Awkward Botany on Outdoor Idaho (plus Send Us Your Questions)

I spend a lot time on this blog putting weeds in the spotlight, celebrating them for their successes and the unique and interesting plants they are. It’s rare that I get to share these sentiments outside of this particular venue, but I was given such an opportunity recently when asked to talk about weeds for an episode of Outdoor Idaho, a long running show on Idaho Public Television that covers Idaho’s natural history. The theme of this particular episode is wildflowers, so I was intrigued by the idea of coming on to discuss urban weeds. For many, the term “wildflowers” may invoke native plants blooming in natural areas in places far removed from the hustle and bustle of the city. But a wildflower doesn’t have to be a native plant, nor does it have to be growing in the wild. Any plant occurring naturally on its own without the assistance of humans can be a wildflower, and that includes our wild urban flora. I appreciated the chance to share this particular thought with the viewers of Outdoor Idaho.

photo credit: Jay Krajic

Along with me waxing on about weeds, the Wildflowers episode features a host of other Idahoans sharing their thoughts, expertise, and experiences with wildflowers. The episode is brief – coming in at under 30 minutes – but the producers packed in a ton of great wildflower content, and overall I found it to be an excellent representation of the flora of Idaho and a convincing argument for why we should appreciate and elevate these plants. The flora of any region is special and important in its own right, and Idaho’s flora is no different, including its weeds.

Check out Outdoor Idaho’s Wildfowers episode here.

In other news…

If you want to see more of me on the screen (and I’m not sure why you would), Sierra (a.k.a. Idaho Plant Doctor) and I are doing monthly Q&A videos in which we answer your questions about plants, gardening, pests and diseases, insects, or any other topic you might be curious about. You can tune in to those discussions on Sierra’s instagram. If you have questions of your own that you would like us to address, please leave them in the comments section below, or send them to me via the contact page or my instagram.

Advertisement

Introducing Weeds of Boise

Weeds are the wild flora of our cities. Their occurrence and continued existence is not directly reliant on humans in the same way that the plants in our yards, parks, gardens, and other green spaces are. They may take advantage of the disturbance that we cause when we stir up the soil or cease maintenance in a particular spot, and they certainly appreciate the runoff from our sprinklers and the free rides their seeds get on our pets and ourselves, but they don’t need us looking after them to survive. They get by on their own whether we approve of them or not. Most may not be native to the area, but their presence is natural – undirected and involuntary – and for this reason I consider them to be a valid component of our urban flora.

If you visit a natural area outside of our cities, you are likely to find a field guide associated with that region that will help you identify many of the plants found there. However, such a field guide is not likely to exist for the plants found in a vacant lot or an urban roadside near you. Sure, there are plenty of general weed identification guides, some of which may be specific to where you live, but they are often focused on agricultural/horticultural weeds or weeds found in natural areas outside of the built environment. Few show weeds in an unmaintained urban setting the way that Peter Del Tredici’s book or Maggie Herskovits’ zine do. Clearly we need more resources that identify and document our urban floras.

Weeds of Boise is an attempt to begin that process for my corner of the world. After coming across websites like The Weedalouge (cataloging the wild plants of Philadelphia), Weeds of Melbourne (“a visual glossary of the weedy heritage of Melbourne, Australia”), and Spontaneous Urban Plants (an attempt to map weeds in urban areas around globe), I decided to start the process here in Boise, Idaho. My goal is to select locations across the city and inventory the weeds found there at different times of the year. I will keep a running list of what I find and photograph as many plants as I can. I will make a separate blog post for each location and maintain a link for each post in the Weeds of Boise page. The blog posts will be updated as I collect more data for each site. Over time I hope to have a more clear picture of what weeds are found here and how they are distributed.

Because many of these plants are cosmopolitan, the weeds found in my area are likely similar to the ones found in yours, but there may be some unique differences. If more projects like this are undertaken, we will have a better idea of the similarities and differences among our urban floras. Upon closer observation, we are likely to make some interesting discoveries. Who knows what we might find once we really start looking at these obnoxiously ubiquitous but otherwise completely ignored plants?

Weeds of Boise is also a reminder that you can botanize anytime anywhere. You don’t have to jet off to some remote location to see plants. It’s likely that there are wild plants growing right outside your front door – each one with a unique name and story and just as worth getting to know as any other.

2019: Year in Review

It’s the start of a new decade and the beginning of another year of Awkward Botany. As we’ve done in years prior, it’s time to look back at what we’ve been up to this past year and look forward to what’s coming in the year ahead. Thank you for sticking with us as we head into our eighth year exploring and celebrating the world of plants.

The most exciting news of 2019 (as far as Awkward Botany is concerned) is the release of the first issue of our new zine, Dispersal Stories. It’s a compilation of (updated) writing that originally appeared on Awkward Botany about seeds and seed dispersal and is the start of what I hope will be a larger project exploring the ways in which plants get around. Look forward to the second issue coming to a mailbox near you sometime in 2020.

Also new to our Etsy Shop is a sticker reminding us to always be botanizing, including while riding a bike. Stay safe out there, but also take a look at all the plants while you’re cruising around on your bike or some other human-powered, wheeled vehicle. Whether you’re in a natural area or out on the streets in an urban or rural setting, there are nearly always plants around worth getting to know.

This year we also started a Ko-fi page, which gives readers another avenue to follow us and support what we do. Check us out there if Ko-fi is your thing.

Buy Me a Coffee at ko-fi.com

We also still have our donorbox page for those who would like to support us monetarily. As always you can stay in touch with us by liking and following our various social media accounts (Facebook, Twitter, Tumblr, and our currently inactive, but that could change at any moment Instagram). Sharing is caring, so please be sure to tell your friends about Awkward Botany in whatever way you choose. We are always thrilled when you do.

Below are 2019 posts that are part of new and ongoing series. You can access all other posts via the Archives widget. 2019 saw a significant drop in guest posts, so if you’d like to submit a post for consideration, please visit our Contact page and let me know what you’d like to write about. Guest writers don’t receive much in return but my praise and adulation, but if that sounds like reward enough to you, then writing something for Awkward Botany might just be your thing. And while we’re on the topic of guest posts, check out this post I wrote recently for Wisconsin Fast Plants.

Happy Reading and Plant Hunting in 2020!

Inside of a Seed & Seed Oddities:

Podcast Review:

Poisonous Plants:

Tiny Plants:

Eating Weeds:

Using Weeds:

Drought Tolerant Plants:

Tea Time:

Field Trip:

Awkward Botanical Sketches:

Guest Posts:

Year of Pollination: Stamen Movement in the Flowers of Prickly Pears

Last week I made an effort to convince you to add a prickly pear or two to your water-wise gardens. One standout reason to do this is their strikingly beautiful flowers. Apart from being lovely to look at, many prickly pear flowers have a distinct feature that makes them quite fascinating. A demonstration of this feature can be seen in the following video.

 

Stamen movement in response to touch is a characteristic of many species in the genus Opuntia. It isn’t exclusive to Opuntia, however, and can also be seen in Berberis vulgaris, Portulaca grandiflora, Talinum patens, among others. Knowing this makes me want to touch the stamens of any flower I can find just to see what will happen.

The response of stamens to touch has been known for at least a few centuries, but recent research is helping us gain a better understanding of how and why this phenomenon occurs. In general, this movement is thought to assist in the process of cross-pollination. In some cases it may also aid in self-pollination. Additionally, it can have the effect of protecting pollen and nectar from “robbers” (insects that visit flowers to consume these resources but that do not provide a pollination service). Quite a bit of research has been done on this topic, so to simplify things I will be focusing on a paper published in a 2013 issue of the journal, Flora.

In their paper entitled, Intriguing thigmonastic (sensitive) stamens in the plains prickly pear, Cota-Sanchez, et al. studied the flowers of numerous Opuntia polyacantha individuals found in three populations south of Saskatoon, Saskatchewan, Canada. Their objective was to “build basic knowledge about this rather unique staminal movement in plants and its putative role in pollination.” They did this by conducting two separate studies. The first involved observing flower phenology and flower visitors and determining whether the staminal movement is a nasty (movement in a set direction independent of the external stimulus) or a tropism (movement in the direction of the external stimulus). The second involved using high-powered microscopes to analyze the morphology of the stamens to determine any anatomical traits involved in this movement. While the results of the second study are interesting, for the purposes of this post I have chosen to focus only on the findings of the first study.

An important note about the flowers of O. polyacantha is that they are generally protandrous, meaning that the anthers of a single flower release pollen before the stigmas of that same flower are receptive. This encourages cross-pollination. An individual flower is only in bloom for about 12 hours (sometimes as long as 30 hours), however flowering doesn’t occur all at once. The plants in this study flowered for several weeks (from the second week of June to the middle of July).

To determine whether the staminal movement is a nasty or a tropism, the researchers observed insects visiting the flowers. They also manually stimulated the stamens with various objects including small twigs, pencils, and fingers, touching either the inner sides of the filaments (facing the style) or the outer sides (facing the petals). In every observation, the stamens moved in the same direction, “inwards and towards the central part of the flower.” This “consistent unidirectional movement, independent of the area stimulated” led the researchers to categorize the staminal movement of O. polyacantha as thigmonastic. They also observed that staminal movement slowed as the blooming period of an individual flower was coming to an end – “and finally when all the anthers had dehisced, the anthers rested in a clustered position, marking the end of anthesis.” Furthermore, it was observed that “filaments move relatively faster in sunny, warm conditions as opposed to cloudy, cold and rainy days.”

The researchers went on to discuss unique features of the stamens of O. polyacantha. Specifically, the lower anthers contain significantly more pollen than the upper anthers. When the stamens are stimulated, their movement towards the center of the flower results in the lower anthers becoming hidden below the upper anthers. They also noted that small insects less than 5 millimeters in size did not trigger stamen movement. Further observations of the insect vistors helped explain these phenomena.

SAMSUNG

A “broad diversity of insects” was observed visiting the flowers, from a variety of bees (bumblebees, honeybees, sweat bees, and mining bees) to bee flies, beetles, and ants. The large bees  were determined to be the effective pollinators of this species of prickly pear. Their large weight and size allows them to push down through the upper anthers to the more pollen-abundant anthers below. After feeding on pollen and nectar, they climb out from the stamens and up to the stigma where they take off, leaving the flower and depositing pollen as they go. Because the bees are visiting numerous flowers in a single flight and the flowers they visit are protandrous, pollen can be transferred from one flower to another and self-pollination can be avoided.

Beetles were observed to be the most common visitors to the flowers; however, they were not seen making contact with the stigma and instead simply fed on pollen and left. Ants also commonly visit the flowers but largely remain outside of the petals, feeding from “extranuptial nectaries.” In short, beetles and ants are not recognized as reliable pollinators of this plant.

Similar results involving two other Opuntia species were found by Clemens Schlindwein and Dieter Wittmann. You can read about their study here.

There are lots of flower anatomy terms in this post. Refresh your memory by visiting another Awkward Botany post: 14 Botanical Terms for Flower Anatomy.

Recently I received a note from a reader requesting that I include a link to subscribe to this blog’s RSS Feed. I have now made that available, and it can be found at the top of the sidebar.