Summer of Weeds: Lambsquarters

Since we seem to be on the topic of edible weeds we may as well discuss lambsquarters, another frequently present and commonly eaten, nutritious and versitile weed. Botanically known as Chenopodium album, it is a member of the family Amaranthaceae and therefore related to several common (and uncommon) agricultural crops, including spinach (Spinacia oleracea), beets (Beta vulgaris), Swiss chard (also Beta vulgaris), amaranth (Amaranthus spp.), and red orach (Atriplex hortensis). Chenopodium, a genus consisting of 100 plus species, is also cultivated in various parts of the world for its edible leaves, stems, and seeds. Chenopodium quinoa, commonly known as quinoa, is now a popular “grain” in North America after being grown for millenia by Andean cultures.

Chenopodium album is a summer annual that reaches up to 6 feet tall with sturdy, angular stems and triangular, diamond-shaped, or lance-shaped leaves with irregularly toothed margins. The leaves are green on top and mealy gray-white on bottom. The flowers are tiny, petal-less, and organized in tight clusters at the ends of branches. In Botany In a Day, Thomas Elpel describes the flowers as “little green ‘globs’ forming along an upright stalk, sometimes colored with specks of yellow.” They are generally wind-pollinated, but are occassionally visited by pollinating insects. Each plant can produce tens of thousands of seeds, which are potentially viable for up to 40 years.

Inflorescence of lambsquarters (Chenopodium album)

Lambsquartes is one of many common names for C. album (others include goosefoot, fat hen, baconweed, mealweed, frostblite, and wild spinach), and is a name with several proposed origins. Is it because the plant is commonly found growing in the manure-rich soils of barnyards? Or is it because the fuzzy undersides of the leaves are reminiscent of sheep’s wool? Perhaps it is because per weight, the harvested plants and a quarter of lamb contain roughly the same amount of protein? Who knows? Despite all this talk of sheep, however, large quantities of lambsquarters are reported to be poisonous to both sheep and pigs.

Though lambsquarters prefers nutrient-rich soils, it tolerates a wide variety of soil types, including dry, compacted, urban soil. It is drawn to all sorts of disturbed sites and is particularly abundant in gardens, agricultuaral fields, and roadsides. It readily hybridizes with other Chenopodium species, including the North American native C. berlandieri. In The Book of Field and Roadside, John Eastman calls it “one of the wold’s most abundant and noxious weeds,” because “it competes with some 40 crops [and] is especially invasive in tomato, potato, sugar beet, soybean, and corn fields.”

Eastman goes on to hint at lambsquarters’ potential for phytoremediation: “The plant accumulates high levels of nitrates and pesticides in addition to its oxalic acid content.” It also takes up heavy metals, including zinc, copper, and lead. This phenomenon is worth a future post, so stay tuned.

Leaf of lambsquarters (Chenopodium album)

That being said, when harvested from a non-polluted site, lambsquarters is a very nutritious spinach-like green both raw and cooked. Younger leaves and plants are preferred because older ones tend to be higher in oxalic acid. The seeds are also edible and, like quinoa, can be used in a similar manner as common grain and cereal crops. Harvester ants and various bird species also collect and consume the seeds. The roots of lambsquarters are high in saponin and can be used to make soap.

There are many reasons to be impressed with Chenopodium album, including its ability to tolerate drougt and frost, its adaptability to all types of soil, its highly nutritious plant parts (but also potentially toxic due to accumalation of pollutants and oxalic acid), and its competitive and persistent nature. Ehrenfried Pfeiffer, author of Weeds and What They Tell, was in awe of this “most enduring annual weed” and its goosefoot family relatives, writing: “We have the feeling that the goosefoot was destined to play a better role than to become an obnoxious weed. They follow closely man’s steps, showing their inclination to be domesticated. Probably future plant breeders may develop new cultivated varieties out of this family long after our present cultivated plants have degenerated, for it is their extreme vitality and preserverence to grow that makes the goosefoot family so interesting.”

Pfeiffer’s predictions haven’t quite come to pass, but time will tell.

More lambsquarters flowers


According to an article posted on LiveScience, lambsquarters is one of “The Five Healthiest Backyard Weeds.” The list includes two other weeds we have covered during the Summer of Weeds: Purslane and Plantain.

Using Wild Relatives to Improve Crop Plants

This is the thirteenth in a series of posts reviewing the 17 articles found in the October 2014 Special Issue of American Journal of Botany, Speaking of Food: Connecting Basic and Applied Science.

Back to the Wilds: Tapping Evolutionary Adaptations for Resilient Crops through Systematic Hybridization with Crop Wild Relatives by Emily Warschefsky, Varma Penmetsa, Douglas R. Cook, and Eric J. B. von Wettberg

The nature of domestication involves the narrowing of genetic diversity through a series of crosses and selections that results in organisms well suited for particular environments and/or purposes. In the short term, this arrangement seems to suit our needs, that is until the climate shifts, novel pests and diseases invade, agricultural soils become degraded, or some other calamity ensues. Then we must select a new form to take the place of the old one that is no longer suitable. Additionally, the varieties currently in use may be doing well within their current parameters, but their performance may be found lacking if placed in different environments or grown in alternate systems, such as one that relies on fewer petrochemical inputs.

The wild relatives of crop plants have a long history of being used in breeding programs to provide specific traits for improving domesticated varieties. Interest in this has increased thanks to technological advancements (such as marker-assisted selection and genomic selection) and the greater availability of germplasm. Introgression (the transfer of genes from one species to another through hybridization and repeated backcrossing) using crop wild relatives has mainly been aimed at introducing traits like resistance to specific pests and diseases, tolerance of certain abiotic stresses, and greater yields. In other words, crop wild relatives are typically screened for a few main traits that might be useful in breeding programs, neglecting the possibility that the introgression of a larger suite of traits may be beneficial long-term.

This article discusses the possibility of using “crop wild relative collections that [have been] systematically built to represent the range of adaptations found in natural populations” to improve crop plants. By using these “purpose-built populations that are hybrids between crops and their wild relatives,” crop plants introgressed with “full sets of wild diversity” will be better adapted to a wide variety of environments, soils, climates, and agricultural systems. In order to “illustrate the gains that are possible,” the authors review published studies of hybridization (both naturally occurring and human mediated). They then “propose a multi-step framework for utilizing naturally occurring variation in wild relatives of crops.”

Grapefruit (Citrus x paradisi) - A hybrid between sweet orange (Citrus sinensis) and shaddock (Citrus maxima) that "occurred far beyond the region of domestication and rather recently [the 18th centruy]." (photo credit: wikimedia commons)

Grapefruit (Citrus x paradisi) – A hybrid between sweet orange (C. sinensis) and shaddock (C. maxima) that “occurred far beyond the region of domestication and rather recently [the 18th century].” (photo credit: wikimedia commons)

Hybridization can occur between two individuals of different cultivars, varieties, subspecies, species, genera, etc. The genetics of the resulting offspring is a combination of the two parents, and depending on the circumstances, a hybridization event “can have drastically different consequences.” For this reason, “hybridization is thought of as both a creative and a restrictive force in evolution.” It is, however, “the potential for the production of novelty that makes hybridization such an intriguing – and potentially useful – phenomenon.”

In their discussion of hybridization between crops and their wild relatives, the authors reveal some “obstacles that limit the use of wild relatives in breeding programs.”

  • Poor Agronomic Performance – “Crop wild relatives often lack important domestication traits.” They may have shattering pods, irregular germination timing, or phenologies that inhibit their use in certain regions.
  • Poor Representation in Germplasm Collections – “Only 2-6% of international germplasm collections are of crop wild relatives.” There are some crop wild relatives that are well-represented, but others have been “poorly collected” or “almost ignored,” and some crops still “lack well-identified wild relatives.” One reason for this disparity is that a large number of these plants “occur in geopolitically unstable areas where collection has long been complicated.”
  • Unpredictability of Phenotypes – “Phenotypes of wild individuals are often assessed in agricultural settings, a largely uninformative practice when the overall wild phenotype is specifically adapted for fitness in the wild but not cultivated settings.” This makes for an inaccurate comparison with domesticated varieties, so when “crop-wild hybrids” are formed, phenotypes are hard to predict. Backcrossing is necessary in order to recover the “essential crop phenotype” while capturing the desired traits of the wild relative.

The authors also highlight the need for conservation of crop wild relatives, as “these species are nearly universally threatened.” The catalog of threats to their survival is similar to so many other threatened species: the loss, fragmentation, and degradation of habitats, climate change, invasive species, and over-harvesting (“in the case of medicinally and pharmaceutically useful species”). One threat, perhaps ironically, is agricultural crops crossing with nearby wild relatives, especially where transgenic genes in crops are being transferred to wild populations. In order to better realize the potential that crop wild relatives have in improving domesticated varieties, they must first be protected in their natural habitats.

Desert sunflower (Helianthus deserticola) - One of three hybrid species born of H. annuus and H. petiolaris, "highlighting the expanded potential of hybrid species...through colonization of extreme habitats where neither parental species can survive." (photo credit:

Desert sunflower (Helianthus deserticola) – One of three hybrid species born of H. annuus and H. petiolaris, “highlighting the expanded potential of hybrid species…through colonization of extreme habitats where neither parental species can survive.” (photo credit:

The authors propose a 5 step plan for systematic utilization of crop wild relatives in agricultural breeding programs. The steps include building a comprehensive collection of crop wild relatives, sequencing their genomes, creating purpose-driven hybrid populations between wild relatives and crop plants, developing a predictive network of genotype-phenotype associations, and deploying identified phenotypes into crop breeding efforts. This article is one of the open access articles in this issue. If you are interested in this topic, including this 5 step plan, I encourage you to read the article to learn more. 

Tales of Weedy Waterhemp and Weedy Rice

This is the eighth in a series of posts reviewing the 17 articles found in the October 2014 Special Issue of American Journal of Botany, Speaking of Food: Connecting Basic and Applied Science.

Population Genetics and Origin of the Native North American Agricultural Weed Waterhemp (Amaranthus tuberculatus; Amarantheaceae) by Katherine E. Waselkov and Kenneth M. Olsen

Weeds are “the single greatest threat to agricultural productivity worldwide, costing an estimated $33 billion per year in the United States alone.” Understanding the origins, population structures, and genetic compositions of agricultural weeds will not only help us better mitigate current weed problems but may also help prevent the development of future weed species.

In the introduction, the authors present three modes of weed origination: 1. De-domestication (“domesticated species becoming feral”) 2. Hybridization of domesticated species with related wild species 3. Expansion of wild plants into agricultural ecosystems “through plasticity, adaptation, or exaptation [a shift in function of a particular trait].” In this study, the authors focused on the third mode – the wild-to-weed pathway – claiming that it receives “less attention by evolutionary biologists, even though all weeds without close crop relatives must have followed this pathway to agricultural invasion, and even though this type of weed species is the most common.”  Due to the dearth of research, there are several questions yet to be fully addressed: Does invasion require evolutionary changes in the plant and/or changes in agricultural practices? What is more common, single or multiple wild sources? What are the morphological, physiological, and ecological traits that might “predispose a wild species to expand into agricultural habitats?”

To help answer these questions, the authors turned to waterhemp (Amaranthus tuberculatus), a weed that, since first invading agricultural land in the 1950’s, has “become a major problem for corn and soybean farmers in Missouri, Iowa, and Illinois.” Waterhemp is native to the midwestern United States, where it can be found growing along riverbanks and in floodplains. It is a small seeded, dioecious (“obligately outcrossing”), wind-pollinated, annual plant with fruits that can be either dehiscent or indehiscent. Herbicide resistance has been detected in A. tuberculatus for at least six classes of herbicides, making it a difficult weed to control.

There is evidence that A. tuberculatus was previously in the process of diverging into two species, an eastern one and a western one, geographically separated by the Mississippi River. However, “human disturbance brought the taxa back into contact, and possibly gave rise to the agriculturally invasive strain through admixture.” Using population genetic data, the authors set out to determine if the present-day species would show evidence of a past divergence in progress prior to the 20th century. They also hypothesized that “the agricultural weed originated through hybridization between the two diverged lineages.”

Waterhemp, Amaranthus tuberculatus (photo credit:

Waterhemp, Amaranthus tuberculatus (photo credit:

After genotyping 38 populations from across the species range, the authors confirmed that A. tuberculatus was indeed diverging into two species. Today, the western variety (var. rudis) has expanded eastward into the territory of the eastern variety (var. tuberculatus), extending as far as Indiana. Its expansion appears to be facilitated by becoming an agricultural weed. Data did not confirm the hypothesis that the weedy strain was a hybridized version of the two varieties, but instead mainly consists of the western variety, suggesting that “admixture is not a pre-requisite for weediness in A. tuberculatus.”

Further investigation revealed that the western variety may have already been “genetically and phenotypically suited to agricultural environments,” and thus did not require “genetic changes to be successful” as an agricultural weed. “Finer-scale geographic sampling” and deeper genetic analyses may help determine whatever genetic basis there might be for this unfortunate situation.

The Evolution of Flowering Strategies in US Weedy Rice by Carrie S. Thurber, Michael Reagon, Kenneth M. Olsen, Yulin Jia, and Ana L. Caicedo

This paper looks at an agricultural weed that originated from the de-domestication of a crop plant (one of the three modes of weed origination stated above). A weed that belongs to the same species as the crop it invades is referred to as a conspecific weed, and weedy rice is “one of the most devastating conspecific weeds in the United States.”  Oryza sativa is the main species of rice cultivated in the US, and most varieties are from the group tropical japonica. The two main varieties of weedy rice are straw hull (SH) and black-hull awned (BHA), which originated from cultivated varieties in the groups indica and aus respectively. Because weedy rice is so closely related to cultivated rice, it is incredibly difficult to manage, and there is concern that cross-pollination will result in the movement of traits between groups. For this reason, the authors of this study investigated flowering times of each group in order to assess the “extent to which flowering time differed between these groups” and to determine “whether genes affecting flowering time variation in rice could play a role in the evolution of weedy rice in the US.”

Rice, Oryza sativa (illustration credit: wikimedia commons)

Rice, Oryza sativa (illustration credit: wikimedia commons)

Crop plants have typically been selected for “uniformity in flowering time to facilitate harvesting.” The flowering time of weed species helps determine their effectiveness in competing with crop plants. Flowering earlier than crop plants results in weed seeds dispersing before harvest, “thereby escaping into the seed bank.” Flowering simultaneously with crop plants can “decrease conspicuousness, and seed may be unwittingly collected and replanted” along with crop seeds. Simultaneous flowering of weeds and crops is of special concern when the two are closely related since there is potential for gene transfer, especially when the crop varieties are herbicide resistant as can be the case with rice (“60-65% of cultivated rice in [the southern US] is reported to be herbicide resistant”).

For this study, researchers observed phenotypes and gene regions of a broad collection of Oryza, including cultivated varieties, weed species, and ancestors of weed and cultivated species. They found that “SH weeds tend to flower significantly earlier than the local tropical japonica crop, while BHA weeds tend to flower concurrently or later than the crop.” When the weeds were compared with their cultivated progenitors, it was apparent that both weed varieties had “undergone rapid evolution,” with SH weeds flowering earlier and BHA weeds flowering later than their respective relatives. These findings were consistent with analyses of gene regions which found functional Hd1 alleles in SH weeds (resulting in day length sensitivity and early flowering under short-day conditions) and non-functional Hd1 alleles in BHA weeds (“consistent with loss of day-length sensitivity and later flowering under short-day conditions”). However, the authors determined that there is more to investigate concerning the genetic basis of the evolution of flowering time in weedy rice.

In light of these results, hybridization is of little concern between cultivated rice and SH weeds. BHA weeds, on the other hand, “have a greater probability of hybridization with the crop based on flowering time and Hd1 haplotype.” The authors “predict that hybrids between weedy and cultivated rice are likely to be increasingly seen in US rice fields,” which, considering the current level of herbicide resistant rice in cultivation, is quite disconcerting.

Your Food Is a Polyploid

This is the seventh in a series of posts reviewing the 17 articles found in the October 2014 Special Issue of American Journal of Botany, Speaking of Food: Connecting Basic and Applied Science.

Doubling Down on Genomes: Polyploidy and Crop Plants by Simon Renny-Byfield and Jonathan F. Wendel

This is another fascinating but dense article about genetics. The major theme, as the title suggests, is polyploidy and its role in crop domestication and future crop improvements – a sub-theme being that by studying polyploidy in crop plants, we can gain insights into polyploidy generally as it relates to non-crop plants. Polyploidy – or whole genome duplication – is “where an organism possesses more than a diploid complement of chromosomes.” Typically, chromosomes come in sets of two, one set from each parent. Organisms with this type of an arrangement are called diploids. Polyploids are organisms with more than two sets of chromosomes. In general terms, this can occur as a result of two species hybridizing (interspecific hybridization), which is called allopolyploidy, or it can occur as a result of spontaneous genome doubling in a single species, which is called autopolyploidy. This article deals mainly with allopolyploid as polyploidy in crop plants is largely a result of hybridization.

Much of what we know about polyploidy has been discovered relatively recently during what is referred to as the “genomics era.” Traditionally, identifying polyploids was done by examining the number of chromosomes in a cell. Today, technological advances such as next generation sequencing have brought new insights into polyploidy and allowed us to identify evidence of it in organisms that cannot be observed simply by counting chromosomes. Plants that are now considered diploids went through periods of whole genome duplication in the distant past; however, due to genome downsizing and other events, they present themselves as diploids. This historical polyploidy is called paleopolyploidy. Evidence now suggests that all seed plants and flowering plants (angiosperms) are “rightly considered to have a paleopolyploidy ancestry.”

As I did with past articles that were very genetics heavy, I will use the bullet point method to list some of the main things that I learned from the article rather than offering a full review. As with any article that I review, my goal is to present the information in a digestible manner for as wide of an audience as possible without misrepresenting or oversimplifying the science and the research. This seems to be one of the main struggles faced by all who write about science for a general audience – a topic to be explored another time, perhaps.

  • The recent discovery that the genomes of all seed plants and angiosperms have “experienced multiple rounds of whole genome duplication” is “one of the most significant realizations to emerge from the genomics era.” In the past decade, “the ubiquity and scope of whole genome duplication has truly come to light,” and we no longer need to ask, “Is this species a polyploid?,” but rather “how many rounds of whole genome duplication occurred in the ancestral lineage of this taxon, and when was the most recent polyploidy?”
  • Recently formed polyploids are not stable and experience a period of “genomic shock.” They must “overcome an initial fitness cost associated with genomic [deviations].” These “large-scale perturbations [events that alter the function of a biological system] have the potential to add novel genetic material to the genome, potentially useful in the context of domestication and selection.”
  • Plants that appear to be diploids are actually paleopolyploids that have undergone a process called diploidization “in which the genome of a polyploidy is pruned, often by poorly understood mechanisms, such that it returns to a diploid-like condition.” Over time, duplicated genes are removed, DNA is eliminated, chromosome numbers decrease, etc. The organism then presents itself as a diploid, however traces of its polyploidy past remain detectable.
  • It has long been understood that hybrids can exhibit what is known as hybrid vigor (or heterosis) wherein they express traits that are superior to their parents, such as faster growth and higher yields. This is the reason plant breeders make such crosses. Debate continues concerning the “precise causes of heterosis.” Current research is focused on the epigenetic variability that is “induced by hybridization and polyploidy.” Epigenetics, which concerns variation that is not a result of alterations to DNA, is an emerging field that can be advanced through the study of polyploidy. Additionally, “the utilization of epigenetic diversity within crop species will provide a novel avenue for crop improvement in the coming years.”
  • While polyploids have great potential to increase our understanding of genomics and greatly improve “targeted breeding efforts,” they are historically difficult to study mainly due to the large size of their genomes compared to diploids. “Larger genomes are more expensive to sequence and require greater computational finesse.” To date, “only a single example of a ‘complete’ polyploidy genome exists, that of autotetraploid potato.” The authors “anticipate that these methodological challenges will soon be overcome by advances in genome sequencing technologies,” and along with “other powerful approaches,” continued insights into polyploidy will be attained.
Upland cotton (Gossypium hirsutum) is the most widely cultivated species of cotton in the United States. It is an allopolyploid that produces fibers that are "considerably longer, stronger, and whiter than are possible to obtain from any diploid." (photo credit:

Upland cotton (Gossypium hirsutum) is the most widely cultivated species of cotton in the United States. It is an allopolyploid, and it produces fibers that are “considerably longer, stronger, and whiter than are possible to obtain from any diploid.” (photo credit: