Tufty’s Plight, or Saving the U.K.’s Red Squirrel

“There is the great blank area where no red squirrels have returned, and this is where the grey ones first spread and are now permanent inhabitants. Outside it there are plenty of red squirrel populations still, though they have fluctuated, often severely.” — Charles Elton, The Ecology of Invasions by Animals and Plants, 1958

Sciurus vulgaris, or the Eurasian red squirrel, is widespread throughout northern Europe and east into Siberia. It is a small squirrel with a chestnut top and a creamy underside that spends much of its time in the tops of trees. Its tail is large and fluffy, and its ears are adorned with prominent tufts of hair. It enjoys a broad range of foods from seeds, fruits, and leaves to fungi, insects, and birds’ eggs. It is beloved in the United Kingdom, where its survival is being threatened by a North American cousin. This cousin, now established in the U.K. for well over a century, looks to increase its range across Europe, with a growing population in Italy and the potential to spread to neighboring countries.

Eurasian red squirrel (Sciurus vulgaris) - photo credit: wikimedia commons

Eurasian red squirrel (Sciurus vulgaris) – photo credit: wikimedia commons

Sciurus carolinensis, or Eastern gray squirrel, is native to eastern North America but has been introduced to parts of western North America as well as other parts of the world, including the United Kingdom, Italy, South Africa, and Australia. Its fur is typically dark to pale gray with red tones. It prefers mature forests where food and shelter are abundant; however, it is a highly adaptable species and is common in urban areas and disturbed sites. It shares habitat requirements with the red squirrel, but has the advantages of being larger, stronger, and able to digest acorns.

Gray squirrels were first introduced to the U.K. in 1876. Wealthy collectors were enchanted by them and began releasing them on their estates. The first pair made it to Ireland in 1911. Around this time biologists were becoming concerned by how quickly they were spreading as well as the damage they were doing to young trees and the effect they seemed to be having on red squirrel populations. The U.K. Parliament responded in 1937 by banning the possession and introduction of gray squirrels. In an article published in Science in June 2016, Erik Stokstad writes about this “troubling phenomenon: where gray squirrels established colonies, red squirrels sooner or later vanished.” The current population of red squirrels in the U.K. is estimated at around 140,000, while gray squirrels are thought to number more than 2.5 million.

Why red squirrels vanish when grey squirrels are present is not entirely understood. Competition for food is one factor. Grey squirrels seem to have an advantage over red squirrels in mixed deciduous forests, and according to Schuchert, et al. (Biological Invasions, 2014), after colonization by gray squirrels, red squirrels can become restricted to coniferous forests, which are “less favored by grey squirrels.”

But direct competition alone doesn’t explain the plummeting numbers of reds in the presence of grays. Another explanation was identified in 1981 – grey squirrels were spreading a disease. Several years of experimentation confirmed that red squirrels were dying of squirrelpox – a parapoxvirus that gray squirrels carry but show little or no sign of infection. The virus can spread quickly through a population of red squirrels, leaving them lethargic, malnourished, and an easy target for predators. Stokstad writes, “red squirrels are defenseless…as [they] succumb, gray squirrels quickly take over the habitat.

But not all grey squirrels carry the virus, and there are some regions where the virus isn’t a major problem. Habitat loss and fragmentation due to human development also plays a role in the red squirrel’s decline. Add to that, grey squirrels may be more inclined to live among humans, giving them an advantage over the more reclusive reds.

Efforts have been underway for decades now to reduce, and even eliminate, gray squirrels in the U.K. Tens of thousands of grey squirrels have already been trapped and killed, yet they continue to dominate. Schuchert et al. write, “while culling may decrease grey squirrel population size in the short term, their high dispersal abilities makes re-colonization likely.” Funding for culling programs isn’t always available, and protests from animal rights groups like Animal Aide U.K. and Animal Ethics also have an impact. One area that culling has proved successful is Anglesey, an island off the coast of Wales, where the red squirrel population had once been reduced to just 40 individuals. Schuchert et al. analyzed culling data over a 13 year period and determined that trapping and killing efforts “resulted in the sustained and significant reduction of an established grey squirrel population at a regional landscape scale.”

Eastern gray squirrel (Sciurus carolinensis) - photo credit: wikimedia commons

Eastern gray squirrel (Sciurus carolinensis) – photo credit: wikimedia commons

Red squirrels may also be experiencing some relief thanks to another threatened mammal. Martes martes, or the European pine marten, is a member of the weasel family and, as Stokstad writes, “a cat-sized predator [that] was nearly exterminated in the 20th century.” Hunting, both for fur and pest control, and habitat loss reduced pine marten numbers dramatically until it received legal protection in 1988. Since then it has started to rebound, particularly in Scotland and Ireland. Anecdotes suggested that pine marten recovery in these areas was resulting in fewer gray squirrels. A study published in Biodiversity and Conservation in March 2014 confirmed that gray squirrel populations in Ireland were at “unusually low density,” and that the increasing numbers of pine martens played a role in that. Gray squirrels move slower and spend more time on the ground compared to red squirrels, making them easier prey for pine martens.

Efforts are now underway to introduce pine martens to other parts of the U.K. where gray squirrel populations are problematic. However, according to Stokstad, “red squirrel advocates worry that the pine marten could be a false hope, promising a free and uncontroversial solution that could threaten funds for culling.”

Let’s remember that the gray squirrel was deliberately introduced to the United Kingdom by humans, and that human activity is one of the main reasons for the grey squirrel’s explosion and the red squirrel’s retreat. Culling is not likely to ever eliminate gray squirrels completely, yet no one wants to see red squirrels go extinct. Altered landscapes can favor certain species over others, so ensuring that there is plenty of favorable habitat available for the red squirrel is one way to aid its survival. The grays may be there to stay, but let’s hope a compromise can be found so generations to come can benefit from sharing space with the red squirrel (and perhaps the gray squirrel,too).

Tufty Fluffytail, a character developed to help teach kids road safety in the U.K., saves Willy Weasel from getting run over (again).

Red Squirrel Conservation Groups:

Book Review: The New Wild

What if we were to look at invasive species with fresh eyes? Traditionally we have viewed them as interlopers hellbent on environmental destruction, but have we considered the good they can do? Should our efforts to eradicate them be tempered – eliminating them when it seems absolutely necessary, but accepting them when they are doing some good; welcoming them when they have something to offer. What does their presence mean anyway? What does it say about the ecosystems they inhabit and about us? Invasive species are convenient scapegoats, taking the blame for much of the ecological devastation that we started in the first place. Is that justified?

This is, essentially, the theme of The New Wild, a book by Fred Pearce that urges us to reconsider the ways we think, talk, and act towards invasive species. More than that, it is about dumping the idea that pristine nature (a mythological concept anyway, and one that is not all that useful) is the only true wild, and that nature invaded by alien species is a lesser thing that needs to be fixed. The truth is, nature is and always has been in a constant state of flux, and it is unconcerned about the provenance of the species that compose it. As Pearce puts it, if it’s doing “a useful job,” “it matters not a jot where a species comes from.”

6174zgpakrl-_sx326_bo1204203200_

Invasion biology is a relatively new field of study, stemming from the publishing of Charles Elton’s book, The Ecology of Invasions by Animals and Plants, in 1958. For thousands of years, humans have had a hand in moving species of all kinds around the planet, but it was in the latter half of the 20th century that our awareness of the ecological damage that some of these species can do really developed. Since then we have made great efforts to remove such species and put things back the way we found them. The zeal with which we have done so hasn’t always been justified or effective, and throughout what at times has felt like an all out war against foreigners, a profound sense of animosity and suspicion towards anything non-native has taken root in our psyche.

Pearce hopes to mitigate these feelings and get us to reconsider some of our actions. To start with, he calls into question the distinction between aliens and natives: “A broad time horizon shows there is no such thing as a native species. All lodgings are temporary and all ecosystems in a constant flux, the victims of circumstance and geological accident.” Also, “many aliens are so well integrated that they are assumed to be native,” and “species come and go so much, as a result of both human and natural forces, that conventional hard distinctions about what belongs where have long been all but meaningless.”

Instead of judging a species by its provenance, “we should treat species on their merits and learn a little tolerance and respect for foreigners.” While “being alien can sometimes be problematic,” it can equally result in the renewal of “flagging ecosystems, creating new space for natives and providing ecosystem services.” Seeing that those services are in place is what should really matter, and “[ecological services] are best done by the species on hand that do it best.” After all, nature is not a system of “preordained perfection,” but instead “a workable mishmash of species, constantly reorganized by the throw of the dice.”

In his criticisms of the field of invasion biology, Pearce investigates some of the “constantly recycled ‘facts’ about alien species.” He finds many of the claims to be unfounded and oft-repeated statistics to be blatant misrepresentations of the original studies. He concludes that “some of the most widely used statistics in the canon of invasion biology do not stand up.” To support his point, he offers several examples of how alien species have added to the biodiversity in certain ecosystems and he shares stories that “show how we instinctively blame aliens for ecological problems that may have a lot more to do with our own treatment of nature.”

Immigrant Killers by Carolyn King, one of many books making a case for the war on alien species.

Immigrant Killers by Carolyn King, one of many books published in the past few decades that makes the case for waging war on alien species.

In so many words, Pearce’s stance is that the classic “aliens are bad, and natives are good” approach is outdated – “nature doesn’t care about conservationists’ artificial divide between urban and rural or between native and alien species,” which means that our perception of aliens should shift from being “part of the problem to part of the solution.” Abandoned farmlands, secondary forests, recolonized waste places, urban sprawl, and other novel ecosystems across the globe offer explicit examples of species from all backgrounds coming together to create functional habitats. This is the new wild.

Pearce is not advocating that we throw in the towel and let invasive species run rampant: “It would be foolish to claim that alien species never do any harm or that efforts to uproot them are always doomed to fail.” His support for the new wild is “not a call to let it rip.” Instead, “conservation in the twenty-first century requires an open-minded assessment of what might work – not a sullen retreat into blinkered orthodoxy.” So, rather than try to stop the flux of nature (an act that is decidedly “anti-nature”), let’s see where it goes, alien species and all; and when we do decide to beat back invasives and intervene “to preserve what we like,” we should be mindful that nature may be “traveling in a different direction.” As Pearce writes, “the new wild is flourishing, and it will do better if we allow it to have its head.”

———————

Obviously this is a controversial topic, but the ideas in this book are worth exploring further. Pearce’s notes are extensive, and I intend to read through many of his resources. Stay tuned for more posts. Meanwhile, you can listen to an interview with Pearce on this episode of Talking Plants. For a more critical veiw of Pearce’s book, check out these reviews by Los Angeles Review of Books and The EEB & Flow.

 

What Do Desert Tortoises Eat?

Desert conditions are not intuitively conducive to life. In many regards they are extreme. Blistering, bleak, dry, and barren. The desert is a place unsuited for the faint of heart and the ill-equipped. Broadly speaking, life in the desert is reliant on one of two things: technology or evolutionary adaptation. Like many species native to desert environments, the desert tortoise employs the latter. It is at home in the desert because it evolved there. That is not to say that life is always easy for the desert tortoise and species like it, but it is possible, thanks to hundreds of thousands of years of making it work. As John Alcock puts it in, Sonoran Desert Spring, “the tortoise will deal with its environment through evolved design rather than seek to deny the desert its due.”

Perhaps it is because the desert is such a harsh environment, requiring finely tuned adaptations for survival, that sweeping changes can put resident species in peril – threatening their long-term existence. The desert tortoise is an example of this. Since 1990, Gopherus agassizii has found itself listed as threatened under the U.S. Endangered Species Act [it is categorized as vulnerable by the IUCN] due to significant population declines and loss of habitat. Getting there did not happen overnight, and it is impossible to pinpoint a sole cause of the tortoise’s decline. Instead, a suite of things have conspired against it, making it difficult to decide on the best route towards conservation.

In an October 2012 issue of BioScience, Averill-Murray, et al. enumerate some of the human-medaited threats that act both simultaneously and synergistically against desert tortoise populations:

Habitat conversion occurs as a result of urban development, mining, waste disposal, energy development, and road construction. Habitat modification is caused by military training, off-highway vehicle use, utility corridors, livestock grazing, and the proliferation of invasive plants. … Direct losses of tortoises also occur through predation, disease, collection from the wild, and recreational killing.

Apart from climate change, which is projected to substantially reduce the historical range of the desert tortoise in the coming years, the proliferation of introduced grasses is particularly disconcerting. Such grasses tend to increase wildfire frequency in areas where wildfire is historically rare and the native flora is ill-adapted to frequent fire. This can alter plant communities in a way that favors introduced plants over plants native to the region.

Desert Tortoise (Gopherus agassizii) - photo credit: wikimedia commons

Desert Tortoise (Gopherus agassizii) – photo credit: wikimedia commons

The desert tortoise is the largest terrestrial turtle in the United States, measuring up to 15 inches long and weighing up to 15 pounds. Their carapaces are generally dull brown or gray, although those of young tortoises may have orange markings. Their limbs are stocky and elephantine, and their front legs are shovel-like and equipped with claws for digging. They reach sexual maturity between ages 15-20, generally living for at least 35 years and as many as 50-100 years.

Desert tortoises are distributed throughout the Mohave and Sonoran Deserts of southeastern United States and into the Sonaron Desert and Sinaloan foothills of northwestern Mexico. Their habitat varies widely across their range. In general, tortoises prefer sites where the soil is loamy and easy to dig as they spend much of their time in underground dens; however, they also occur in rocky foothills where shelter can be found among the rocks. In the Mohave Desert, they are commonly found in plant communities that are dominated by creosote bush (Larrea tridentata), which they use for shade and an occasional food source.

Creasote Bush (Larrea tridentata) - photo credit: wikimedia commons

Creosote Bush (Larrea tridentata) – photo credit: wikimedia commons

Recently the species known as Gopherus agassizii was determined to consist of at least two (possibly four) distinct species. Desert tortoises that occur north and west of the Colorado River have retained the scientific name G. agassizii and are commonly referred to as Agassiz’s desert tortoise. Desert tortoises occurring east of the Colorado river have been given the name G. morafkai, commonly known as Morafka’s desert tortoise. In light of this, G. agassizii may find itself uplisted to endangered, as its range has been reduced to about 30% of its former self and its southern cousins can no longer be considered a genetic reservoir.

Seeing that desert tortoises have plenty of the right foods to eat ensures their immediate survival and holds them back from the precipice of extinction. The question, “What does a desert tortoise eat?,” was what peaked my curiosity in this subject to begin with. I knew they were herbivores (for the most part), so I assumed they must have a favorite food – something that composed the majority of their diet. Finding an answer to this question led me down a rabbit hole [or should I say a tortoise hole? Some tortoise dens can extend 30 feet or more into the banks of desert dry washes.] that led me to discover the complexity of these creatures. It turns out, there is no easy answer to my initial question. What a desert tortoise eats depends on where in its expansive range it resides, what time of year it is, what plants are available in a particular year, whether or not it’s a drought year, etc.

The desert tortoise is “one of the most studied reptiles in the world,” so hundreds of observations have been made, leading to dozens of reports and studies that examine the diet of the desert tortoise; however, the results are highly variable. Due to such variability, this fact sheet from the San Diego Zoo states matter-of-factly, “an ‘average’ tortoise diet [is] hard to characterize.” But let’s try.

The desert tortoise emerges from its winter den in early spring. At the same time, annual wildflowers are also emerging, taking advantage of warming temperatures and rare soil moisture accumulated during winter precipitation. This is the desert tortoise’s preferred banquet. Because there will be little water available the rest of the year, desert tortoises hydrate themselves mainly through the plants they eat. The lush stems, leaves, and flowers of annual wildflowers provide both nutrients and the water necessary to sustain themselves throughout much of the year and aid in their growth and reproduction.

As spring turns to summer, the tortoises switch to eating herbaceous perennials and grasses. By this point, both introduced annual grasses and native perennial bunchgrasses are drying up, but tortoises are still able to extract some nutrients and moisture by eating their dry stems and leaves. Cactus pads and fruits (particularly those in the genus Opuntia) as well as young leaves of shrubs also help tortoises subsist through the long, hot summers, which are mostly spent deep in their dens away from predators and the blistering heat.

A paper published in a March 1986 issue of Herpetologica follows a group of tortoises over the period of a year and makes a number of lifestyle observations, including their diet. The authors noted that much of their diet consisted of two annual wildflowers (Camissonia munzii and Langloisia setosissima), a perennial bunchgrass (Achnatherum hymenoides), and a non-native annual grass (Bromus rubens). A paper published in a 2010 issue of Journal of Herpetology compared the nutritional quality of four plant species commonly consumed by desert tortoises: a native and non-native grass (Achnatherum hymenoides and Schismus barbatus) and a native and non-native annual forb (Malacothrix glabrata and Erodium cicutarium). They found little difference between the native and non-native species in either catagory, but determined that the forbs were significantly more nutritious than the grasses, which lead them to recommend managament practices that would increase the availability of forbs (regardless of provenance) in tortoise habitat. Numerous studies have documented the frequent consumption of introduced plant species by desert tortoises.

Redstem stork's bill (Erodium cicutarium) is an introduced species commonly consumed by desert tortoises - image credit: wikimedia commons

Redstem stork’s bill (Erodium cicutarium) is an introduced species commonly consumed by desert tortoises – image credit: wikimedia commons

For me, one of the most interesting things to learn was the variety of “non-food” items that tortoises may consume. Tortoises are often observed eating soil and rocks, and are also known to eat bones, arthropods, feces, feathers, hair, and egg shells. The rocks are thought to act as a gastrolith, aiding in digestion. The other items may help supplement minerals and nutrients the tortoises are lacking in their plant-based diet, particularly calcium which is greatly needed for growth and reproduction. Shockingly, a report that appeared in a 2007 issue of The Southern Naturalist details incidences of tortoises eating the skeletal remains of other tortoises.

Desert tortoises are an engrossing subject of study, and so much more could be said about them. For now, I leave you with this passage from Alcock’s book:

To see a tortoise with wrinkled neck and solemn eyes, moving like an animated rock, is an essential part of the experience of the desert. The removal of even a single adult extinguishes a presence that was meant to persist for years to come and snuffs out a prehistoric spark of life in a spartan environment where life, so hard-won, should be celebrated.

Additional Resources:

Rare and Endangered Plants: Texas Wild Rice

Some plants have native ranges that are so condensed that a single major disturbance has the potential to wipe them out of existence completely. They are significantly more vulnerable to change than neighboring plant species, and for this reason they often find themselves on endangered species lists. Zizania texana is one of those plants. Its range was never large to begin with, and due to increased human activity it now finds itself on the brink of extinction.

Zizania texana is one of three species of wild rice found in North America. The other two, Z. palustris and Z. aquatica, enjoy much broader ranges. Both of these species were once commonly harvested and eaten by humans. Today, Z. palustris is the most commercially available of the two. Commonly known as Texas wild rice, Z. texana, was not recognized as distinct from the other two Zizania species until 1932.

Herbarium voucher of Texas wild rice (Zizania texana) - photo credit: University of Texas Herbarium

Herbarium voucher of Texas wild rice (Zizania texana) – photo credit: University of Texas Herbarium

Texas wild rice is restricted to the headwaters of the San Marcos River in Central Texas. The river originates from a spring that rises from the Edwards Aquifer. It is a mere 75 miles long, but is home to copious amounts of wildlife, including several rare and endangered species. Before the 1960’s, Texas wild rice was an abundant species found along several miles of the San Marcos River. Its population and range has since been greatly reduced, and the native population is now limited to about 1200 square meters within the first two miles of the river.

Texas wild rice is an aquatic grass with long, broad leaves that remains submerged in the clear, flowing, spring-fed water of the river until it is ready to flower. Flower heads rise above the water, and each flower spike consists of either male or female flowers. The flowers are wind pollinated, but research has revealed that the pollen does not travel far and does not remain viable for very long. If a male flower is further than about 30 inches away from a female flower, the pollen generally fails to reach the stigma. The plants also reproduce asexually by tillering, but plants produced this way are genetically identical to the parent plant.

As people settled in the area around San Marcos Springs and began altering the river for their own use, Texas wild rice had to put up with a series of assaults and dramatic changes, including increased sediment and nutrient loads, variations in water depth and speed, trampling, and mechanical and chemical removal of the plant itself. Sexual reproduction became more difficult. In his book, Enduring Seeds, Gary Paul Nabhan describes one scenario: “streamflow had been increased to the extent that the seedheads, which were formerly raised a yard above the water, [were] now constantly being pummeled by the current so that they [remained] submerged, incapable of sexual reproduction.”

San Marcos, Texas – where the headwaters of the San Marcos River is located and where Texas wild rice has long called its home – is the location of Texas State University and is part of the Greater Austin metropolitan area. Thus, Zizania texana now finds itself confined to a highly urbanized location. The San Marcos Springs and River are regularly used for recreation, which leads to increased sediments, pollution, and trampling. Introduced plant species compete with Texas wild rice, and introduced waterfowl and aquatic rodents consume it. In this new reality, sexual reproduction will remain a major challenge, and a return to its original population size seems veritably impossible.

Texas wild rice (Zizania texana) and its urbanized habitat - photo credit: The Edwards Aquifer

Texas wild rice (Zizania texana) and its urbanized habitat – photo credit: The Edwards Aquifer

Attempts have and are being made to maintain the species in cultivation and to reintroduce it to its original locations, but its habitat has been so drastically altered that it will need constant management and attention for such efforts to be successful. As Nabham puts it, it is a species that has “little left of [its] former self in the wild – it is a surviving species in name more than in behavior…The wildness has been squeezed out of Texas rice.”

What if humans had stayed out of it? Would a plant with such a limited range and such difficulty reproducing sexually persist for any great length of time? It’s hard to say. If it disappears completely, what consequences will there be? It is known to provide habitat for the fountain darter, an endangered species of fish, as well as several other organisms; however, the full extent of its ecological role remains unclear. It will be nursed along by humans for the foreseeable future, but it may never regain its full glory. It is a species teetering on the edge of extinction, simultaneously threatened and cared for by humans – a story shared by so many other species around the world.

Additional Resources:

Happy American Wetlands Month!

To kick off this year’s American Wetlands Month, I am reposting something I posted three years ago. I have updated the links and added a few more resources. In celebration, all Awkward Botany posts in May will have something to do with wetlands. An underlying goal of American Wetlands Month is to encourage people to get out and visit wetlands in their area and find out what they can do to help conserve them. Hopefully this series of posts helps to further that aim.

———————

“May is American Wetlands Month! No matter where you live, chances are there’s a wetland nearby that provides important environmental benefits to your community. Wetlands support diverse fish and wildlife species, filter pollutants from rain water runoff, help recharge groundwater supplies, prevent flooding and enhance property values.” – Earth Gauge (A program of the National Environmental Education Foundation)

Wetlands are ecosystems that are characterized by their vegetation (aquatic plants), their soils (formed during anaerobic conditions caused by being flooded or saturated with standing water), and, of course, their state of being largely saturated with water either seasonally or permanently. Examples of natural wetlands include bogs, fens, marshes, and swamps. Wetlands can also be constructed by humans for the purpose of collecting storm water runoff from urban areas in efforts to reduce the risk of flooding and avoid overwhelming municipal sewer systems during large rainstorms.

Wetlands are the most threatened type of ecosystem on earth, and we are losing them at a steady clip. Major threats to wetlands include land development, pollution (agricultural, commercial, residential, etc.), and the introduction of invasive species. Considering the benefits we receive from having wetlands around, it is imperative that we protect them. Earth Gauge offers some suggestions on how to do so.

wetland benefits

Speaking of wetlands, one of my favorite wetland plant species is marsh marigold (Caltha palustris). It is in the buttercup family (Ranunculaceae) and is common throughout the Northern Hemisphere. I became familiar with this plant when I was volunteering at a wetland in Edwardsville, IL. Perhaps you’ve seen it growing near you.

Marsh Marigold (Caltha palustris) - Photo taken at Idaho Botanical Garden.

Marsh Marigold (Caltha palustris) – Photo taken at Idaho Botanical Garden.

Additional Resources

Biodiversity Dips When Japanese Rice Paddies Go Fallow

Large-scale farms that generally grow a single crop at a time and are managed conventionally are, by design, lacking in biodiversity. Abandoning such farms and allowing nature to take its course should, not surprisingly, result in a dramatic uptick in biodiversity. Plant colonization of abandoned farmland (also referred to as old field succession) is well studied and is regularly used as an example of secondary succession in ecology textbooks. The scenario seems obvious: cease agriculture operations, relinquish the land back to nature, and given enough time it will be transformed into a thriving natural community replete with diverse forms of plants and animals. This is an oversimplification, of course, and results will vary with each abandoned piece of land depending on the circumstances, but it generally seems to be the story. So what about when it isn’t?

Rice farming in Japan began at least 2400 years ago. Rice had been domesticated in China long before that, and when it eventually arrived in Japan it shaped the culture dramatically. For hundreds of years rice was farmed in small, terraced paddies in the mountains of Japan. Dennis Normile writes about these traditional, rice paddies in a recent issue of Science. He describes how they were found in villages “nestled in a forested valley” accompanied by vegetable plots, orchards, and pasture. Today, farms like these are “endangered,” and as they have become increasingly abandoned, plants, insects, and other wildlife that have historically thrived there are suffering.

Since the 1960’s, a combination of factors has resulted in the decline of traditional rice farming in Japan. For one, large scale farming has led to the consolidation of paddies, which are farmed more intensively. Diets in Japan have also shifted, resulting in a preference for bread and pasta over rice. Additionally, Japan’s population is shrinking, and residents of rural areas are migrating to cities. Traditional rice farmers are aging, and younger generations are showing little interest in pursuing this career.

Red rice paddy in Japan - photo credit: wikimedia commons

Red rice paddy in Japan – photo credit: wikimedia commons

Demographic and dietary concerns aside, why in this case is the abandonment of agriculture imperiling species? The answer appears to be in both the way that the rice paddies have been historically managed and the length of time that they have been managed that way. Agriculture, by its very nature, creates novel ecosystems, and if the practice continues long enough, surrounding flora and fauna could theoretically coevolve along with the practice. When the practice is discontinued, species that have come to rely on it become threatened.

Traditional rice paddies are, as Normile describes, “rimmed by banks so that they can be flooded and drained.” Farmers “encouraged wild grassland plants to grow on the banks because the roots stabilize the soil.” The banks are mowed at least twice a year, which helps keep woody shrubs and trees from establishing on the banks. In some areas, rice farming began where primitive people of Japan were burning frequently to encourage grassland habitat. Maintaining grassland species around rice paddies perpetuated the grassland habitat engineered by primitive cultures.

As rice paddies are abandoned and the surrounding grasslands are no longer maintained, invasive species like kudzu and a North American species of goldenrod have been moving in and dominating the landscape resulting in the decline of native plants and insects. Normile reports that the abandoned grasslands are not expected to return to native forests either since “surrounding forests…are a shadow of their old selves.”

Additionally, like most other parts of the world, Japan has lost much of its natural wetland habitat to development. Rice paddies provide habitat for wetland bird species. On paddies that have been abandoned or consolidated, researchers are finding fewer wetland bird species compared to paddies that are managed traditionally.

The gray-faced buzzard (Butastur indicus) is listed as vulnerable in Japan. It nests in forests and preys on insects, frogs, and other animals found in grasslands and rice paddies. It's decline has been linked to the abandonment and development of traditionally farmed rice paddies. (photo credit: wikimedia commons)

The gray-faced buzzard (Butastur indicus) is listed as vulnerable in Japan. It nests in forests and preys on insects, frogs, and other animals found in grasslands and rice paddies. Its decline has been linked to the abandonment and development of traditionally farmed rice paddies. (photo credit: wikimedia commons)

All of this adds fodder to an ongoing debate: “whether allowing farmland to revert to nature is a boon to biodiversity or actually harms it.” Where agriculture is a relatively new practice or where conventional practices dominate, abandoning agriculture would be expected to preserve and promote biodiversity. However, where certain agricultural practices have persisted for millenia, abandoning agriculture or converting  to modern day practices could result in endangerment and even extinction of some species. In the latter case, “rewilding” would require thoughtful consideration.

The thing that fascinates me the most about this report is just how intertwined humans are in the ecology of this planet. In many ways humans have done great harm to our environment and to the myriad other species that share it. We are a force to be reckoned with. Yet, the popular view that we are separate, above, apart, or even dominant over nature is an absurd one. For someone who cares deeply about the environment, this view has too often been accompanied by a sort of self-flagellation, cursing myself and my species for what we have done and continue to do to our home planet. Stories like this, however, offer an alternative perspective.

Humans are components of the natural world. We evolved just like every other living thing here, and so our actions as well as the actions of other species have helped shape the way the world looks. If our species had met its demise early in its evolutionary trajectory, the world would look very different. But we persisted, and as it turns out, despite the destruction we have caused and the species we have eliminated, we have simultaneously played a role in the evolution and persistence of many other species as well. We must learn to tread lightly – for the sake of our own species as well as others – but we should also quit considering ourselves “other than” nature, and we should stop beating ourselves up for our collective “mistakes.” It seems that when we come to recognize how connected we are to nature we will have greater motivation to protect it.

Additional Resources:

Attract Pollinators, Grow More Food

It seems obvious to say that on farms that rely on insect pollinators for crops to set fruit, having more pollinators around can lead to higher yields. Beyond that, there are questions to consider. How many pollinators and which ones? To what extent can yields be increased? How does the size and location of the farm come into play? Etc. Thanks to a recent study, one that Science News appropriately referred to as “massive,” some of these questions are being addressed, offering compelling evidence that yields grow dramatically simply by increasing and diversifying pollinator populations.

It is also stating the obvious to say that some farms are more productive than others. The difference between a high yield farm and a low yield farm in a given crop system is referred to as a yield gap. Yield gaps are the result of a combination of factors, including soil health, climate, water availability, and management. For crops that depend on insects for pollination, reduced numbers of pollinators can contribute to yield gaps. This five year study by Lucas A. Garibaldi, et al., pubished in a January 2016 issue of Science, involving 344 fields and 33 different crops on farms located in Africa, Asia, and Latin America demonstrates the importance of managing for pollinator abundance and diversity.

The study locations, which ranged from 0.1 hectare to 327.2 hecatares, were separated into large and small farms. Small farms were considered 2 ha and under. In the developing world, more than 2 billion people rely on farms of this size, and many of these farms have low yields. In this study, low yielding farms on average had yields that were a mere 47% of high yielding farms. Researchers wanted to know to what degree enhancing pollinator density and diversity could help increase yields and close this yield gap.

By performing coordinated experiments for five years on farms all over the world and by using a standardized sampling protocol, the researchers were able to determine that higher pollinator densities could close the yield gap on small farms by 24%. For larger farms, such yield increases were seen only when there was both higher pollinator density and diversity. Honeybees were found to be the dominant pollinator in larger fields, and having additional pollinator species present helped to enhance yields.

These results suggest that, as the authors state, “there are large opportunities to increase flower-visitor densities and yields” on low yielding farms to better match the levels of “the best farms.” Poor performing farms can be improved simply by managing for increased pollinator populations. The authors advise that such farms employ “a combination of practices,” such as “sowing flower strips and planting hedgerows, providing nesting resources, [practicing] more targeted use of pesticides, and/or [restoring] semi-natural and natural areas adjacent to crops.” The authors conclude that this case study offers evidence that “ecological intensification [improving agriculture by enhancing ecological functions and biodiversity] can create mutually beneficial scenarios between biodiversity and crop yields worldwide.”

photo credit: wikimedia commons

photo credit: wikimedia commons

A study like this, while aimed at improving crop yields in developing nations, should be viewed as evidence for the importance of protecting and strengthening pollinator populations throughout the world. Modern, industrial farms that plant monocultures from one edge of the field to the other and that include little or no natural area – or weedy, overgrown area for that matter – are helping to place pollinator populations in peril. In this study, after considering numerous covariables, the authors concluded that, “among all the variables we tested, flower-visitor density was the most important predictor of crop yield.”

Back to stating the obvious, if pollinators aren’t present yields decline, and as far as I’m aware, we don’t have a suitable replacement for what nature does best.

This study is available to read free of charge at ResearchGate. If you are interested in improving pollinator habitat in your neighborhood, check out these past Awkward Botany posts: Planting for Pollinators, Ground Nesting Bees in the Garden, and Hellstrip Pollinator Garden.