Awkward Botanical Sketches #5: Leaves of Yellowstone Edition

Earlier this month, I met up with Eric LoPresti and others at Yellowstone National Park to help take a census of Abronia ammophila, a rare plant endemic to the park and commonly referred to as Yellowstone sand verbena. Abronia (a.k.a. the sand-verbenas) is a small genus of plants in the family Nyctaginaceae that is native to western North America. Several species in the genus have fairly limited distributions, and as the common name implies, members of this genus generally occur in sandy soils. A. ammophila is no exception. A report written by Jennifer Whipple and published in 2002 described it as “restricted to stabilized sandy sites that lie primarily just above the maximum splash zone along the shoreline of [Yellowstone Lake].” Despite the large size of the lake, A. ammophila is not widespread. Most individuals are found along the north shore of the lake, and even there it has been declining. According to Whipple’s report, “Yellowstone sand verbena has been extirpated from a significant portion of its original range along the shoreline of the lake due largely to human influences.”

Like other sand verbenas, A. ammophila has sticky leaves to which sand particles easily adhere, a phenomenon known as psammophory and an act that may help in defense against herbivory. The plant grows prostrate across the sand and produces attractive, small, white, trumpet-shaped flowers in groups of up to 20 that open wide when light levels are low, such as in the evening and in times of heavy cloud cover. The flowers are self-fertile, but insects may also play a role in pollination. It is imperative that questions surrounding its pollination biology, seed dispersal, and other factors regarding its life history are answered in order to halt any further decline of the species and ensure its survival for generations to come.

While in Yellowstone, I enjoyed looking at the all plants, several of which were new to me. I decided to sketch a few of the leaves that I found common around our campsite. I was particularly interested in discolored, diseased, drought-stressed, and chewed-on leaves, since they are more interesting to sketch and color. While I was at it, I attempted to draw a Yellowstone sand verbena seedling as well.

wild strawberry (Fragaria sp.)
Richardson’s geranium (Geranium richardsonii)
lodgepole pine (Pinus contorta)
veiny dock (Rumex venosus)
cinquefoil (Potentilla sp.)
seedling of Yellowstone sand verbena (Abronia ammophila)

More Awkward Botanical Sketches

Advertisement

Book Review: In Defense of Plants

Many of us who are plant obsessed didn’t connect with plants right away. It took time. There was a journey we had to go on that would ultimately bring us to the point where plants are now the main thing we think about. After all, plants aren’t the easiest things to relate to. Not immediately anyway. Some of us have to work up to it. Once there, it’s pretty much impossible to go back to our former lives. What was once just a background of green hues is now a rich cast of characters, each with their own name, unique features, and distinct story to tell. Essentially, we went through what Matt Candeias refers to as our ” green revolution.” Candeias – author and host of the long-running blog and podcast, In Defense of Plants – shares his story of learning to love plants and offers a convincing arguement for why you should love them too in his new book, aptly titled, In Defense of Plants.

It’s hard to picture Candeias as anything but a plant lover. If you’ve been following his work, you’ll know he makes it a point to put plants at center stage. It seems that much of the popular content available about plants focuses on the usefulness of plants as they pertain to humans. In many cases it can be easier to find out how to grow a certain plant species than to learn about where it’s from and what it’s like in the wild. Candeias let’s the plants speak for themselves by giving them a voice through his blog, podcast, and now his book. Through the stories he shares we get a peek into the way Candeias sees plants, with the hope being that others might also “be bitten by the botanical bug.”

One of the first plants that captured the attention of Candeias was perennial blue lupine (Lupinus perennis). While assisting with a habitat restoration project at a sand and gravel quarry, Candeias was tasked with improving the establishment of lupine, which is the host plant for the caterpillars of an endangered species of butterfly called Karner blue. The work he did at the quarry and the botanical research that went into it helped Candeias realize that plant’s aren’t at all boring, but are “incredibly interesting organisms worthy of respect and admiration” and that “plants can be both surprisingly relatable and incredibly alien all at once.” His “green revolution” had begun.

The seeds of lupine are dispersed ballistically. As the seed pods dry, tension builds. Then, as Matt Candeias writes in In Defense of Plants, “with an audible pop, the pods eventually explode, catapulting the seeds out into the environment.”

In each chapter of In Defense of Plants we get a peak into the experiences that brought Candeias to where he is now as he discovers the wonder of plants. His personal stories help introduce the main topic of each chapter. Topics include plant sex, plant dispersal, plant defenses, carnivorous plants, and parasitic plants. From countless possible examples, Candeias selects a few of his favorite plant species to help illustrate each topic. Along the way, the reader is presented with various other interesting plant-related facts as Candeias discusses the behaviors of some of the world’s most fascinating plants. In the chapter on dispersal, for example, unlikely agents of seed dispersal (like catfish!) are introduced, as well as phenomena like geocarpy, in which plants are essentially planting themselves.

Carnivorous plants provide an excellent gateway into convincing people who claim to have no interest plants that they actually do. It’s difficult to deny the impressive nature of a meat-eating plant. In the carnivorous plant chapter, Candeias introduces us to the various ways such plants capture and consume their prey, and even wonders if some of these plants should be considered omnivores. After all, certain butterworts digest pollen that falls onto their sticky leaves, and some bladderworts suck in plenty of algae and possibly gain nutrients from the act. If capturing insects inside leaves modified to look like pitchers or on leaves covered in digestive enzyme-producing glands doesn’t impress you, consider the carnivorous actions of corkscrew plants, which drill their leaves into the soil to go after soil-dwelling organisms like protozoans and worms.

Parasitic plants should also excite a reluctant plant lover. These are plants that take all or most of what they need to survive from another plant or host organism. Mistletoes are one of the more familiar parasitic plants, and Candeias describes several, including one that lives almost entirely within the stems of cacti. In fact, “you would never know a cactus had been infected until the mistletoe living within decides to flower,” at which point the flowers push their way out through the sides of the cactus. Dodder is another fairly common, highly specialized, and easy to identify parasitic plant. It basically looks like “a tangled pile of orange spaghetti tossed over the surrounding vegetation.” Orchids, a favorite of Candeias, are known for being mycoheterotrophs, which essentially means they parasitize fungi. Their seeds come unequipped with the energy stores needed to get going, so they borrow resources from mycorrhizal fungi in order to get their start. Years pass before the orchid can offer anything in return.

Datura is a genus of plants that produces toxic compounds like scopolamine and atropine. In his book, In Defense of Plants, Matt Candeias warns, “it would only take a small amount of these chemicals to completely ruin your week and slightly more to put you in a grave.”

After spending more than 200 pages celebrating plants and their amazing abilities and diversity, it’s fitting that Candeias spends the final chapter of his book mourning some of the ways the actions of humans threaten the existence of so many plants. He remarks how unfortunate it is that “plants with their unseeing, unhearing, unfeeling ways of life usually occupy the lowest rung of importance in our society.” Many of us barely notice the loss, yet “plants are the foundation of functioning ecosystems.” Due to that fact, “destroying plant communities causes disastrous ripples that reverberate throughout the entire biosphere of our planet.” Everything suffers when plants are lost. Fortunately, the book doesn’t end on this dark note. Candeias’s overall message is hopeful. When we learn to understand, appreciate, and care about plants, we will want to do everything we can to protect and restore them. With any luck, after reading this book, you too will want to offer your time, energy, and resources in defense of plants.

Listen to Matt talk about his new book on this episode of his podcast.

More Book Reviews on Awkward Botany

When Urban Pollinator Gardens Meet Native Plant Communities

Public concern about the state of bees and other pollinating insects has led to increased interest in pollinator gardens. Planting a pollinator garden is often promoted as an excellent way for the average person to help protect pollinators. And it is! However, as with anything in life, there can be downsides.

In many urban areas, populations of native plants remain on undeveloped or abandoned land, in parks or reserves, or simply as part of the developed landscape. Urban areas may also share borders with natural areas, the edges of which are particularly prone to invasions by non-native plants. Due to human activity and habitat fragmentation, many native plant populations are now threatened. Urban areas are home to the last remaining populations of some of these plants.

Concern for native plant populations in and around urban areas prompted researchers at University of Pittsburgh to review some of the impacts that urban pollinator gardens may have and to develop a “roadmap for research” going forward. Their report was published earlier this year in New Phytologist.

Planting a wildflower seed mix is a simple way to establish a pollinator garden, and such mixes are sold commercially for this purpose. Governmental and non-governmental organizations also issue recommendations for wildflower, pollinator, or meadow seed mixes. With this in mind, the researchers selected 30 seed mixes “targeted for urban settings in the northeastern or mid-Atlantic USA” to determine what species are being recommended for or commonly planted in pollinator gardens in this region. They also developed a “species impact index” to assess “the likelihood a species would impact remnant wild urban plant populations.”

A total of 230 species were represented in the 30 seed mixes. The researchers selected the 45 most common species for evaluation. Most of these species (75%) have generalized pollination systems, suggesting that there is potential for sharing pollinators with remnant native plants. Two-thirds of the species had native ranges that overlapped with the targeted region; however, the remaining one-third originated from Europe or western North America. The native species all had “generalized pollination systems, strong dispersal and colonization ability, and broad environmental tolerances,” all traits that could have “high impacts” either directly or indirectly on remnant native plants. Other species were found to have either high dispersal ability but low chance of survival or low dispersal ability but high chance of survival.

This led the researchers to conclude that “the majority of planted wildflower species have a high potential to interact with native species via pollinators but also have the ability to disperse and survive outside of the garden.” Sharing pollinators is especially likely due to super-generalists like the honeybee, which “utilizes flowers from many habitat types.” Considering this, the researchers outlined “four pollinator-mediated interactions that can affect remnant native plants and their communities,” including how these interactions can be exacerbated when wildflower species escape gardens and invade remnant plant communities.

photo credit: wikimedia commons

The first interaction involves the quantity of pollinator visits. The concern is that native plants may be “outcompeted for pollinators” due to the “dense, high-resource displays” of pollinator gardens. Whether pollinator visits will increase or decrease depends on many things, including the location of the gardens and their proximity to native plant communities. Pollinator sharing between the two has been observed; however, “the consequences of this for effective pollination of natives are not yet understood.”

The second interaction involves the quality of pollinator visits. Because pollinators are shared between native plant communities and pollinator gardens, there is a risk that the pollen from one species will be transferred to another species. High quantities of this “heterospecific pollen” can result in reduced seed production. “Low-quality pollination in terms of heterospecific pollen from wildflower plantings may be especially detrimental for wild remnant species.”

The third interaction involves gene flow between pollinator gardens and native plant communities. Pollen that is transferred from closely related species (or even individuals of the same species but from a different location) can have undesired consequences. In some cases, it can increase genetic variation and help address problems associated with inbreeding depression. In other cases, it can introduce traits that are detrimental to native plant populations, particularly traits that disrupt adaptations that are beneficial to surviving in urban environments, like seed dispersal and flowering time. Whether gene flow between the two groups will be positive or negative is difficult to predict, and “the likelihood of genetic extinction versus genetic rescue will depend on remnant population size, genetic diversity, and degree of urban adaptation relative to the planted wildflowers.”

The fourth interaction involves pathogen transmission via shared pollinators. “Both bacterial and viral pathogens can be transmitted via pollen, and bacterial pathogens can be passed from one pollinator to another.” In this way, pollinators can act as “hubs for pathogen exchange,” which is especially concerning when the diseases being transmitted are ones for which the native plants have not adapted defenses.

photo credit: wikimedia commons

All of these interactions become more direct once wildflowers escape gardens and establish themselves among the native plants. And because the species in wildflower seed mixes are selected for their tolerance of urban conditions, “they may be particularly strong competitors with wild remnant populations,” outcompeting them for space and resources. On the other hand, the authors note that, depending on the species, they may also “provide biotic resistance to more noxious invaders.”

All of these interactions require further investigation. In their conclusion, the authors affirm, “While there is a clear potential for positive effects of urban wildflower plantings on remnant plant biodiversity, there is also a strong likelihood for unintended consequences.” They then suggest future research topics that will help us answer many of these questions. In the meantime, pollinator gardens should not be discouraged, but the plants (and their origins) should be carefully considered. One place to start is with wildflower seed mixes, which can be ‘fine-tuned’ so that they benefit our urban pollinators as well as our remnant native plants. Read more about plant selection for pollinators here.

Concluding the Summer of Weeds

“Most weeds suffer from a bad rap. Quite a few of the weeds in your garden are probably edible or even medicinal. Some invasive plants, including horsetail and nettle, are rich in minerals and can be harvested and used as fertilizer teas. Weeds with deep taproots, such as dandelions, cultivate the soil and pull minerals up to the surface. … Weeds are nature’s way to cover bare soil. After all, weeds prevent erosion by holding soil and minerals in place. Get to know the weeds in your area so you can put them to use for rather than against you.” — Gayla Trail, You Grow Girl

Great Piece of Turf by Albrecht Dürer (photo credit: wikimedia commons)

With summer drawing to a close, it is time to conclude the Summer of Weeds. That does not mean that my interest in weeds has waned, or that posts about weeds will cease. Quite the opposite, actually. I am just as fascinated, if not more so, with the topic of weeds as I was when this whole thing started. So, for better or worse, I will much have more to say on the subject.

In fact, I am writing a book. It is something I have been considering doing for a long time now. With so many of my thoughts focused on weeds lately, it is becoming easier to envision just what a book about weeds might look like. I want to tell the story of weeds from many different angles, highlighting both their positive and negative aspects. There is much we can learn from weeds, and not just how best to eliminate them. Regardless of how you feel about weeds, I hope that by learning their story we can all become better connected with the natural world, and perhaps more appreciative of things we casually dismiss as useless, less quick to jump to conclusions or render harsh judgments about things we don’t fully understand, and more inclined to investigate more deeply the stories about nature near and far.

Of course, I can’t do this all by myself. I will need your help. If you or someone you know works for or against weeds in any capacity, please put us in touch. I am interested in talking to weed scientists, invasive species biologists, agriculturists and horticulturists, edible weed enthusiasts, plant taxonomists, natural historians, urban ecologists, gardeners of all skill levels, and anyone else who has a strong opinion about or history of working with weeds. Please get in touch with me in one of several ways: contact page, Facebook, Twitter, Tumblr, or by commenting below.

Another way you can help is by answering the following poll. If there is more than one topic you feel particularly passionate about, feel free to answer the poll as many times as you would like; just wait 24 hours between each response. Thank you for your help! And I hope you have enjoyed the Summer of Weeds.

Quick Guide to the Summer of Weeds:

Rare and Endangered Plants: Texas Wild Rice

Some plants have native ranges that are so condensed that a single major disturbance has the potential to wipe them out of existence completely. They are significantly more vulnerable to change than neighboring plant species, and for this reason they often find themselves on endangered species lists. Zizania texana is one of those plants. Its range was never large to begin with, and due to increased human activity it now finds itself on the brink of extinction.

Zizania texana is one of three species of wild rice found in North America. The other two, Z. palustris and Z. aquatica, enjoy much broader ranges. Both of these species were once commonly harvested and eaten by humans. Today, Z. palustris is the most commercially available of the two. Commonly known as Texas wild rice, Z. texana, was not recognized as distinct from the other two Zizania species until 1932.

Herbarium voucher of Texas wild rice (Zizania texana) - photo credit: University of Texas Herbarium

Herbarium voucher of Texas wild rice (Zizania texana) – photo credit: University of Texas Herbarium

Texas wild rice is restricted to the headwaters of the San Marcos River in Central Texas. The river originates from a spring that rises from the Edwards Aquifer. It is a mere 75 miles long, but is home to copious amounts of wildlife, including several rare and endangered species. Before the 1960’s, Texas wild rice was an abundant species found along several miles of the San Marcos River. Its population and range has since been greatly reduced, and the native population is now limited to about 1200 square meters within the first two miles of the river.

Texas wild rice is an aquatic grass with long, broad leaves that remains submerged in the clear, flowing, spring-fed water of the river until it is ready to flower. Flower heads rise above the water, and each flower spike consists of either male or female flowers. The flowers are wind pollinated, but research has revealed that the pollen does not travel far and does not remain viable for very long. If a male flower is further than about 30 inches away from a female flower, the pollen generally fails to reach the stigma. The plants also reproduce asexually by tillering, but plants produced this way are genetically identical to the parent plant.

As people settled in the area around San Marcos Springs and began altering the river for their own use, Texas wild rice had to put up with a series of assaults and dramatic changes, including increased sediment and nutrient loads, variations in water depth and speed, trampling, and mechanical and chemical removal of the plant itself. Sexual reproduction became more difficult. In his book, Enduring Seeds, Gary Paul Nabhan describes one scenario: “streamflow had been increased to the extent that the seedheads, which were formerly raised a yard above the water, [were] now constantly being pummeled by the current so that they [remained] submerged, incapable of sexual reproduction.”

San Marcos, Texas – where the headwaters of the San Marcos River is located and where Texas wild rice has long called its home – is the location of Texas State University and is part of the Greater Austin metropolitan area. Thus, Zizania texana now finds itself confined to a highly urbanized location. The San Marcos Springs and River are regularly used for recreation, which leads to increased sediments, pollution, and trampling. Introduced plant species compete with Texas wild rice, and introduced waterfowl and aquatic rodents consume it. In this new reality, sexual reproduction will remain a major challenge, and a return to its original population size seems veritably impossible.

Texas wild rice (Zizania texana) and its urbanized habitat - photo credit: The Edwards Aquifer

Texas wild rice (Zizania texana) and its urbanized habitat – photo credit: The Edwards Aquifer

Attempts have and are being made to maintain the species in cultivation and to reintroduce it to its original locations, but its habitat has been so drastically altered that it will need constant management and attention for such efforts to be successful. As Nabham puts it, it is a species that has “little left of [its] former self in the wild – it is a surviving species in name more than in behavior…The wildness has been squeezed out of Texas rice.”

What if humans had stayed out of it? Would a plant with such a limited range and such difficulty reproducing sexually persist for any great length of time? It’s hard to say. If it disappears completely, what consequences will there be? It is known to provide habitat for the fountain darter, an endangered species of fish, as well as several other organisms; however, the full extent of its ecological role remains unclear. It will be nursed along by humans for the foreseeable future, but it may never regain its full glory. It is a species teetering on the edge of extinction, simultaneously threatened and cared for by humans – a story shared by so many other species around the world.

Additional Resources:

The Discovery of a Living Fossil

In the early 1940’s, the genus Metasequoia was only known scientifically in fossil form. It had, in its day, been a widespread genus, found commonly in many areas across the Northern Hemisphere. It thrived among the dinosaurs. However, sometime during the Pliocene, the genus was thought to have died out. Thousands of fossils were left behind, and that would have been the end of the story had a member of its genus not been discovered still alive in a Chinese province later that decade. Its discovery is easily one of the greatest botanical stories of the 20th century, fascinating in its own right. The circumstances surrounding its scientific description, as it turns out, are equally interesting.

In the January 2016 issue of Landscape Architecture Magazine, Kyna Rubin details the event in an article entitled The Metasequoia Mystery. It’s the type of story that you almost need a crazy wall to sort out. A broad cast of characters interacted at various levels in order to make this profound discovery during a tumultuous time when the world was at war and China was being invaded by Japan.

Speaking of Japan, let’s start there. In 1941, Japanese paleobotanist, Shigeru Miki, published research describing fossils that for decades were thought to be either Sequoia or Taxodium as a new genus, Metasequoia. As Rubin points out, due to the war, “not every Chinese botanist would have had access to recent international research, let alone articles by botanists of an enemy country.” This could explain why in 1943 when Zhan Wang – a professer of forestry at Beijing University and the forest administrator for the Ministry of Agriculture and Forestry – was introduced to a living Metasequoia by an old classmate and local villagers in the Hubei Province, he wasn’t sure what he was looking at.

The tree was obviously important to the local people. They called it shuisa (water fir) and had built a shrine around it. Wang collected several branches and some cones that had fallen on a rooftop. At the time he identified it as Glyptostrobus pensilis (water pine), a tree common to the area; but he may have wondered if this was correct.

Eventually Wang’s samples and the details of his collection were brought to the attention of Wanjun Zheng, a dendrologist at the National Central University. Intrigued, Zheng sent his graduate student, Jiru Xue, to collect more samples from the same tree that Wang had encountered. These samples were more complete, and when they were presented to Xiansu Hu – the director of Fan Memorial Institute of Biology in Beijing – the mystery was solved. Hu had access to Miki’s research and concluded that what they had was a living fossil.

In 1948, Hu and Zheng published a paper describing the species and giving it the official name, Metasequoia glyptostroboides. The discovery ignited the botanical community as well as the general public, and soon seeds of what became commonly known as dawn redwood were being disseminated across the globe. Unfortunately, Wang’s contribution was not mentioned in the original paper, and the exact account of the discovery became convoluted.

photo credit: wikimedia commons

Dawn redwood (Metasequoia glytostroboides) is a deciduous, medium to large tree. Its cones are round and about 1 inch long. Its leaves are oppositely arranged and have a feather-like appearance. Its bark is fibrous, stringy, and red-brown to gray in color.  (photo credit: wikimedia commons)

At some point, a discussion between Zheng and a forester named Duo Gan (also known as Toh Kan) revealed that Gan had come across the tree in 1941, but he did not make any collections. Despite Zheng learning of Gan’s encounter after Zheng and Hu’s original paper had been published, Gan’s story became prominent, further obscuring the role that Wang played.

It’s important to note that none of Wang’s original collections were used as the type specimen – the particular specimen of an organism to which the scientific name is formally attached and is referred to in the scientific literature. The type specimen was collected by Xue. This is not uncommon, as initial collections may not always be in the best condition and may not include all the parts and pieces necessary to identify and describe a new species. But, as Rubin notes, “it was Wang’s specimens [that Zheng and others] had first examined and those specimens brought the tree to their attention to begin with.” So Wang’s contribution is an important part of the story.

Thanks to Wang’s former students, his role in the discovery has received greater exposure. Jinshuang Ma in particular has made it his mission to highlight the part that Wang played in the event. Apart from maintaining a website all about Metasequoia, Ma also spent several years searching for a lost herbarium specimen collected by Wang, which he found in an abandoned herbarium in Nanjing. You can read about his find in this article from the August 2003 issue of the journal Taxon. (Ma’s well researched summary of the events surrounding the Metasequoia discovery is also worth reading.)

Failure to acknowledge Wang’s contribution (at least initially) perhaps didn’t make waves outside of China, but in Rubin’s words, “the omission of Wang’s contribution sparked immediate hullabaloo inside China’s botanical circles in the late 1940’s.” Power and class differences likely played a big role. Hu and Zheng were established scholars that had received their educations in the United States and France respectively. Wang was young, from a remote village, and had not studied abroad. While Wang “went on to become one of China’s most distinguished forestry experts and botanists,” he was early in his career at the time of the Metasequoia discovery.

A deep respect for the elders in his field may be the reason that Wang’s students claim that he “never complained” about his treatment. His students go on to say that Wang “was not interested in personal gain,” and instead was simply satisfied to see that Metasequoia “was now growing successfully all over the world and was better protected.” It is listed as endangered on the IUCN Red List and would likely be extinct in its shrunken native range had awareness of its existence not come about when it did.

Fossil of Metasequoia occidentalis - photo credit: wikimedia commons

Fossil of Metasequoia occidentalis – photo credit: wikimedia commons

There are plenty of other interesting details to this story. Read the full article and check out the links on metasequoia.org to learn more. The account of Jiru Xue (also known as Hsueh Chi-Ju), the graduate student who collected the type specimens, is particularly interesting. Suprisingly, the tree Wang and Xue took their collections from is still alive today and is estimated to be over 400 years old.

Other longform article reviews on Awkward Botany:

Year of Pollination: Mosquitoes as Pollinators

It is difficult to have positive feelings about mosquitoes, especially during summer months when they are out in droves and our exposed skin – soft, supple, and largely hair-free – is irresistible to them. We are viewed as walking blood meals by female mosquitoes who are simply trying to produce young – to perpetuate their species just like any other species endeavors to do. Unfortunately, we are left with small, annoying bumps in our skin – red, itchy, and painful – risking the possibility that the mosquitoes that just drew our blood may have passed along any number of mosquito-borne diseases, some (such as malaria) that potentially kill millions of people every year. For this, it is okay to hate mosquitoes and to long for the day of their complete eradication from the planet. However, their ecological roles (and yes, they do have some) are also worth considering.

There are more than 3,500 species of mosquito. Luckily, only 200 or so consume human blood. Mosquitoes go back at least 100 million years and have co-evolved with species of plants and animals found in diverse habitats around the world. Adult mosquitoes and their larvae (which live in standing water) provide food for a wide variety of creatures including birds, bats, insects, spiders, fish, frogs, lizards, and salamanders. Mosquito larvae also help break down organic matter in the bodies of water they inhabit. They even play an important role in the food webs found inside the pitchers of northern pitcher plants (Sarracenia spp.). Interestingly enough, Arctic mosquitoes influence the migration patterns of caribou. They emerge in swarms so big and so voracious that they have been said to kill caribou through either blood loss or asphyxiation.

However, blood is not the main food source of mosquitoes; flower nectar is. Males don’t consume blood at all, and females only consume it when they are producing eggs. Any insect that visits flowers for nectar has the potential to unwittingly collect pollen and transfer it to a nearby flower, thereby aiding in pollination. Mosquitoes are no exception. They have been observed acting as pollinators for a handful of species, and could be acting as pollinators for many more.

Bluntleaved orchid (Platanthera obtusata) is pollinated by mosquitoes. phot credit: wikimedia commons

Bluntleaved orchid (Platanthera obtusata) is pollinated by mosquitoes. photo credit: wikimedia commons

The scientific literature describes the pollination by mosquitoes of at least two plant species: Platanthera obtusata (syn. Habenaria obtusata) and Silene otites. P. obtusata – bluntleaved orchid – is found in cold, wet regions in North America and northern Eurasia. It is pollinated by mosquitoes from multiple genera including several species in the genus Aedes. Mosquitoes visit the flowers to feed on the nectar and, subsequently, pollinia (clusters of pollen) become attached to their eyes and are moved from flower to flower. This scenario likely plays out in other species of Arctic orchids as well*.

S. otites – Spanish catchfly – is a European species that is pollinated by mosquitoes and moths. Researches have been studying the floral odors of S. otites that attract mosquitoes, suggesting that determining the compounds involved in these odors “might lead to the development of new means of pest control and mosquito attractants and repellents.”

Northern House Mosquito (Culex pipiens) - one of the species of mosquitoes that has been observed pollinating Silene otitis. photo credit: www.eol.org

Northern House Mosquito (Culex pipiens) – one of the species of mosquitoes that has been observed pollinating Silene otites. photo credit: www.eol.org

Despite the list of functions that mosquitoes serve in their varied habitats, an article that appeared in Nature back in 2010 argues for wiping mosquitoes off the Earth, stating that “the ecological scar left by a missing mosquito would heal quickly as the niche was filled by other organisms.” And even though “thousands of plant species would lose a group of pollinators,” mosquitoes are not important pollinators of the “crops on which humans depend,” nor do they appear to be the sole pollinator of any single plant species [the species mentioned above are pollinated by other insects as well]. Eliminating mosquitoes, however, is more of a pipe dream than a realistic possibility as our “best efforts can’t seriously threaten an insect with few redeeming features.”

*Speaking of orchids and pollination, endless posts could be written about this incredibly fascinating and diverse group of plants and their equally fascinating and complex mechanisms surrounding pollination. There will be more to come on such topics. Meanwhile, it should be noted that orchids are also a notoriously threatened group of plants. To learn more about orchids and orchid conservation in North America, visit North American Orchid Conservation Center.

Read more about mosquito pollination here.

And now for your listening pleasure: