In Praise of Poison Ivy

This is a guest post by Margaret Gargiullo. Visit her website, Plants of Suburbia, and check out her books for sale on Amazon.

———————

No one seems to like Toxicodendron radicans, but poison ivy is an important plant in our urban and suburban natural areas. Poison ivy (Anacardiaceae, the cashew family) is a common woody vine, native to the United States and Canada from Nova Scotia to Florida, west to Michigan and Texas. It is also found in Central America as far south as Guatemala. It is all but ubiquitous in natural areas in the Mid-Atlantic United States. It has been recorded in over 70 wooded parks and other natural areas in New York City.

Leaflets of three? Let if be. Poison ivy (Toxicodendron radicans). photo credit: wikimedia commons

Leaflets of three? Let if be. Poison ivy (Toxicodendron radicans) – photo credit: wikimedia commons

Poison ivy does have certain drawbacks for many people who are allergic to its oily sap. The toxins in poison ivy sap are called urushiols, chemicals containing a benzene ring with two hydroxyl groups (catechol) and an alkyl group of various sorts (CnHn+1).

These chemicals can cause itching and blistering of skin but they are made by the plant to protect it from being eaten by insects and vertebrate herbivores such as rabbits and deer.

Poison ivy is recognized in summer by its alternate leaves with three, shiny leaflets and by the hairy-looking aerial roots growing along its stems. In autumn the leaves rival those of sugar maple for red and orange colors. Winter leaf buds are narrow and pointed, without scales (naked). It forms extensive colonies from underground stems and can cover large areas of the forest floor with an understory of vertical stems, especially in disturbed woodlands and edges. However, It generally only blooms and sets fruit when it finds a tree to climb. When a poison ivy stem encounters a tree trunk, or other vertical surface, it clings tightly with its aerial roots and climbs upward, reaching for the light (unlike several notorious exotic vines, it does not twine around or strangle trees). Once it has found enough light, it sends out long, horizontal branches that produce flowers and fruit.

Flowers of poison ivy are small and greenish-white, not often noticed, except by the honeybees and native bees which visit them for nectar and exchange pollen among the flowers. Honey made from poison ivy nectar is not toxic. Fruits of poison ivy are small, gray-white, waxy-coated berries that can remain on the vine well into winter. They are eaten by woodpeckers, yellow-rumped warblers, and other birds. Crows use poison ivy berries as crop grist (instead of, or along with, small stones) and are major dispersers of the seeds.

The fruits of poison ivy (Toxicodendron radicans) - photo credit: Daniel Murphy

The fruits of poison ivy (Toxicodendron radicans) – photo credit: Daniel Murphy

It is as a ground cover that poison ivy performs its most vital functions in urban and suburban woodlands. It can grow in almost any soil from dry, sterile, black dune sand, to swamp forest edges, to concrete rubble in fill soils, and along highways. It enjoys full sun but can grow just fine in closed canopy woodlands. It is an ideal ground cover, holding soil in place on the steepest slopes, while collecting and holding leaf litter and sticks that decay to form rich humus. It captures rain, causing the water to sink into the ground, slowing runoff, renewing groundwater, filtering out pollutants, and helping to prevent flooding.

Poison ivy is usually found with many other plants growing up through it – larger herbs, shrubs, and tree seedlings that also live in the forest understory. It seems to “get along” with other plants, unlike Japanese honeysuckle or Asian bittersweet, which crowd out or smother other plants. Poison ivy is also important as shelter for birds and many invertebrates.

While those who are severely allergic to poison ivy have reason to dislike and avoid it, Toxicodendron radicans has an important place in our natural areas. No one would advocate letting it grow in playgrounds, picnic areas, or along heavily used trail margins, but it belongs in our woods and fields and should be treated with respect, not hatred. Recognize it but don’t root it out.

———————

Further Reading: Uva, R. H., J.C. Neal and J. M. DiTomaso. 1997. Weeds of the Northeast. Comstock Publishing. Ithaca, NY.

This piece was originally published in the New York City Dept. of Parks & Recreation, Daily Plant.

What Is a Plant, and Why Should I Care? part four

What Is a Plant?

Part one and two of this series have hopefully answered that.

Why should you care?

Part three offered a pretty convincing answer: “if it wasn’t for [plants], there wouldn’t be much life on this planet to speak of.”

Plants are at the bottom of the food chain and are a principle component of most habitats. They play major roles in nutrient cycling, soil formation, the water cycle, air and water quality, and climate and weather patterns. The examples used in part three of this series to explain the diverse ways that plants provide habitat and food for other organisms apply to humans as well. However, humans have found numerous other uses for plants that are mostly unique to our species – some of which will be discussed here.

But first, some additional thoughts on photosynthesis. Plants photosynthesize thanks to the work accomplished by very early photoautotrophic bacteria that were confined to aquatic environments. These bacteria developed the metabolic processes and cellular components that were later co-opted (via symbiogensis) by early plants. Plants later colonized land, bringing with them the phenomena of photosynthesis and transforming life on earth as we know it. Single-celled organisms started this whole thing, and they continue to rule. That’s just something to keep in mind, since our focus tends to be on large, multi-cellular beings, overlooking all the tiny, less visible beings at work all around us making life possible.

Current representation of the tree of life. Microorganisms clearly dominate. (image credit: nature microbiology)

Current representation of the tree of life. Microorganisms clearly dominate. (image credit: nature microbiology)

Food is likely the first thing that comes to mind when considering what use plants are to humans. The domestication of plants and the development of agriculture are easily among the most important events in human history. Agricultural innovations continue today and are necessary in order to both feed a growing population and reduce our environmental impact. This is why efforts to discover and conserve crop wild relatives are so essential.

Plants don’t just feed us though. They house us, clothe us, medicate us, transport us, supply us, teach us, inspire us, and entertain us. Enumerating the untold ways that plants factor in to our daily lives is a monumental task. Rather than tackling that task here, I’ll suggest a few starting points: this Wikipedia page, this BGCI article, this Encylopedia of Life article, and this book by Anna Lewington. Learning about the countless uses humans have found for plants over millennia should inspire admiration for these green organisms. If that admiration leads to conservation, all the better. After all, if the plants go, so do we.

Humans have a long tradition of using plants as medicine. Despite all that we have discovered regarding the medicinal properties of plants, there remains much to be discovered. This one of the many reasons why plant conservation is so important. (photo credit: wikimedia commons)

Humans have a long tradition of using plants as medicine. Despite all that we have discovered regarding the medicinal properties of plants, there remains much to be discovered. This is one of the many reasons why plant conservation is imperative. (photo credit: wikimedia commons)

Gaining an appreciation for the things that plants do for us is increasingly important as our species becomes more urban. Our dense populations tend to push plants and other organisms out, yet we still rely on their “services” for survival. Many of the functions that plants serve out in the wild can be beneficial when incorporated into urban environments. Plants improve air quality, reduce noise pollution, mitigate urban heat islands, help manage storm water runoff, create habitat for urban wildlife, act as a windbreak, reduce soil erosion, and help save energy spent on cooling and heating. Taking advantage of these “ecosystem services” can help our cities become more liveable and sustainable. As the environmental, social, and economic benefits of “urban greening” are better understood, groups like San Francisco’s Friends of the Urban Forest are convening to help cities across the world go green.

The importance of plants as food, medicine, fuel, fiber, housing, habitat, and other resources is clear. Less obvious is the importance of plants in our psychological well being. Numerous studies have demonstrated that simply having plants nearby can offer benefits to one’s mental and physical health. Yet, urbanization and advancements in technology have resulted in humans spending more and more time indoors and living largely sedentary lives. Because of this shift, author Richard Louv and others warn about nature deficit disorder, a term not recognized as an actual condition by the medical community but meant to describe our disconnect with the natural world. A recent article in BBC News adds “nature knowledge deficit” to these warnings – collectively our knowledge about nature is slipping away because we don’t spend enough time in it.

The mounting evidence for the benefits of having nature nearby should be enough for us to want to protect it. However, recognizing that we are a part of that nature rather than apart from it should also be emphasized. The process that plants went through over hundreds of millions of years to move from water to land and then to become what they are today is parallel with the process that we went through. At no point in time did we become separate from this process. We are as natural as the plants. We may need them a bit more than they need us, but we are all part of a bigger picture. Perhaps coming to grips with this reality can help us develop greater compassion for ourselves as well as for the living world around us.

Tomato vs. Dodder, or When Parasitic Plants Attack

At all points in their lives, plants are faced with a variety of potential attackers. Pathogenic organisms like fungi, bacteria, and viruses threaten to infect them with diseases. Herbivores from all walks of life swoop in to devour them. For this reason, plants have developed numerous mechanisms to defend themselves against threats both organismal and environmental. But what if the attacker is a fellow plant? Plants parasitizing other plants? It sounds egregious, but it’s a real thing. And since it’s been going on for thousands of years, certain plants have developed defenses against even this particular threat.

Species of parasitic plants number in the thousands, spanning more than 20 different plant families. One well known group of parasitic plants is in the genus Cuscuta, commonly known as dodder. There are about 200 species of dodder located throughout the world, with the largest concentrations found in tropical and subtropical areas. Dodders generally have thread-like, yellow to orange, leafless stems. They are almost entirely non-photosynthetic and rely on their host plants for water and nutrients. Their tiny seeds can lie dormant in the soil for a decade or more. After germination, dodders have only a few days to find host plants to wrap themselves around, after which their rudimentary roots wither up. Once they find suitable plants, dodders form adventitious roots with haustoria that grow into the stems of their host plants and facilitate uptake of water and nutrients from their vascular tissues.

A mass of dodder (Cuscuta sp.) - photo credit: wikimedia commons

A mass of dodder (Cuscuta sp.) – photo credit: wikimedia commons

Some plants are able to fend off dodder. One such instance is the cultivated tomato (Solanum lycopersicum) and its resistance to the dodder species, Cuscuta reflexa. Researchers in Germany were able to determine one of the mechanisms tomato plants use to deter dodder; their findings were published in a July 2016 issue of Science. The researchers hypothesized that S. lycopersicum was employing a similar tactic to that of a microbial invasion. That is, an immune response is triggered when a specialized protein known as a pattern recognition receptor (PRP) reacts with a molecule produced by the invader known as a microbe-associated molecular pattern (MAMP). A series of experiments led the researchers to determine that this was, in fact, the case.

The MAMP was given the name Cuscuta factor and was found “present in all parts of C. reflexa, including shoot tips, stems, haustoria, and, at lower levels, in flowers.” The PRP in the tomato plant, which was given the name Cuscuta receptor 1 (or CuRe 1), reacts with the Cuscuta factor, triggering a response that prohibits C. reflexa access to its vascular tissues. Starved for nutrients, the dodder perishes. When the gene that codes for CuRe 1 was inserted into the DNA of Solanum pennellii (a wild relative of the cultivated tomato) and Nicotiana benthamiana (a relative of tobacco and a species in the same family as tomato), these plants “exhibited increased resistance to C. reflexa infestation.” Because these transgenic lines did not exhibit full resitance to the dodder attack, the researchers concluded that “immunity against C. reflexa in tomato may be a process with layers additional to CuRe 1.”

photo credit: wikimedia commons

photo credit: wikimedia commons

A slew of crop plants are vulnerable to dodder and other parasitic plants, so determining the mechanisms behind resistance to parasitic plant attacks is important, especially since such infestations are so difficult to control, have the potential to cause great economic damage, and are also a means by which pathogens are spread. It is possible that equivalents to CuRe 1 exist in other plants that exhibit resistance to parasitic plants, along with other yet to be discovered mechanisms involved in such resistance, so further studies are necessary. Discoveries like this not only help us make improvements to the plants we depend on for food, but also give us a greater understanding about plant physiology, evolutionary ecology, and the remarkable ways that plants associate with one another.

Additional Resources:

Bats As Pollinators – An Introduction to Chiropterophily

Most plants that rely on animals to assist in pollination look to insects. In general, insects are abundant, easy to please, and efficient at transferring pollen. Because insect pollination is such a common scenario, it is easy to overlook pollination that is carried out by vertebrates. Birds are the most prominent pollinator among vertebrates, but mammals participate, too. The most common mammal pollinator is the bat.

About a fifth of all mammal species on the planet are bats, with species estimates numbering in the 1200-1300 range. Bats are the only mammals that can truly fly. They are not blind, nor are they flying rodents, and they are not going to suck your blood (except in very rare cases!). Most bats eat insects, but a small, significant group of them are nectarivorous. Their main food source is the nectar produced within flowers. In the process of feeding, these bats pollinate plants.

Out of 18 families in the order Chiroptera, only two include species with morphologies that set them apart as nectar-feeders. The family Pteropodidae, known commonly as Old World fruit bats or flying foxes, occurs in tropical and subtropical regions of Africa, Asia, Australia, Papa New Guinea, and the Pacific Islands. The family Phyllostomidae, known commonly as American leaf-nosed bats, occurs in tropical and subtropical regions of the Americas. For simplicity’s sake, the former are referred to as Old World bats, and the latter as New World bats. While both groups are similar in that they consist of species that feed on nectar, they are only distantly related, and thus the nectar feeding species in these families have distinct behavioral and morphological differences.

Grey headed flying fox photo credit: wikimedia commons

Grey headed flying fox (Pteropus poliocephalus), a floral visiting bat from Australia (photo credit: wikimedia commons)

More than 500 species of plants, spanning 67 plant families, are pollinated by bats. This pollination syndrome is known as chiropterophily. In general, flowers that use this approach tend to be white or dull in color, open at night, rich with nectar, and musty or rotten smelling. They are generally tubular, cup shaped, or otherwise radially symmetrical and are often suspended atop tall stalks or prominently located on branches or trunks. In a review published in Annals of Botany, Theodore Fleming, et al. state “flower placement away from foliage and nocturnal anthesis [blooming] are the unifying features of the bat pollination syndrome,” while all other characteristics are highly variable among species. The family Fabaceae contains the highest number of bat-pollinated genera. Cactaceae, Malvaceae, and Bignoniaceae follow closely behind.

The characteristics of bat pollinated flowers vary widely partly because the bats that visit them are so diverse. Between the two bat families there are similarities in their nectar-feeding species, including an elongated rostrum, teeth that are smaller in number and size, and a long tongue with hair-like projections on the tip. Apart from that, New World bats are much smaller than Old World bats, and their rostrums and tongues are much longer relative to the size of their bodies. New World bats have the ability to hover in front of flowers, while Old World bats land on flowers to feed. Old World bats do not have the ability to use echolocation to spot flowers, while New World bats do. Fleming, et al. conclude, “because of these differences, we might expect plants visited by specialized nectar-feeding [New World bats] to produce smaller flowers with smaller nectar volumes per flower than those visited by their [Old World bat] counterparts.”

Pollination by bats is a relatively new phenomenon, evolutionarily speaking. Flowers that are currently pollinated by bats most likely evolved from flowers that were once pollinated by insects. Some may have evolved from flowers that were previously bird pollinated. The question is, why adopt this strategy? Flowers that are bat pollinated are “expensive” to make. They are typically much bigger than insect pollinated flowers, and they contain large amounts of pollen and abundant, nutrient-rich nectar. Due to resource constraints, many plants are restricted from developing such flowers, but those that do may find themselves at an advantage with bats as their pollinator. For one, hairy bat bodies collect profuse numbers of pollen grains, which are widely distributed as they visit numerous flowers throughout the night. In this way, bats can be excellent outcrossers. They also travel long distances, which means they can move pollen from one population of plants to an otherwise isolated neighboring population. This serves to maintain healthy genetic diversity among populations, something that is increasingly important as plant populations become fragmented due to human activity.

Pollinating bats are also economically important to humans, as several plants that are harvested for their fruits, fibers, or timber rely on bats for pollination. For example, bat pollinated Eucalyptus species are felled for timber in Australia, and the fruits of Durio zibethinus in Southeast Asia form after flowers are first pollinated by bats. Also, the wild relatives of bananas (Musa spp.) are bat pollinated, as is the plant used for making tequila (Agave tequilana).

Durio sp. (photo credit: wikimedia commons)

The flowers of durian (Durio sp.), trees native to Southeast Asia, are pollinated by bats (photo credit: wikimedia commons)

There is still much to learn about nectarivorous bats and the flowers they visit. It is clear that hundreds of species are using bats to move their pollen, but the process of adopting this strategy and the advantages of doing so remain ripe for discovery. Each bat-plant relationship has its own story to tell. For now, here is a fun video about the bat that pollinates Agave tequilana:

Hamburg Parsley Harvest

Earlier this year I reviewed Emma Cooper’s book, Jade Pearls and Alien Eyeballs, a book describing a slew of unusual, edible plants to try in the garden. Many of the plants profiled in the book sounded fun to grow, so I decided to try at least two this year: oca and Hamburg parsley. I didn’t get around to growing oca, but I did manage to produce a miniscule crop of Hamburg parsley.

root-parsley-1

Hamburg parsley (also known as root parsley) is the tuberous root forming variety (var. tuberosum) of garden parsley, Petroselinum crispum. Native to the Mediterranean region, P. crispum has long been cultivated as a culinary herb. It is a biennial in the family Apiaceae and a relative of several other commonly grown herbs and vegetable crops including dill, fennel, parsnip, and carrot. In its first year, the plant forms a rosette of leaves with long petioles. The leaves are pinnately compound with three, toothed leaflets. Flowers are produced in the second year and are borne in a flat-topped umbel on a stalk that reaches up to 80 centimeters tall. The individual flowers are tiny, star-shaped, and yellow to yellow-green.

The leaves of Hamburg parsley can be harvested and used like common parsley, but the large, white taproots are the real treat. They can be eaten raw or cooked. Eaten raw, they are similar to carrots but have a mild to strong parsley flavor. The bitter, parsley flavor mellows and sweetens when the roots are roasted or used as an ingredient in soups or stews.

root-parsley-2

Despite sowing seeds in a 13 foot long row, only two of my plants survived and reached a harvestable size. Germination was fairly successful, and at one point there were several tiny plants dispersed along the row. Most perished pretty early on though; probably the result of browsing by rabbits. Generally, parsley seeds can be slow to germinate, so when they are direct seeded, Cooper and others recommend sowing seeds of quick growing crops like radish and lettuce along with them to help mark the rows – something I didn’t do.

My harvest may have been pathetic, but at least I ended up with some decent roots to sample. Raw, the roots were not as crisp as a carrot, and the parsley flavor was a little strong. I roasted the remainder in the oven with potatoes, carrots, and garlic, and that was a delicious way to have them. If I manage to grow more in the future, I will have to try them in a soup.

root-parsley-3

Did you try something new in your garden this year? Share your experience in the comment section below.

Beavers and Water Lilies – An Introduction to Zoochory

Beavers are classic examples of ecosystem engineers. It is difficult to think of an animal – apart from humans – whose day-to-day activities have more impact on the landscape than beavers. Their dam building activities create wetlands that are used by numerous other species, and their selective harvesting of preferred trees affects species composition in riparian areas. And that’s just the start. Their extensive evolutionary history and once widespread distribution has made them major players in the landscape for millions of years.

Today, the beaver family (Castoridae) consists of just two extant species: Castor fiber (native to Eurasia) and Castor canadensis (native to North America). Both species were hunted by humans to the brink of extinction but, thanks to conservation efforts, enjoy stable populations despite having been eliminated from much of their historical ranges. Before the arrival of Europeans, North American beavers are estimated to have been anywhere from 60 million to 400 million strong. Extensive trapping reduced the population to less than half a million. Today, 10 million or more make their homes in rivers, streams, and wetlands across the continent.

North American beaver (Castor canadensis) - photo credit: wikimedia commons

North American beaver (Castor canadensis) – photo credit: wikimedia commons

Beavers are herbivores, and they harvest trees and shrubs to build dams and lodges. Their interactions with plants are legion, and so what better way to introduce the concept of animal-mediated seed dispersal than beavers. Plants have several strategies for moving their seeds around. Wind and gravity are popular approaches, and water is commonly used by plants both aquatic and terrestrial. Partnering with animals, however, is by far the most compelling method. This strategy is called zoochory.

Zoochory has many facets. Two major distinctions are epizoochory and endozoochory. In epizoochory, seeds become attached in some form or fashion to the outside of an animal. The animal unwittingly picks up, transports, and deposits the seeds. The fruits of such seeds are equipped with hooks, spines, barbs, or stiff hairs that help facilitate attachment to an animal’s fur, feathers, or skin. A well known example of this is the genus Arctium. Commonly known as burdock, the fruits in this genus are called burs – essentially small, round balls covered in a series of hooks. Anyone who has walked through – or has had a pet walk through – a patch of burdocks with mature seed heads knows what a nuisance these plants can be. But their strategy is effective.

The burs of Arctium - photo credit: wikimedia commons

The burs of Arctium – photo credit: wikimedia commons

Endozoochory is less passive. Seeds that are dispersed this way are usually surrounded by fleshy, nutritious fruits desired by animals. The fruits are consumed, and the undigested seeds exit out the other end of the animal with a bit of fertilizer. Certain seeds require passage through an animal’s gut in order to germinate, relying on chemicals produced during the digestion process to help break dormancy. Other seeds contain mild laxatives in their seed coats, resulting in an unscathed passage through the animal and a quick deposit. Some plants have developed mutualistic relationships with specific groups of animals regarding seed dispersal by frugivory. When these animal species disappear, the plants are left without the means to disperse their seeds, which threatens their future survival.

Beavers rely on woody vegetation to get them through the winter, but in warmer months, when herbaceous aquatic vegetation is abundant, such plants become their preferred food source. Water lilies are one of their favorite foods, and through both consumption of the water lilies and construction of wetland habitats, beavers help support water lily populations. This is how John Eastman puts it in The Book of Swamp and Bog: “Beavers relish [water lilies], sometimes storing the rhizomes. Their damming activities create water lily habitat, and they widely disperse the plants by dropping rhizome fragments hither and yon.”

Fragrant water lily (Nympaea odorata) - photo credit: wikimedia commons

Fragrant water lily (Nymphaea odorata) – photo credit: wikimedia commons

The seeds of water lilies (plants in the family Nymphaceae) are generally dispersed by water. Most species (except those in the genera Nuphar and Barclaya) have a fleshy growth around their seeds called an aril that helps them float. Over time the aril becomes waterlogged and begins to disintegrate. At that point, the seed sinks to the bottom of the lake or pond where it germinates in the sediment. The seeds are also eaten by birds and aquatic animals, including beavers. The aril is digestible, but the seed is not.

In her book, Once They Were Hats, Frances Backhouse writes about the relationship between beavers and water lilies. She visits a lake where beavers had long been absent, but were later reintroduced. She noted changes in the vegetation due to beaver activity – water lilies being only one of many plant species impacted.

Every year in late summer, the beavers devoured the seed capsules [of water lilies], digested their soft outer rinds and excreted the ripe undamaged seeds into the lake. Meanwhile, as they dredged mud from the botom of the lake for their construction projects, they were unintentionally preparing the seed bed. Seeing the lilies reminded me that beavers also inadvertantly propagate willows and certain other woody plants. When beavers imbed uneaten sticks into dams or lodges or leave them lying on moist soil, the cuttings sometimes sprout roots and grow.

Other facets of zoochory include animals hoarding fruits and seeds to be eaten later and then not getting back to them, or seeds producing fleshy growths that ants love called elaiosomes, resulting in seed dispersal by ants. Animals and plants are constantly interacting in so many ways. Zoochory is just one way plants use animals and animals use plants, passively or otherwise. These relationships have a long history, and each one of them is worth exploring and celebrating.

Drought Tolerant Plants: Pearly Everlasting

Despite being such a widely distributed and commonly occurring plant, Anaphalis margaritacea is, in many other ways, an uncommon species. Its native range spans North America from coast to coast, reaching up into Canada and down into parts of Mexico. It is found in nearly every state in the United States, and it even occurs throughout northeast Asia. Apart from that, it is cultivated in many other parts of the world and is “weedy” in Europe. Its cosmopolitan nature is due in part to its preference for sunny, dry, well-drained sites, making it a common inhabitant of open fields, roadsides, sandy dunes, rocky slopes, disturbed sites, and waste places.

Its common name, pearly everlasting, refers to its unique inflorescence. Clusters of small, rounded flower heads occur in a corymb. “Pearly” refers to the collection of white bracts, or involucre, that surround each flower head. Inside the bracts are groupings of yellow to brown disc florets. The florets are unisexual, which is unusual for plants in the aster family. Plants either produce all male flowers or all female flowers (although some female plants occasionally produce florets with male parts). Due to the persistent bracts, the inflorescences remain intact even after the plant has produced seed. This quality has made them a popular feature in floral arrangements and explains the other half of the common name, “everlasting.” In fact, even in full bloom, the inflorescences can have a dried look to them.

pearly-everlasting-6

Pearly everlasting grows from 1 to 3 feet tall. Flowers are borne on top of straight stems that are adorned with narrow, alternately arranged, lance-shaped leaves. Stems and leaves are gray-green to white. Stems and undersides of leaves are thickly covered in very small hairs. Apart from contributing to its drought tolerance, this woolly covering deters insects and other animals from consuming its foliage. In The Book of Field and Roadside, John Eastman writes, “Insect foliage feeders are not numerous on this plant, owing to its protective downy ‘gloss.’ … The plant’s defensive coat seems to prevent spittlebug feeding on stem and underleaves. The tomentum also discourages ant climbers and nectar robbers.”

pearly-everlasting-5

Not all insects are thwarted however, as Anaphalis is a host to the caterpillars of at least two species of painted lady butterflies (Vanessa virginiensis and V. cardui). Its flowers, which occur throughout the summer and into the fall. are visited by a spectrum of butterflies, moths, bees, and flies.

Because the plants produce either male or female flowers, cross-pollination between plants is necessary for seed development. However, plants also reproduce asexually via rhizomes. Extensive patches of pearly everlasting can be formed this way. Over time, sections of the clonal patch can become isolated from the mother plant, allowing the plant to expand its range even in times when pollinators are lacking.

The attractive foliage and unique flowers are reason enough to include this plant in your dry garden. The flowers have been said to look like eye balls, fried eggs, or even, as Eastman writes, “white nests with a central yellow clutch of eggs spilling out.” However you decide to describe it, this is a tough and beautiful plant deserving of a place in the landscape.

pearly-everlasting-4

Read more:

Photos in this post are of Anaphalis margaritacea ‘Neuschnee’ and were taken at Idaho Botanical Garden in Boise, Idaho.

What Is a Plant, and Why Should I Care? part three

“If it wasn’t for the plants, and if it wasn’t for the invertebrates, our ancestors’ invasion of land could never have happened. There would have been no food on land. There would have been no ecosystems for them to populate. So really the whole ecosystem that Tiktaalik and its cousins were moving into back in the Devonian was a new ecosystem. … This didn’t exist a hundred million years before – shallow fresh water streams with soils that are stabilized by roots. Why? Because it took plants to do that – to make the [habitats] in the first place. So really plants, and the invertebrates that followed them, made the habitats that allowed our distant relatives to make the transition from life on water to life on land.” – Neil Shubin, author of Your Inner Fish, in an interview with Cara Santa Maria on episode 107 of her podcast, Talk Nerdy To Me

Plants were not the first living beings to colonize land – microorganisms have been terrestrial for what could be as long as 3.5 billion years, and lichens first formed on rocks somewhere between 550 and 635 million years ago – however, following in the footsteps of these other organisms, land plants paved the way for all other forms of terrestrial life as they migrated out of the waters and onto dry land.

The botanical invasion of land was a few billion years in the making and is worth a post of its own. What’s important to note at this point, is that the world was a much different place back then. For one, there was very little free oxygen. Today’s atmosphere is 21% oxygen; the first land plants emerged around 470 million years ago to an atmosphere that was composed of a mere 4% oxygen. Comparatively, the atmosphere back then was very carbon rich. Early plants radiated into numerous forms and spread across the land and, through processes like photosynthesis and carbon sequestration, helped to dramatically increase oxygen levels. A recent study found that early bryophytes played a major role in this process. The authors of this study state, “the progressive oxygenation of the Earth’s atmosphere was pivotal to the evolution of life.”

A recreation of a Cooksonia species - one of many early land plants. (photo credit: wikimedia commons)

A recreation of a Cooksonia species – one of many early land plants (photo credit: wikimedia commons)

The first land plants looked very different compared to the plants we are used to seeing today. Over the next few hundred million years plants developed new features as they adapted to life on land and to ever-changing conditions. Roots provided stability and access to water and nutrients. Vascular tissues helped transport water and nutrients to various plant parts. Woody stems helped plants reach new heights. Seeds offered an alternative means of preserving and disseminating progeny. Flowers – by partnering with animal life – provided a means of producing seeds without having to rely on wind, water, or gravity. And that’s just scratching the surface. Rooted in place and barely moving, if at all, plants appear inanimate and inactive, but it turns out they have a lot going on.

But what is a plant again? In part one and two, we listed three major features all plants have in common – multicellularity, cell walls composed of cellulose, and the ability to photosynthesize – and we discussed how being an autotroph (self-feeder/producer) sets plants apart from heterotrophs (consumers). Joseph Armstrong writes in his book, How the Earth Turned Green, “photosynthetic producers occupy the bottom rung of communities.” In other words, “all modern ecosystems rely upon autotrophic producers to capture energy and form the first step of a food chain because heterotrophs require pre-made organic molecules for energy and raw materials.”

So, why should we care about plants? Because if it wasn’t for them, there wouldn’t be much life on this planet to speak of, including ourselves.

Plants don’t just provide food though. They provide habitat as well. Plus they play major roles in the cycling of many different “nutrients,” including nitrogen, phosphorous, carbon, sulfur, etc. They are also a major feature in the water cycle. It is nearly impossible to list the countless, specific ways in which plants help support life on this planet, and so I offer two examples: moss and dead trees.

The diminutive stature of mosses may give one the impression that they are inconsequential and of little use. Not so. In her book, Gathering Moss, Robin Wall Kimmerer describes how mosses support diverse life forms:

There is a positive feedback loop created between mosses and humidity. The more mosses there are, the greater the humidity. More humidity leads inexorably to more mosses. The continual exhalation of mosses gives the temperate rain forest much of its essential character, from bird song to banana slugs. … Without mosses, there would be fewer insects and stepwise up the food chain, a deficit of thrushes.

Mosses are home to numerous invertebrate species. For many insects, mosses are a place to deposit their eggs and, consequentially, a place for their larvae to mature into adults. Banana slugs traverse the moss feeding on “the many inhabitants of a moss turf, and on the moss itself.” In the process they help to disperse the moss.

Moss is used as a nesting material by various species of birds, as well as squirrels, chipmunks, voles, bears, and other animals. Patches of moss can also function as “nurseries for infant trees.” In some instances, mosses inhibit seed germination, but they can also help protect seeds from drying out or being eaten. Kimmerer writes, “a seed falling on a bed of moss finds itself safely nestled among leafy shoots which can hold water longer than the bare soil and give it a head start on life.”

moss as nurse plant

Virtually all plants, from the tiniest tufts of grass to the tallest, towering trees have similar stories to tell about their interactions with other living things. Some have many more interactions than others, but all are “used” in some way. And even after they die, plants continue to interact with other organisms, as is the case with standing dead trees (a.k.a. snags).

In his book, Welcome to Subirdia, John Marzluff explains that when “hole creators” use dead and dying trees, they benefit a host of “hole users:”

Woodpeckers are natural engineers whose abandoned nest and roost cavities facilitate a great diversity of life, including birds, mammals, invertebrates, and many fungi, moss, and lichens. Without woodpeckers, birds such as chickadees and tits, swallows and martins, bluebirds, some flycatchers, nuthatches, wood ducks, hooded mergansers, and small owls would be homeless.

As plants die, they continue to provide food and habitat to a variety of other organisms. Eventually they are broken down to their most rudimentary components, and their nutrients are taken up and used by “new life.” Marzluff elaborates on this process:

Much of the ecological web exists out of sight – underground and in rotting wood. There, molds, bacteria, fungi, and a world of invertebrates convert the last molecules of sun-derived plant sugar to new life. These organisms are technically ‘decomposers,’ but functionally they are among the greatest of creators. Their bodies and chemical waste products provide us with an essential ecological service: soil, the foundation of terrestrial life.

Around 470 million years ago, plants found their way to land. Since then life of all kinds have made land their home. Plants helped lead the way. Today, plants continue their long tradition of supporting the living, both in life and in death.

Drought Tolerant Plants: The Yarrows

Few plants are as ubiquitous and widespread as the common yarrow, Achillea millefolium. A suite of strategies have made this plant highly successful in a wide variety of habitats, and it is a paragon in terms of reproduction. Its unique look, simple beauty, and tolerance of tough spots have made it a staple in many gardens; however, its hardiness, profuseness, and bullish behavior have also earned it the title, “weed.” Excess water encourages this plant to spread, but in a dry garden it tends to stay put (or at least remain manageable), which is why it and several of its cousins are often included in or recommended for water efficient landscapes.

Achillea millefolium - common yarrow

Achillea millefolium – common yarrow

Common yarrow is in the aster family (Asteraceae) and is one of around 85 species in the genus Achillea. It is distributed throughout North America, Europe, and Asia. European plants have long been introduced to North America, and hybridization has occurred many times among the two genotypes.

Yarrow begins as a small rosette of very finely dissected leaves that are feathery or fern-like in appearance. These characteristic leaves explain its specific epithet, millefolium, and common names like thousand-leaf. Slightly hairy stems with alternately arranged leaves arise from the rosettes and are capped with a wide, flat-topped cluster of tightly-packed flowers. The flower stalks can be less than one foot to more than three feet tall. The flowers are tiny, numerous, and consist of both ray and disc florets. Flowers are usually white but sometimes pink.

The plants produce several hundred to several thousand seeds each. The seeds are enclosed in tiny achene-like fruits which are spread by wind and gravity. Yarrow also spreads and reproduces rhizomatously. Its roots are shallow but fibrous and abundant, and they easily spread horizontally through the soil. If moisture, sun, and space are available, yarrow will quickly expand its territory. Its extensive root system and highly divided leaves, which help reduce transpiration rates, are partly what gives yarrow the ability to tolerate dry conditions.

john eastman

Illustration of Achillea millifolium by Amelia Hansen from The Book of Field and Roadside by John Eastman, which has an excellent entry about yarrow.

Common yarrow has significant wildlife value. While its pungent leaves are generally avoided by most herbivorous insects, its flowers are rich in nectar and attract bees, butterflies, beetles, flies, and even mosquitoes. Various insects feed on the flowers, and other insects visit yarrow to feed on the insects that are feeding on the plant. Despite its bitterness, the foliage is browsed by a variety of birds, small mammals, and deer. Some birds use the foliage in constructing their nests. Humans have also used yarrow as a medicinal herb for thousands of years to treat a seemingly endless list of ailments.

Yarrow’s popularity as an ornamental plant has resulted in the development of numerous cultivars that have a variety of flower colors including shades of pink, red, purple, yellow, and gold. While Achillea millefolium may be the most widely available species in its genus, there are several other drought-tolerant yarrows that are also commercially available and worth considering for a dry garden.

Achillea filipendulina, fern-leaf yarrow, is native to central and southwest Asia. It forms large, dense clusters of yellow-gold flowers on stalks that reach four feet high. Its leaves are similar in appearance to A. millefolium. Various cultivars are available, most of which have flowers that are varying shades of yellow or gold.

Achillea alpina, Siberian yarrow, only gets about half as tall as A. filipendulina. It occurs in Siberia, parts of Russia, China, Japan, and several other Asian countries. It also occurs in Canada. Unlike most other species in the genus, its leaves have a glossy appearance and are thick and somewhat leathery. Its flowers are white to pale violet. A. alpina is synonymous with A. sibirica, and ‘Love Parade’ is a popular cultivar derived from the subspecies camschatica.

Achillea x lewisii ‘King Edward,’ a hybrid between A. tomentosa (woolly yarrow) and A. clavennae (silvery yarrow), stays below six inches tall and forms a dense mat of soft leaves that have a dull silver-gray-green appearance. Its compact clusters of flowers are pale yellow to cream colored. Cultivars of A. tomentosa are also available.

Achillea ptarmica, a European native with bright white flowers, and A. ageritafolia, a native of Greece and Bulgaria that is low growing with silvery foliage and abundant white flowers can also be found in the horticulture trade along with a handful of others. Whatever your preferences are, there is a yarrow out there for you. Invasiveness and potential for escape into natural areas should always be a concern when selecting plants for your garden, especially when considering a plant as robust and successful as yarrow. That in mind, yarrow should make a great addition to nearly any drought-tolerant, wildlife friendly garden.

More Drought Tolerant Plants Posts:

Thoughts on Equisetum Phylogenesis

This a guest post. Words and photos by Jeremiah Sandler.

These notes do not discuss either anatomy or medicinal uses of Equisetum. Both topics are worthy of their own discourse.

Plants in the genus Equisetum can be found on each continent of our planet, except for Antarctica. The plants are collectively referred to as scouring rush or horsetail.  Equisetum is in the division of plants called Pteridophytes, which contains all of the ferns and fern-allies (lycopods, whisk ferns, etc.) Pteridophytes are characterized by having a vascular system and by reproducing with spores, rather than seeds. Equisetum is the only living genus within the entire class Equisetopsida.  Within this single genus, there are a mere 20 species.

Picture 1

Equisetums can live pretty much anywhere. They can tolerate lots of shade, lots of sun, and virtually any soil condition (including submerged soil). Rhizomatous stems make it difficult for either disease or insects to kill an entire population. They do not require pollinators because they reproduce with spores.  Sounds like a recipe for reproductive and evolutionary success. Yet with all of these traits working in their favor, there is only a single genus left.  

Where’d they all go?

Picture 2

Let’s briefly consider the origin of these plants first. In the late Paleozoic Era, during the end of the Cambrian Period, these plants began their takeover. Shortly thereafter (about 70 million years later), in the Devonian Period, land plants began to develop a tree-like habit, also called “arborescence.” Tree-sized ferns and fern-allies ruled the planet. They formed the ancient forests.

The elements required for photosynthesis were plentiful. The planet was warm. Competition from the Cambrian Explosion of flora and fauna drove plants upwards towards the sky. Larger plants can both shade their competition and remain out of reach of herbivores. None of the Equisetum species alive today are near their ancestors’ height.  

picture 3

It is rather obvious why we don’t see as many Equisetum species, and why they are not as large: The planet now is not the same planet it once was. Oxygen levels back in those times were about 15% higher than today’s levels. Seed plants can diversify much faster than non-seed-bearing plants; Equisetum cannot compete with the rate of diversification of seed-bearing plants.

The most interesting predicament comes when Equisetum is compared with other Pteridophytes. Some ancient Pteridophytes still do have diversity of genera. True Ferns, as they’re called, are broad-leaved ferns. In the class Filicopsida, there are 4 orders of True Ferns containing about 100 genera combined. Equisetum has 1 order and 1 genera.

What’s the primary difference between these two classes of Pteridophytes?  Broad leaves.

Most pteridophytes tolerate some shade; most other plants can’t tolerate as deep of shade as ferns. More specifically, the amount of shade the plants create could be a deciding factor in this question. True ferns have all of the traits equisetums have, with one additional physical trait that has pulled them ahead: Broad leaves allow true ferns to actively shade out local competition while creating more habitat for themselves. Equisetums don’t have this aggressive capacity.

Of course there are other biological and evolutionary pressures affecting equisetums beside their lack of broad leaves. The structure they do possess has benefited them at a time when it was advantageous to have it.  Otherwise why would it exist? Equisetums remind me of the dynamic nature of a planet. I don’t anticipate equisetums coming back. 

Although, I find it entertaining to humor the idea that they might return to their former glory. The planet’s climate could change toward any direction (I’m not a climatologist, though). Maybe equisetums are adequately prepared to adapt to whatever changes come – or maybe we are observing the gradual decline of an old branch on the tree of life.  

Resources: