Using Weeds: Soapwort

Over the past year or so I have written about several edible weeds in an effort to highlight useful weeds. However, weeds don’t have to be edible to be useful. In fact, many weeds are most certainly not edible, but that doesn’t mean they are of no use to humans. Soapwort, for example, is poisonous, and while it does have a history of being used internally as medicine, ingesting it is not advised and should only be done under the direction of a doctor. A much less risky activity would be to make soap out of it.

soapwort (Saponaria officinalis)

Saponaria officinalis, commonly known as bouncing bet, hedge pink, fuller’s herb, scourwort, and soapweed or soapwort, is an herbaceous perennial native to Europe. It has been planted widely in flower beds and herb gardens outside of its native range, desired both for its beauty and utility. Capitalizing on our appreciation for it, soapwort has expanded beyond our garden borders and into natural areas, as well as vacant lots, roadsides, and other neglected spaces. Even in a garden setting it can be a bit of a bully, especially if ignored for a season or two.

The stems of soapwort grow to about two feet tall, are unbranched, and sometimes tinged with pink, purple, or red. The leaves are oblong and oppositely-arranged, and their bases form prominent collars around the stems. Showy clusters of flowers are found atop the stems throughout the summer. Like other flowers in the pink family (Caryophyllaceae), they are cigar-shaped at the base and opened wide at the end, showing off 5 distinct petals with notches at their tips. The petals of soapwort flowers bend backwards, with their sex parts protruding outwards. In his description of the flowers, John Eastman remarks in The Book of Field and Roadside that “the reflexed petals surrounding the sexual organs give the impression of flagrant thrust; this is a gaudy, unshy flower.”

collared stem of soapwort (Saponaria officinalis)

The fragrant flowers are pink to white in color. They open in the evening and remain open for a few short days. In an individual flower, pollen matures and is mostly shed before the stigma is ready to accept it. This helps reduce the chance of self-pollination. Cross pollination occurs with the assistance of moths who visit the flowers at night, as well as bees and other flower-visiting insects that come along during the daytime. Soapwort fruits are oval capsules containing as many as 500 kidney-shaped seeds. Seeds aren’t essential to the plants spread though, as much of its colonization occurs via vigorous rhizomes.

In fact, vegetative reproduction is the means by which soapwort forms such expansive, thick patches. It also helps that it’s poisonous. The saponins – its soap making compounds – that it produces in its roots, shoots, and leaves deter most insects and other animals from eating it. It has a reputation for poisoning horses, cows, and other livestock, and so is unwelcome in pastures and rangelands. Saponins are also poisonous to fish, so growing soapwort near fish ponds is not advised.

soapwort (Saponaria officinalis)

Soapwort occurs in a variety of soils including sandy, dry, and rocky sites and is surprisingly drough-tolerant, fine qualities to have when colonizing neglected sites. While most other organisms ignore soapwort, it has a friend in humans. Eastman sums this up well: “Soapwort’s most important associate – as is true of most plants we label weeds – is undoubtedly humankind, without whose helpful interventions the plant would surely be much rarer than it is.”

I made a soapy liquid out of soapwort by following a recipe that can be found on various blogs and websites by searching “saponaria soap recipe.” Basically it’s a cup of fresh leaves and stems along with a cup of dried leaves and stems added to a quart of distilled water brought to a boil. After simmering for 15 minutes and then allowing it to cool, strain the mixture through cheese cloth, and it’s ready to go.

This gentle but effective soap can be used for cleaning countertops and other surfaces, as well as dishes, fabrics, and skin. Several sources say it is particularly useful for cleaning delicate fabrics. Sierra and I both found it to have a cooked cabbage or spinach scent to it. This can be masked by adding a few drops of essential oil. Despite its odd aroma, both Sierra and I were impressed by its cleansing power and plan to use it more often.

dried leaves of soapwort

soapwort soap

Advertisement

Podcast Review: Botanical Mystery Tour

My interest is piqued any time plants are featured or plugged in popular culture. Hence my ongoing series of posts, Botany in Popular Culture, featuring Futurama, Saga of the Swamp Thing, etc. Plants just don’t get enough airtime, so it must be celebrated when they do. Which is why I was excited to learn about Chicago Botanic Garden‘s new podcast, Botanical Mystery Tour, in which the plants referenced in pop culture take center stage.

The hosts, as they state in each episode’s introduction, “dive into the botany hidden in our favorite stories.” To help with the discussion, they bring in experts that work at Chicago Botanic Garden to explore the science (and fiction) behind the plant references. In addition to discussing pop culture and the related science, the guests share details about the work they do at the Garden and some of the research they are working on.

In the first episode, Jasmine and Erica ask Paul CaraDonna about the drone bees featured in an episode of Black Mirror. Since many bee species are in decline, will we have to resort to employing robot bees to pollinate plants that rely on bee-assisted pollination? A great discussion about native bees and colony collapse disorder ensues.

(But maybe the idea of autonomous drone insects isn’t too far-fetched…)

In episode two, the hosts ask why humans are so obsessed with corpse flowers. Thousands of people flock to botanical gardens to see these humongous, stinky flowers on the rare occasions they are in bloom, so what is so appealing about Amorphophallus titanum? Patti Vitt joins the discussion to share details about this fascinating plant.

A corpse flower in bloom is a brief and uncommon occurrence, reminiscent of the Sumatran Century Flower in The Simpsons and the 40 Year Orchid in Dennis the Menace.

 

The third episode features the sarlaccs of Star Wars. It turns out, sarlaccs are carnivorous plants. This discovery spawns an interesting discussion with horticulturist Tom Weaver about what defines a carnivorous plant and the various ways that different carnivorous plant species capture and kill their prey.

The fourth (and latest) episode is an exploration into the magical world of mushrooms. In Alice in Wonderland, Alice encounters a large, hookah-smoking caterpillar sitting atop a giant mushroom. Are there mushrooms big enough that a person could actually sit on them like Alice does? Greg Mueller joins the podcast to address this and many other mycology-based questions. The conversation includes a great discussion about why a botanical garden (whose main focus is plants) would be interested in fungus.

The discussions in this podcast are fun and enlightening. The hosts shine the spotlight on often overlooked characters in popular media, and with the help of their guests, lead captivating conversations about the science related to these characters. With only a handful of episodes available so far, it will be easy to get caught up. And then you, like me, will find yourself anxiously looking forward to embarking on another Botanical Mystery Tour.

———————

Is there a plant-themed podcast or podcast episode you would like to recommend? Please do so in the comment section below.

Bumblebees and Urbanization

Urban areas bear little resemblance to the natural areas that once stood in their place. Concrete and asphalt stretch out for miles, buildings of all types tower above trees and shrubs, and turfgrass appears to dominate whatever open space there is. Understandably, it may be hard to imagine places like this being havens for biodiversity. In many ways they are not, but for certain forms of life they can be.

An essay published earlier this year in Conservation Biology highlights the ways in which cities “can become a refuge for insect pollinators.” In fact, urban areas may be more inviting than their rural surroundings, which are often dominated by industrial agriculture where pesticides are regularly used, the ground is routinely disturbed, and monocultures reign supreme. Even though suitable habitat can be patchy and unpredictable in the built environment, cities may have more to offer than we once thought.

Yet, studies about bee abundance and diversity in urban areas show mixed results, largely because all bee species are not created equal (they have varying habitat requirements and life histories) and because urban areas differ wildly in the quality and quantity of habitat they provide both spatially and temporally. For this reason, it is important for studies to focus on groups of bees with similar traits and to observe them across various states of urbanization. This is precisely what researchers at University of Michigan set out to do when they sampled bumblebee populations in various cities in southeastern Michigan. Their results were published earlier this year by Royal Society Open Science.

common eastern bumble bee (Bombus impatiens) – photo credit: wikimedia commons

The researchers selected 30 sites located in Dexter, Ann Arbor, Ypsilanti, Dearborn, and Detroit. Most of the sites were gardens or farms in urban centers. They collected bumblebees from May to September using pan traps and nets. The species and sex of each individual bumblebee was identified and recorded for each site. The percentage of impervious surface that surrounded each site was used as a measurement of urban development. Other measurements included the abundance of flowers and average daily temperatures for each location.

Bumblebees were selected as a study organism because the genus, Bombus, “represents a distinct, well-studied set of traits that make it feasible to incorporate natural history into analysis.” Bumblebees live in colonies – eusocial structures that include “a single reproductive queen, variable numbers of non-reproductive female workers, and male reproductive drones.” They are generalist foragers, visiting a wide variety of flowering species for pollen and nectar, and they nest in holes in the ground, inside tree stumps, or at the bases of large clumps of grass. The authors believe that their nesting behavior makes them “a good candidate for testing the effects of urban land development,” and the fact that members of the colony have “distinct roles, [behaviors], and movement patterns” allows researchers to make inferences regarding “the effects of urbanization on specific components of bumblebee dynamics.”

Across all locations, 520 individual bumblebees were collected. Nearly three quarters of them were common eastern bumblebees (Bombus impatiens). Among the remaining nine species collected, brown-belted bumblebees (Bombus griseocollis) and two-spotted bumblebees (Bombus bimaculatus) were the most abundant.

brown-belted bumblebee (Bombus griseocollis) – photo credit: wikimedia commons

Because bumblebees are strong fliers with an extensive foraging range, impervious surface calculations for each site had to cover an area large enough to reflect this. Results indicated that as the percentage of impervious surfaces increased, bumblebee abundance and diversity declined. When male and female bumblebee data was analyzed separately, the decline was only seen in females; males were unaffected.

Female workers do most of their foraging close to home, whereas males venture further out. The researchers found it “reasonable to hypothesize that worker abundance is proportional to bumblebee colony density.” Thus, the decline in female bumblebees observed in this study suggests that as urban development increases (i.e. percent coverage of impervious surface), available nesting sites decline and the number of viable bumblebee colonies shrinks. Because male bumblebees responded differently to this trend, future studies should consider the responses of both sexes in order to get a more complete picture of the effects that urbanization has on this genus.

Interestingly, results obtained from the study locations in Detroit did not conform to the results found elsewhere. Bumblebee abundance and diversity was not decreasing with urbanization. Unlike other cities in the study, “Detroit has experienced decades of economic hardship and declining human populations.” It has a high proportion of impervious surfaces, but it also has an abundance of vacant lots and abandoned yards. These areas are left unmaintained and are less likely to be mowed regularly or treated with pesticides. Reducing disturbance can create more suitable habitat for bumblebees, resulting in healthy populations regardless of the level of urbanization. Thus, future studies should examine the state of insect pollinators in all types of cities – shrinking and non-shrinking – and should consider not just the amount of available habitat but also its suitability.

two-spotted bumblebee (Bombus bimaculatus) – photo credit: wikimedia commons