. Fish and Wildlife Service that attitudes about purple loosestrife shifted dramatically. At that point, it was no longer a benign invader and welcome garden companion. It was, instead, a biological menace that needed to be destroyed.

Lytrhrum salicaria – commonly known as purple loosestrife, spiked willow-herb, long purples, rainbow weed, etc. – is an herbaceous perennial in the family Lythraceae. It reaches up to two meters tall; has square or angular stems with lance-shaped, stalkless leaves up to ten centimeters long; and ends in dense, towering spikes of pink-purple, 5-7 petaled flowers. The flowers attract a wide variety of pollinating insects – mostly bees – and afterwards produce small capsules full of tiny, red-brown seeds. Charles Darwin thoroughly studied the flowers of purple loosestrife; he was intrigued by the plant for many reasons, including its heterostyly (a topic for another post).

Lythrum salicaria (purple loosestrife) – image credit: wikimedia commons

Purple loosestrife seeds remain viable for up to 20 years and are transported by wind, water, and in mud stuck to the feet of birds. Apart from seeds, populations expand clonally as root crowns grow larger each year and produce increasingly more stems. Broken stem pieces also take root in mud, creating new plants. Purple loosestrife’s ability to form expansive populations in a quick manner, pushing other plants aside and forming what appears to be a dense monoculture, is part of the reason it has earned itself a place among the International Union for Conservation of Nature’s list of 100 World’s Worst Invasive Alien Species.

But is this ranking justified? In a paper published in Biological Invasions in 2010, Claude Lavoie compares news reports about purple loosestrife around the turn of the century with data presented in scientific papers and finds that the reports largely exaggerate the evidence. Purple loosestrife was being accused of all manner of crimes against nature and was being condemned before there was sound evidence to justify such actions.

It began with the U.S. Fish and Wildlife Service’s special report published in 1987. According to Lavoie, “a long list of the impacts of the species on wetland flora and fauna [was] presented,” but the claims were not supported by observational or experimental data – “the impacts [were] only suspected.” Regardless, wetland managers began campaigns against purple loosestrife in order to convince the public that it was a Beautiful Killer. News outlets were quick to spread the word about this “killer” plant. When biological control programs began in the 1990’s, news outlets reported on their success. Little empirical evidence had been published on either topic, and debates about purple loosestrife’s impacts remained unsettled in the scientific community.

The flowers of purple loosestrife (Lythrum salicaria) – photo credit: wikimedia commons

Around this time, five reviews were published examining the evidence against purple loosestrife. Lavoie reports that all but one of them “rely on a relatively high number of sources that have not been published in peer-reviewed journals.” After examining the reviews, Lavoie concludes: “although each review provided valuable information on purple loosestrife, most were somewhat biased and relied on a substantial amount of information that was anecdotal or not screened by reviewers during a formal evaluation process. Only one review was impartial, and this one painted an inconclusive picture of the species.”

Research has continued regarding the impacts of purple loosestrife, and so Lavoie examined 34 studies that were published during the 2000’s in search of conclusive evidence that the plant is as destructive to wetlands and wildlife as has been claimed. Upon examination he concludes that “stating that this plant has ‘large negative impacts’ on wetlands is probably exaggerated.” The most common accusation – that purple loosestrife crowds out native plants and forms a monoculture – “is controversial and has not been observed in nature (with maybe one exception).” Lavoie finds that there is “certainly no evidence that purple loosestrife ‘kills wetlands’ or ‘creates biological deserts,'” and “there are no published studies [in peer-reviewed journals] demonstrating that purple loosestrife has an impact on waterfowl or fishes.” All other negative claims against purple loosestrife “have not been the object of a study,” except for its impact on amphibians, which had at that time only been tested on two species, one “reacting negatively.” Certain claims – such as purple loosestrife’s impact on wetland hydrology – should be studied more in depth “considering the apparent public consensus on the detrimental effects of purple loosestrife” on wetland ecosystems.

Lavoie agrees that it is reasonable to control purple loosestrife when the intention is to reduce additional pressures on an ecosystem that is already highly threatened. However, he warns that “focusing on purple loosestrife instead of on other invasive species or on wetland losses to agriculture or urban sprawl could divert the attention of environmental managers from more urgent protection needs.” There is mounting evidence that purple loosestrife invasions are disturbance-dependent and are “an indicator of anthropogenic disturbances.” In order to protect our wetlands, we must first protect them against undue disturbance. Lavoie supports using the Precautionary Principle when dealing with introduced species; however, he finds the approach “much more valuable for newcomers than for invaders coexisting with native species for more than a century.”

A field of purple loosestrife in Massachusetts – photo credit: wikimedia commons

Purple loosestrife has found its way to nearly every state in America and most of the Canadian provinces. Peter Del Tredici writes in Wild Urban Plants of the Northeast, “Conservationists despise purple loosestrife, despite its beauty, and it is listed as an invasive species in most of the states where it grows.” By listing a plant as a noxious weed, landowners are obligated to remove it. Care must be taken though, as removal of purple loosestrife can result in a secondary invasion by noxious weeds with an even worse track record, such as common reed or reed canary grass. “Hardly a gain from the biodiversity point of view,” quips Lavoie.

Claude Lavoie’s paper and the papers he references are definitely worth reading. It is important that we continue to study purple loosestrife and species like it in order to fully understand the impact that introduced species are having on natural areas, especially since it is unlikely that we will ever completely eliminate them. On that note, I’ll leave you with this passage from The Book of Swamp and Bog by John Eastman:

The situation is easy for environmentalists to deplore. This plant, like few others, stirs our alien prejudice. Our native cattails, for example, are almost as rudely aggressive and competitive in many wetland areas as purple loosestrife. Yet, because cattails obvioulsy ‘belong here,’ they seldom evoke the same outraged feelings against their existence. … With the spread of purple loosestrife, we have new opportunities to witness the phases of an ever-recurring ecological process. We can watch it affect, change, adapt, and refit both its own elements and those of invaded communities into new arrangements of energy efficiency. The point is that we might as well study this process rather than simply deplore it; we have few alternatives.

Campaigns Against Invasive Species, part one

I have been posting almost exclusively about invasive species for four months now. If you have made it this far, I salute you. It is neither the most exciting nor the most encouraging topic, but it is the journey I am on (for whatever reason), and I am pleased to have you along.

In the battle against invasive species, citizen awareness and participation is imperative. The public and private sectors can try as they may, but if individual citizens are acting in ways that help introduce or spread invasives, then much of this effort can be for naught. Thus, campaigns to educate the public are regularly launched.

One popular way to spread the word is through video. Often, the goal of these videos is to both educate and entertain. Some achieve this better than others, while some are downright dull or simply baffling. Speculating on the effectiveness of these videos is not the purpose of this post. Rather, I just thought I would take a break from the usual text heavy posts and share a few videos that I found interesting and/or entertaining. If you have a favorite invasive species video, please share it in the comment section below.

Invasive species explained:

Introducing Bob Noxious from Invasive Species of Idaho:

And here is the particularly creepy, Vin Vasive, from USDA APHIS:

Invaders! in British Columbia:

In Namibia, “Cacti must die!”:

Eco Sapien and the story of Japanese knotweed in the UK:

What happened when American minks, brought to Europe for the fur trade, escaped into natural areas?:

Michigan’s Department of Environmental Quality explains how invasive species spread:

Pennsylvania’s Wild Resource Conservation Program teaches kids about invasive species:

MinuteEarth‘s take on invasive species:

Also, check out these five TEDx talks:

Screening for Invasive Plants at Botanical Gardens and Arboreta

As discussed in last week’s post, many of the invasive species that we find in our natural areas were first introduced to North America via the horticulture trade. As awareness of this phenomenon grows, steps are being taken by the horticulture industry to address this issue. The concluding remarks by Sarah Reichard and Peter White in their 2001 article in BioScience describe some recommended actions. One of them involves the leadership role that botanical gardens can play by both stopping the introduction and spread of invasive species and by presenting or promoting public education programs.

Reichard and White offer North Carolina Botanical Garden as an example, citing their “Chapel Hill Challenge,” which urges botanical gardens to “do no harm to plant diversity and natural areas.” Reichard and White also encourage botanical gardens and nurseries to adopt a code of conservation ethics addressing invasive species and other conservation issues. Codes of conduct for invasive species have since been developed for the botanical garden community and are endorsed by the American Public Gardens Association.

 

Botanical gardens that adopt this code have a number of responsibilities, one of which is to “establish an invasive plant assessment procedure,” preferably one that predicts the risks of plant species that are new to the gardens. In other words, botanical gardens are encouraged to screen the plants that are currently in their collections, as well as plants that are being added, to determine whether these plants currently exhibit invasive behavior or have the potential to become invasive. Many botanical gardens now have such programs in place, and while they may not be able to predict all invasions, they are a step in the right direction.

In an article published in Weed Technology (2004), staff members at Chicago Botanic Garden (CBG) describe the process they went through to determine a screening process that would work for them. CBG has an active plant exploration program, collecting plants in Asia, Europe, and other parts of North America. Apart from adding plants to their collection, one of the goals of this program is to find plants with horticulture potential and, through their Ornamental Plant Development department, prepare these plants to be introduced to the nursery industry in the Chicago region. As their concern about invasive species has grown, CBG (guided by a robust Invasive Plant Policy) has expanded and strengthened its screening process.

In order to do this, CBG first evaluated three common weed risk assessment models. The models were modified slightly in order to adapt them to the Chicago region. Forty exotic species (20 known invasives and 20 known non-invasives) were selected for testing. Each invasive was matched with a noninvasive from the same genus, family, or growth form in order to “minimize ‘noise’ associated with phylogenetic differences.” The selected species also included an even distribution of forbs, vines, shrubs, and trees.

Weed risk assessment models are used to quickly determine the potential of a plant species to become invasive by asking a series of questions about the plant’s attributes and life history traits, as well as its native climate and geography. A plant species can be accepted, rejected, or require further evaluation depending on how the questions are answered. For example, if a plant is known to be invasive elsewhere and/or if it displays traits commonly found in other invasive species, it receives a high score and is either rejected or evaluated further. Such models offer a quick and affordable way to weed out incoming invasives; however, they are not likely to spot every potential invasive species, and they may also lead to the rejection of species that ultimately would not have become invasive.

After testing the three models, CBG settled on the IOWA-modified Reichard and Hamilton model “because it was extensively tested in a climatic zone reasonably analogous to … Illinois,” and because it is easy to use and limits the possibility of a plant being falsely accepted or rejected. The selected model was then tested on 208 plants that were collected in the Republic of Georgia. Because few details were known about some of the plants, many of the questions posed by the model could not be answered. This lead CBG to modify their model to allow for such plants to be grown out in quarantined garden plots. This way pertinent information can be gathered, such as “duration to maturity; self-compatibility; fruit type and potential methods of seed or fruit dispersal; seed production, viability, and longevity in the field; and vegetative spread.” CBG believes that evaluations such as this will help them modify their model over time and give them more confidence in their screening efforts.

More about botanical gardens and invasive species: Botanic Gardens Conservation International – Invasive Alien Species

More about weed risk assessment models: Weed Risk Assessment – A way forward or a waste of time? by Philip E. Hulme