Seed Oddities: Apomixis and Polyembryony

Plants have uncanny ways of reproducing themselves that are unparalleled by most other living things. Offshoots of themselves can be made by sending out modified stems above or beneath the ground which develop roots and shoots (new plants) at various points along the way. Various other underground stem and root structures can also give rise to new plants. Small sections of root, stem, or leaf can, under the right conditions, push out new plantlets in a fashion that seems otherworldly. (Picture chopping off a bit of your finger and growing a whole new you from it.)

These are some of the ways in which plants reproduce asexually, and it’s kind of freaky if you think about it. Plants can clone themselves. But one major disadvantage of reproducing this way is that clonal offspring are genetically identical to the parent plant, which truncates any advantage that might be gained by genetic mixing between two separate plants. For one, it means that a plant population composed of all clones is at risk of being wiped out if something in the environment comes along (such as a disease or change in climate) and none of the plants in the population have adapted any sort of resistance to it.

New plants forming along the lateral stems of Ranunculus flammula – via wikimedia commons

That’s where seeds come in. Seeds are produced sexually, when the gametes of one plant fuse with the gametes of another. Genetic recombination occurs, and a genetically unique individual is born, housed within a seed. Unless, of course, that seed is produced asexually. Then the seed is a clone, and we’re back to where we started.

Apomixis is the process by which seeds are produced asexually. In flowering plants, this means that viable seeds are formed even when flowers haven’t been pollinated. In some cases, pollination stimulates apomixis or is required to produce endosperm; but either way, the result is the same: an embryo containing an exact copy of the genes of its single parent plant.

To understand this process, it’s important to familiarize yourself with the basic anatomy of an ovule, the part of a plant where embryos are formed and which ultimately becomes a seed. In gymnosperms, ovules sit inside cones; in angiosperms, they are surrounded by an ovary. The wall of the ovule is called an integument. A small opening at the top of the ovule, known as a micropyle, is where the pollen tube enters. Diploid cells of the nucellus compose the interior of the ovule, and within the nucellus resides the megasporocyte, which is where meiosis occurs and egg cells are produced. In sexual reproduction, a germ cell introduced through the pollen tube fuses with the egg cell to form a zygote and eventually an embryo. In the case of apomixis, the fusion of germ cells isn’t necessary for an embryo to form.

ovule anatomy via wikimedia commons

There are three main types of apomixis: diplospory, apospory, and adventitious embryony. In diplospory, the megasporocyte skips meiosis and produces diploid cells instead of haploid cells (germ cells). These unreduced cells go on to form an embryo inside of the embryo sac, just like an egg cell would if it had been fertilized with a pollen cell. Additional unreduced cells go on to form endosperm, and the ovule then matures into a seed. This type of apomixis is common in dandelions (Taraxacum officinale). As much as bees love visiting dandelion flowers, their pollination services are not required for the production of viable seeds. Yet another reason you are stuck with dandelions in your yard whether you like it or not.

In apospory, an embryo develops inside of an embryo sac that has been formed from cells in the nucellus. Embryo development within the megasporocyte is bypassed; however, pollination is usually necessary for endosperm to form. Plant species in the grass family commonly produce seeds using this type of apomixis.

Adventitous embryony is also known as sporophytic apomixis because an embryo is formed outside of an embryo sac. Cells from either the integument or the nucellus produce an embryo vegetatively. In this case, a sexually produced embryo can form along with several vegetatively produced embryos. Extra embryos die off and a single, surviving embryo is left inside the mature seed. But not always. Two or more embryos occasionally survive, including the sexually produced one. The mature seed then consists of multiple embryos. This phenomenon is called polyembryony and is common in citrus and mangoes. When it comes to plant breeding, polyembryony is incredibly useful because the asexually derived seedlings are exact copies of their parent, which means the desirable traits of a specific cultivar are retained.

Depiction of seed with three viable embryos after germination.

Polyembryony can occur in a number of ways, and not always as a result of apomixis. In some species, additional embryos “bud off” from the sexually produced embryo. This is called cleavage polyembryony and is known to happen frequently in the pine family (Pinaceae), as well as other plant families. Another common form of polyembryony in gymnosperms is simple polyembryony, in which several egg cells in a single ovule are fertilized resulting in the development of multiple embryos. This doesn’t always mean there will be multiple seedlings sprouting from a single seed. Most embryos usually fail to mature, and only one prevails. However, sometimes more than one survives, and if you’re lucky, you’ll find a seed with multiple plant babies pushing out from the seed coat.

Up Next: Vivipary!


Eating Weeds: Dandelion Flowers

Mention weeds, and the first plant most of us think of is dandelion. It is essentially the poster child when it comes to weeds and one of the few weeds that entire books have been written about. Its notoriety partly comes from being so ubiquitous and recognizable, but it also comes from its utility. It has a long history of being used medicinally and culinarily, and, surprising to some I’m sure, is still grown agriculturally today.

Dandelion is an attractive and useful plant whose main offense is being so accomplished and proficient at staying alive, reproducing, and moving itself around. The principal thing it gets accused of is invading our lawns. With its brightly colored flowers on tall stalks and its globe of feathery seeds, it makes itself obvious, unlike other lawn invaders that tend to blend in more. Once it makes itself at home, it refuses to leave, adding to the frustration. Consider the vats of herbicide that have been applied to turf grass in an attempt to wipe out dandelions. The fact that they hang around, taunting those who care about that sort of thing, helps explain why they are so hated.

common dandelion (Taraxacum officinale)

As Ken Thompson writes in The Book of Weeds, dandelions are “too familiar to need describing,” and since there is already so much written about them, I don’t feel the need to write much myself. Below, instead, are a few excerpts from a handful of books that discuss them.

“It seems many of us possess a conscious will not to believe anything good about this remarkable harbinger of spring which, by its ubiquity and persistance, make it the most recognized and most hated of all ‘weeds.'” — The Dandelion Celebration by Peter Gail

“Dandelion heads consist entirely of overlapping ray florets. … Each floret has its own male and female organs, the (female) style surmounting the (male) stamens. Stamens are unnecessary, however, for the plant to produce seed; much, if not most dandelion seed reproduction occurs asexually (apomixis), without pollen fertilization or any genetic involvement of male cells. But insect pollination (each floret produces abundant nectar in its tubular base) and self-pollination, plus vegetative reproduction via sprouting of new plants from roots and root fragments, also occurs – so this plant has all reproductive fronts covered, surely an important reason for its wide abundance and distribution.” — The Book of Field and Roadside by John Eastman

“Wild violets are too limp and their flowers to insipidly small, too prone to damp, dark corners, as if lacking upright amour propre; in contrast, dandelions are too lush and healthy, their vigorous, indestructible roots, gaudy flowers, and too-plentiful seed heads all too easily spawned with their easygoing means of reproduction by parachute-like seeds, landing where they will, suggesting something of human sexual profligacy.” — Weeds by Nina Edwards

Charles Voysey “The Furrow” (© Victoria and Albert Museum, London

“Dandelions demonstrate evolution in action on suburban lawns. Over several seasons of mowing, the only dandelions that can flower are short-stemmed plants that duck the blade. Mowing thus becomes a selective factor, and in time most of the yard’s surviving dandelion flowers hug the ground.” — The Book of Field and Roadside by John Eastman

“When you stop seeing them as villains, many weeds can be considered as useful plants and certainly have been in the past. Dandelions produce fresh, green leaves nearly all year round. They make a nice addition to a salad, although most people find them too bitter to eat in any quantity. … Dandelion roots are edible too, and have been used in the past as a coffee substitute. If you can find some nice fat burdock roots to go with them, you could even make your own old-fashioned dandelion and burdock drink.” — The Alternative Kitchen Garden by Emma Cooper

“Early medieval Arabian physicians recognized the medicinal properties of dandelion, recorded in Egyptian tombs and described by Theophrastus. Its diuretic effects are mirrored in the common names of pissabed and the French pissenlit; it is recommended for the liver, kidneys, and gallbladder, and even for the treatment of diabetes. In India it is also a traditional remedy for snakebites and its milky sap is said to cure surface tumors and warts, and even unsightly moles and freckles.” — Weeds by Nina Edwards

I ate dandelion flowers blended up with eggs and cooked like scrambled eggs. Its a simple recipe that I adapted from instructions found in the The Dandelion Celebration by Peter Gail. The flowers taste more or less the way they smell. They have a bitterness to them that is akin to their leaves but isn’t nearly as strong. I have eaten dandelion leaves several times and I like them, so the bitterness doesn’t really bother me. If I were to make this again I would use a higher egg to dandelion flower ratio, because even though I enjoyed the flavor, it was a little strong.

Book Review: A Feast of Weeds

Since I am planning on eating more weeds, it seems appropriate that I review this book. Not to be confused with Feast of Weeds, a series of apocalyptic novels about a world-ending plague, A Feast of Weeds, by Luigi Ballerini is tangentially about foraging and cooking wild, edible plants. I say “tangentially” because it’s not like other foraging guides. This is a “literary guide,” as the subtitle states, so in the place of plant descriptions and harvesting tips, etc. are verbose and erudite essays summarizing the various literary references that each of the species profiled has accumulated from antiquity to the modern era. Apart from dozens of recipes, the information presented in this book is more entertaining than it is practical; however, when telling the stories of plants, the human element is an important facet – particularly in the stories of edible and medicinal plants – and it is the human element that this book is concerned with.

Ballerini is an Italian poet, a cooking historian, and a professor of Italian literature at UCLA. The 31 plant species he chose to profile can all be foraged in Italy (most of them in one specific region), and all except for maybe capers can be found somewhere in the United States. The majority of the plants in this book are commonly cultivated as crops, ornamentals, or landscape plants – few are truly weeds – but all of them can be found growing wild somewhere. And that’s one of Ballerini’s main points – wild food and the act of foraging is a very different experience from farmed food and the act of buying it at the grocery store. Take arugula for example:

Try making a salad with arugula that you have gathered yourself in a field and compare its taste with what you have made a hundred times with pre-washed and sterilized arugula bought at the supermarket or even at a farmers’ market. It’s easy to predict the comment that will immediately come to your lips: ‘There’s no comparison.’

A selection of recipes accompanies each of the plants that Ballerini writes about. These recipes were “invented or elaborated” by Ada De Santis, who lives on a farm in the “heel of Italy” and who “enthusiastically agreed to divulge the secrets of her kitchen.” Ballerini partnered with De Santis because of her Italian ancestry and her vast experience with both wild and cultivated plants.

Each chapter in the book follows the same basic format: a discussion of the myriad references a certain plant has received in various writings throughout human history, an overview of the (often bizarre) medicinal uses the plant has had throughout the centuries, and a brief statement on when to harvest the plant. References include plays, poems, songs, myths, fiction and non-fiction, religious and sacred texts, medicinal plant guides, and even artwork. Reading through the book, my interest and attention waned often, partly due to Ballerini’s way of writing and also due to my lack of familiarity (and lack of interest, frankly) with the references. But there were enough interesting bits here and there that made it worth the effort.

common mallow (Malva neglecta )

Of course, my interest was mainly held by the chapters about the weeds. Apparently, mallow (Malva spp.) has been written about prolifically, leading Ballerini to write, “the history of mallow is complex and contradictory, rich in illustrious testimony but, given its effects, not always very noble.” Like other plants in the book, the medicinal uses for mallow have been so numerous that it could be considered “a true cure-all,” if in fact it truly treated all the things it has been claimed to treat. On a humorous note, Ballerini writes in the chapter on wild fennel (Foeniculum vulgare), “we have come to understand … if a plant is good for you, it is good for nearly everything – but particularly for snakebite.”

Ballerini especially enjoys sharing odd medical claims, like in the chapter about sow thistle (Sonchus oleraceus), in which Nicholas Culpepper promoted some interesting uses for its juice. Purportedly, bringing it to a boil or “warming it in some bitter almond oil inside the skin of a pomegranate is a sure remedy for deafness and tinnitus.” The medicinal uses of wild chicory (Cichorium intybus) are “as old as the hills,” with a medical papyri from ancient Egypt (circa 1550 B.C.) referencing its medicinal uses among “magic formulas and spells for driving away evil-intentioned demons.”

sow thistle (Sonchus sp.)

A couple of paragraphs about dandelion (Taraxacum officinale) find their way into the chapter about wild chicory. The rosettes of these two plants look similar, and the roots of both, when “roasted and ground, can be used as a substitute for coffee.” Dandelion is also known to be a diuretic, and is thus referred to as pisciailetto in Italy, pissenlit in France, and piss-a-beds in England.

Speaking of the names of things, how things came to be called what they are is a topic that Ballerini addresses frequently throughout the book. However, such origins aren’t always clear. In the chapter on wild raspberries (Rubus idaeus), Ballerini reflects on the “general uncertainty regarding the origin of the English term raspberry.” Does it originate from the Old French word rasper, the Spanish word raspar, and the Italian word raspare, all of which mean to rasp or to scrape? Ballerini laments, “this introduces very unpleasant connotations for such a delicate fruit (yet there are those who, when faced with roses always think of thorns).”

While the bulk of this book is of little use to me – I guess I’m just not that interested in classic literature or mythology – it’s worth keeping around for the recipes alone, several of which I am anxious to try. If the idea of an unconventional field guide appeals to you, this book might be up your alley, just as it apparently was for this reviewer.

Additional Book Reviews on Awkward Botany:

22 + Botanical Terms for Fruits

First off, let’s get one thing straight – tomatoes are fruits. Now that that is settled, guess what is also a fruit? This:

(photo credit: wikimedia commons)

(photo credit: wikimedia commons)

Yep. It’s a dandelion fluff. More accurately, it is a dandelion fruit with a pappus attached to it. Botanically speaking, a fruit is the seed-bearing, ripened ovary of a flowering plant. Other parts of the plant may be incorporated into the fruit, but the important distinction between fruits and other parts of a plant is that a seed or seeds are present. In fact, the purpose of fruits is to protect and distribute seeds. Which explains why tomatoes are fruits, right? (And, for that matter, the dandelion fluff as well.) So why the tired argument over whether or not a tomato is a fruit or a vegetable? This article may help explain that.

Before going into types of fruits, it may be important to understand some basic fruit anatomy. Pericarp is a term used to describe the tissues of a fruit surrounding the seed(s). It mainly refers to the wall of a ripened ovary, but it has also been used in reference to fruit tissues that are derived from other parts of the flower. Pericarps consist of three layers (although not all fruits have all layers): endocarp, mesocarp, and exocarp (also known as epicarp). The pericarps of true fruits consist of only ovarian tissue, while the pericarps of accessory fruits consist of other flower parts such as sepals, petals, receptacles, etc.

Fruits can be either fleshy or dry. Tomatoes are fleshy fruits, and dandelion fluffs are dry fruits. Dry fruits can be further broken down into dehiscent fruits and indehiscent fruits. Dehiscent fruits – like milkweeds and poppies – break open as they reach maturity, releasing the seeds. Indehiscent fruits – like sunflowers and maples – remain closed at maturity, and seeds remain contained until the outer tissues rot or are removed by some other agent.

Most fruits are simple fruits, fruits formed from a single ovary or fused ovaries. Compound fruits are formed in one of two ways. Separate carpels in a single flower can fuse to form a fruit, which is called an aggregate fruit; or all fruits in an inflorescence can fuse to form a single fruit, which is called a multiple fruit. A raspberry is an example of an aggregate fruit, and a pineapple is an example of a multiple fruit.

Additional terms used to describe fruit types:

Berry – A familiar term, berries are fleshy fruits with soft pericarp layers. Grapes, tomatoes, blueberries, and cranberries are examples of berries.

Pome – Pomes are similar to berries but have a leathery endocarp. Apples, pears, and quinces are examples of pomes. When you are eating an apple and you reach the “core,” you have reached the endocarp. Most – if not all – pomes are accessory fruits because they consist of parts of flowers in addition to the ovarian wall, such as – in the case of apples and pears – the receptacle.

Drupe – Drupes are also similar to berries but have hardened endocarps. Peaches, plums, cherries, and apricots are examples of drupes. A “pit” consists of a hardened endocarp and its enclosed seed.

Pepo – Pepos are also berry-like but have tough exocarps referred to as rinds. Pumpkins, melons, and cucumbers are examples of pepos.

Pumpkins are pepos.

Pumpkins are pepos.

Hesperidium – Another berry-like fruit but with a leathery exocarp. Oranges, lemons, and tangerines are examples of this type of fruit.

Caryopsis – An indehiscent fruit in which the seed coat fuses with the fruit wall and becomes nearly indistinguishable. Corn, oats, and wheat are examples of this type of fruit.

Achene – An indehiscent fruit in which the seed and the fruit wall do not fuse and remain distinguishable. Sunflowers and dandelions are examples of achenes.

Samara – An achene with wings attached. Maples, elms, and ashes all produce samaras. Remember as a kid finding maple fruits on the ground, throwing them into the air, and calling them “helicopters.” Those were samaras.

The fruits of red maple, Acer rubrum (photo credit:

The fruits of red maple, Acer rubrum (photo credit:

Nut – An indehiscent fruit in which the pericarp becomes hard at maturity. Hazelnuts, chestnuts, and acorns are examples of nuts.

Follicle – Dehiscent fruits that break apart on a single side. Milkweeds, peonies, and columbines are examples of follicles.

Legume – Dehiscent fruits that break apart on multiple sides. Beans and peas are examples of legumes.

Capsule – This term describes a number of dehiscent fruits. It differs from follicle and legume in that it is derived from multiple carpels. Capsules open in several ways, including along lines of fusion, between lines of fusion, into top and bottom halves, etc. The fruits of iris, poppy, and primrose are examples of capsules.

Poppy flower and fruit. Poppy fruits are called capsules.

Poppy flower and fruit. Poppy fruits are called capsules.

Flowers and fruits are key to identifying plants. Learning to recognize these structures will help you immensely when you want to know what you are looking at. And now that it is harvest season, you can impress your friends by calling fruits by their proper names. Pepo pie, anyone?