Highlights from the Western Society of Weed Science Annual Meeting

Earlier this month, I went to Garden Grove, California to attend the 71st annual meeting of the Western Society of Weed Science. My trip was funded by an Education and Enrichment Award presented by the Pahove Chapter of the Idaho Native Plant Society. It was a great opportunity for a weeds-obsessed plant geek like myself to hang out with a bunch of weed scientists and learn about their latest research. What follows are a few highlights and takeaways from the meeting.

General Session

Apart from opening remarks and news/business-y stuff, the general session featured two invited speakers: soil ecologist Lydia Jennings and historian David Marley. Lydia’s talk was titled “Land Acknowledgement and Indigenous Knowledge in Science.” She started by sharing a website called Native Land, which features an image of the Earth overlayed with known “borders” of indigenous territories. By entering your address, you can see a list of the tribes that historically used the land you now inhabit. It is important for us to consider the history of the land we currently live and work on. Lydia then compared aspects of western science and indigenous science, pointing out ways they differ as well as ways they can be used in tandem. By collaborating with tribal nations, weed scientists can benefit from traditional ecological knowledge. Such knowledge, which has historically gone largely unrecognized in the scientific community, should receive more attention and acknowledgement.

David Marley was the comic relief. Well-versed in the history of Disneyland, he humorously presented a series of stories involving its creation. Little of what he had to say related to weed science, which he openly admitted along the way; however, one weeds related story stood out. Due to a lack of funds, the early years of Tomorrowland featured few landscape plants. To make up for that, Walt Disney had signs with fake Latin names created for some of the weeds.

Weeds of Range and Natural Areas

I spent the last half of the first day in the “Weeds of Range and Natural Areas” session where I learned about herbicide ballistic technology (i.e. killing plants from a helicopter with a paintball gun loaded with herbicide). This is one of the ways that Miconia calvescens invasions in Hawaii are being addressed. I also learned about research involving plant debris left over after logging. When heavy amounts of debris are left in place, scotch broom (Cytisus scoparius) infestations are thwarted. There was also a talk about controlling escaped garden loosestrife (Lysimachia punctata) populations in the Seattle area, as well as a few talks about efforts to control annual grasses like cheatgrass (Bromus tectorum) in sagebrush steppes. Clearly there are lots of weed issues in natural areas, as that only covers about half the talks.

Basic Biology and Ecology

On the morning of the second day, the “Basic Biology and Ecology” session held a discussion about weeds and climate change. As climate changes, weeds will adapt and find new locations to invade. Perhaps some weeds won’t be as problematic in certain areas, but other species are sure to take their place. Understanding the changes that are afoot and the ways that weeds will respond to them is paramount to successful weed management. This means documenting the traits of every weed species, including variations between and among populations of each species, so that predictions can be made about their behavior. It also means anticipating new weed species and determining ways in which weeds might exploit new conditions.

No doubt there is much to learn in order to adequately manage weeds in a changing climate. An idea brought up during the discussion that I was particularly intrigued by was using citizen scientists to help gather data about weeds. Similar to other organizations that collect phenological data from the public on a variety of species, a website could be set up for citizen scientists to report information about weeds in their area, perhaps something like this project in New Zealand. Of course, there are already a series of apps available in North America for citizen scientists to report invasive species sightings, so it seems this is already happening to some degree.

Teaching and Technology Transfer

A highlight of the afternoon’s “Teaching and Technology Transfer” session was learning about the Wyoming Restoration Challenge hosted by University of Wyoming Extension. This was a three year long contest in which thirteen teams were given a quarter-acre plot dominated by cheatgrass with the challenge to restore the plant community to a more productive and diverse state. Each team developed and carried out their own strategy and in the end were judged on a series of criteria including cheatgrass and other weed control, plant diversity, forage production, education and outreach, and scalability. Preliminary results can be seen here; read more about the challenge here and here.

And so much more…

Because multiple sessions were held simultaneously, I was unable to attend every talk. I also had to leave early on the third day, so I missed those talks as well. However, I did get a chance to sit in on a discussion about an increasingly troubling topic, herbicide-resistant weeds, which included a summary of regional listening sessions that have been taking place in order to bring more attention to the subject and establish a dialog with those most affected by it.

One final highlight was getting to meet up with Heather Olsen and talk to her briefly about her work in updating the Noxious Weed Field Guide for Utah. This work was aided by the Invasive Plant Inventory and Early Detection Prioritization Tool, which is something I hope to explore further.

If you are at all interested in weeds of the western states, the Western Society of Weed Science is a group you should meet. They are fun and friendly people who really know their weeds.

See Also: Highlights from the Alaska Invasive Species Workshop 

Advertisement

2017: Year in Review

Awkward Botany turns 5 years old this month! 

In the five years since I first introduced myself I have had the pleasure of sharing my writing and photos with thousands of people. Together we have formed a tiny community of nature lovers, botany nerds, and phytocurious folks. It has been fun seeing the audience grow and our interactions increase. The World Wide Web is a crowded and chaotic place, and you can never be sure what will come of the pieces of you that you throw at it. Luckily, my little project has not gone completely unnoticed. The crowd that enjoys it may be small, but it is composed of a solid group of people. Thank you for being one of those people.

If you were following along in 2017, you are well aware that weeds and invasive species have been regular themes. Both of these topics are still obsessions of mine, so while I don’t have plans to continue to saturate the blog with such posts, I will still be writing about them. I’m actually working on a larger project involving weeds, which you can read more about here.

Speaking of which, I have threatened a couple of times now to interrupt my weekly posting schedule in order to make time for other projects. So far that hasn’t really happened, but this year I am fairly certain that it will. It’s the only way that I am going to be able get around to working on things I have been meaning to work on for years. There are also some new things in the works. I think these things will interest you, and I am excited to share them with you as they develop. Once you see them for yourself, I’m sure you’ll forgive the reduced posting schedule.

One thing I have resolved to do this year is learn to draw. I love botanical illustrations, and I have always been envious of the artistic abilities of others. My drawing skills are seriously lacking, but a little practice might help improve that. While it is bound to be a source of embarrassment for me, I have decided to post my progress along the way. So even if you have less to read here, you will at least get to check out some of my dumb drawings. Like this one:

Drawing of a dandelion with help from Illustration School: Let’s Draw Plants and Small Creatures by Sachiko Umoto

One of my favorite things this year has been Awkward Botany’s new Facebook page. With Sierra’s help, we have finally joined that world. Sierra has been managing the page and is the author of most of the posts, and she is doing an incredible job. So if you haven’t visited, liked, and followed, please do. And of course, the invitation still stands for the twitter and tumblr pages, as well.

Lastly, as I have done in the past I am including links to posts from 2017 that were part of ongoing series. These and all other posts can be found in the Archives widget on the right side of the screen. During the summer I did a long series about weeds called Summer of Weeds, the conclusion of which has a list of all the posts that were part of that series. Thank you again for reading and following along. Happy botanizing and nature walking in 2018. I hope you all have a plant filled year.

Book Reviews:

Podcast Review:

Poisonous Plants: 

Drought Tolerant Plants:

Field Trips:

Guest Posts:

Book Review: Rambunctious Garden

Last month in a post entitled Making the Case for Saving Species, I reviewed an article written by Emma Marris about doing all we can to prevent species from going extinct, even when the approach is not a popular one – like introducing rust resistant genes into native whitebark pine populations. Intrigued by Marris’ words, I decided to finally read her book, Rambunctious Garden: Saving Nature in a Post-Wild Word, which had been sitting on my bookshelf for several months and had been on my list of books to read for at least a couple of years before that. At only 171 pages, Marris’ book is a quick read and comes across as an introduction to some sort of revolution. Its brevity demands future volumes, which are hopefully on their way.

rambunctious garden

The general topic that Marris addresses is how to do conservation work in a world that is riddled with human fingerprints, especially coming from a perspective that human influence is and has been largely negative. What should our goals be? The traditional approach has been to restore natural areas to a historical baseline. In North America, that baseline is usually pre-European colonization. So, we remove introduced species and we use whatever records we have and data we can gather to make natural areas look and function as they did several hundred years ago.

But there are some concerns with this approach. Rewinding time requires massive amounts of money, labor, and time, and if that historical baseline is ever achieved, it will require great effort to keep it there. Also, a number of species have gone extinct and there is no way of replacing them (unless we introduce similar species as proxies), and some species require large areas to roam that even our most spacious parks cannot accommodate. And then there is the challenge of continual change. Anthropogenic climate change aside (which complicates conservation and restoration efforts in serious ways), the earth’s ecosystems are in a constant state of flux, so holding a site to a pre-determined baseline makes little sense when viewed from a geological timescale.

There is another issue – which is in part a semantic one – and that is, we seem to have a distorted view of nature. We like to think of it as being apart from us, away from us, somewhere wild and pristine. Marris writes: “We imagine a place, somewhere distant, wild and free, a place with no people and no roads and no fences and no power lines, untouched by humanity’s great grubby hands, unchanging except for the season’s turn. This dream of pristine wilderness haunts us. It blinds us.”

We are blinded because “pristine” is a myth. Every inch of the globe has been altered in some way by humans – some areas more than others – and disconnecting ourselves from nature in a way that makes it unattainable deters us from the perception that nature can be all around us. Nature is not found only in national parks, nature preserves, and other protected areas, but in our backyards, on our rooftops, along roadsides, in the cracks of concrete, and in farm fields. Nature is everywhere. And if nature is everywhere, then conservation can happen everywhere.

After a brief overview of how we (Americans specifically) arrived at our current approach to conservation and restoration, Marris dives into some new approaches, visiting sites around the world and talking with biologists and ecologists about their work.  She explores rewilding (Pleistocene rewilding even), assisted migration, embracing exotic species, novel ecosystems, and designer ecosystems. The subject matter of each chapter in Marris’ book is worthy of a post or two of its own, but I’ll spare you that and suggest that you read the book. The controversy that surrounds these novel approaches is also worth noting. A few searches and clicks on the internet will lead you to some fairly heated debates about the ideas that Marris puts forth in her book, as well as some criticisms of Marris herself.

Florida torreya (Torreya taxifolia) - a critically endangered tree species native to a tiny corner in the southeastern United States that is not likely to survive the coming decades in the wild without assisted migration.

Florida torreya (Torreya taxifolia) – a critically endangered tree species native to a tiny corner in the southeastern United States that is not likely to survive the coming decades in the wild without assisted migration. (photo credit: www.eol.org)

My view as an outsider – that is, one without a high level degree in ecology and lacking years of experience working in the field – is that the tools and methods outlined in Marris’ book are worth exploring further. Certainly, each natural area must be approached differently depending on the conditions of the site and the goals of the managers. [Marris offers a great overview of some goals to consider in her last chapter.] Ultimately it is up to people much smarter and more experienced than I to sort it all out. But I heartily encourage thinking outside of the box…for whatever it’s worth.

And that brings me to what I loved most about the book. Controversy aside, Marris’ clarion call for a paradigm shift is a welcome one. Nature is all around us, and regardless of what land managers and the powers that be decide to do with large tracts of land “out there,” every individual can find purpose and beauty in the nature that surrounds them, whether it be the street trees that line our neighborhoods or the vacant lot growing wild with weeds down the street. We can decide to let our yards go a little feral, to plant some native plants, to encourage wildlife in urban areas, and to even do a little assisted migration of our own by planting things from nearby regions just to see how they will do in our changing climate. In short, we can garden a bit more rambunctiously. And we should.

This is how Marris puts it:

If we fight to preserve only things that look like pristine wilderness, such as those places currently enclosed in national parks and similar refuges, our best efforts can only retard their destruction and delay the day we lose. If we fight to preserve and enhance nature as we have newly defined it, as the living background to human lives, we may be able to win. We may be able to grow nature larger than it currently is. This will not only require a change in our values but a change in our very aesthetics, as we learn to accept both nature that looks a little more lived-in than we are used to and working spaces that look a little more wild than we are used to.

Read a short interview with Marris about her book here, and listen to a discussion with her on a recent episode of Out There podcast.

Botany in Popular Culture: Black Orchid

Black Orchid coverBlack Orchid is a minor character in the DC Comics universe. She is a superhero with a troubled past, and although she first began appearing in comic books in 1973, her origin was a mystery until 1988 when Neil Gaiman wrote his 3 part mini-series entitled, Black Orchid, revealing that she was a plant-human hybrid created by Dr. Philip Sylvain after combining the DNA of Susan Linden-Thorne with the DNA of an epiphytic orchid.

Curiously, in order to reveal Black Orchid’s origins, Gaiman has the namesake of his series killed off within the first few pages. A master of disguise, Black Orchid is following her standard modus operandi of impersonating someone in order to infiltrate enemy headquarters. In this case she is pretending to be a secretary in Lex Luthor’s employ. While sitting in on a board meeting in which the activities of Luthor’s crime ring are being discussed, her secret identity is revealed, which leads to her being tied to a chair and shot through the head. The bullet doesn’t kill her though since invulnerability to bullets is one of her superpowers (along with flight, super strength, shape shifting, and others). However, the building is also set on fire, and ultimately all that is left of Black Orchid at the end of the night are some charred plant remains.

The story can’t end there though, so as Black Orchid goes up in flames, two of her clones emerge from flower buds in Dr. Sylvain’s greenhouse. They aren’t sure what they are at first. They have some of Susan’s memories but don’t know what to make of them. One of them is a child called Suzy, and the other is an adult who eventually gets the name Flora Black. They find their way to Dr. Sylvain who tells them the story of how they and the original Black Orchid came to be.

Dr. Philip Sylvain tells the Black Orchid clones about how he

Dr. Philip Sylvain tells the Black Orchid clones about his childhood with Susan Linden.

Susan was Dr. Sylvain’s childhood friend. They spent lots of time in the garden together learning about plants and growing things. But Susan was abused regularly by her father and eventually ran away as a teenager. Dr. Sylvain didn’t see her for many years, and in the meantime grew up and became a botanist. At university, Dr. Sylvain studied with Jason Woodrue, Pamela Isley, and Alex Holland, each of whom went on to become plant-human hybrids of some sort (Floronic Man, Poison Ivy, and Swamp Thing respectively). Dr. Sylvain had ambitions of making “people of plants” as part of a plan to save a dying earth. His ambitions remained a dream until Susan returned.

Dr. Sylvain's friends from university who later became plant-hybrid heroes and villians.

Dr. Sylvain’s friends from university who later became notorious plant-human hybrids.

Susan was running away again – this time from her abusive husband, Carl Thorne, who worked for Lex Luthor as an arms dealer. Thorne was in trouble with the law and was ultimately put on trial for his crimes. Susan came to Dr. Sylvain seeking refuge. She was set to testify against her husband, but before she could do that, Thorne killed her. Dr. Sylvain then used Susan’s DNA to create the crime fighting, superhero, Black Orchid.

Coincidentally, as the original Black Orchid is being killed and the two new Black Orchids are emerging, Thorne is finishing his prison sentence and being released. He first goes to Luthor to try and get his job back, but is turned away. Next he goes to Dr. Sylvain’s house where he discovers the newly emerged Black Orchids. He alerts Luthor, who sends a team to hunt down the “super-purple-flower women” and bring them back to the lab for “examination and dissection.” The rest of the series details the Black Orchids’ mission to make sense of who they are and what their purpose in life is while simultaneously contending with Luthor’s men (and Thorne) who are out to get them. Flora Black meets with Batman, Poison Ivy, and Swamp Thing along the way, filling in her origin story and gaining instruction and insight about her future as a superhero.

Gaiman is a popular, prolific, and well-respected author; however, this is the first of his books that I have read. I was impressed by his storytelling and appreciated the departure from the typical superhero vs. villain narrative. Dave McKean did the artwork for this series, which was an excellent decision as his work is also quite atypical for the genre. His illustrations gave the book a mystical feel as the panels altered from standard storytelling sequences to abstract, fantasy pieces.

This Black Orchid storyline continued for several issues after Gaiman’s three part mini-series without Gaiman as the author. Flora Black was eventually killed off. A new version of the Black Orchid character currently appears in the ongoing Justice League Dark series.

Alba Garcia (aka Black Orchid), a member of Justice League Dark

Alba Garcia (aka Black Orchid), a member of Justice League Dark

You can read more about Black Orchid on her Wikipedia and Comic Vine pages.

Botany and Everyday Chemistry

What’s not to love about plants? They provide us with oxygen, food, medicine, fuel, fibers, and countless other things. They help filter groundwater and sequester carbon. They beautify our landscapes and communities. They provide habitat for wildlife and help reduce soil erosion. And the list goes on.

But there is more to plants than meets the eye. There is something deeper within – at their cellular and molecular levels – that is just as worthy of our fascination and appreciation as the blooms that beautify our yards and the fruits that fill our tables, and that is the abundant and diverse world of chemical compounds present in the botanical kingdom.

But how does one gain an understanding and appreciation for such a subject. Luckily, there is a blog for that. It’s called Compound Interest. Authored by UK chemistry teacher, Andy Brunning, Compound Interest explores the “chemistry and chemical reactions we come across on a day-to-day basis.” Much of what Andy writes about doesn’t have anything to do with plants – fireworks, bacon, gunpowder, snowflakes, etc. – but a sizeable portion of his posts do (evidenced particularly by the Food Chemistry category). For example: Did you know nutmeg is hallucinogenic? Have you ever wondered why avocados turn brown so quickly? Why is it that some people have such a strong aversion to cilantro (aka coriander)? What makes coffee bitter, chili peppers spicy, and catnip so attractive to cats?

These and so many other questions are answered by Andy in a fun and approachable way. One thing that makes Compound Interest so approachable is the use of infographics to tell the stories and explain the science. Each post is accompanied by an infographic featuring photos of the subject, structural formulas of the chemicals, and short descriptions.  For example, this infographic explains why beets are red and why our urine turns red after eating them:

Chemistry-of-Beetroot

The infographics can also be downloaded as pdf files, like this one that explains the chemistry behind the smell of fresh-cut grass.

In this manner, the images and files can be easily shared with others. In fact, Andy encourages this practice, provided that the originals are not altered and that Compound Interest is given proper credit. He is particularly interested in seeing his infographics used in a classroom setting. Read more about the content usage guidelines here. Produced by someone who is obviously passionate about chemistry, these posts and graphics are meant to educate and excite people about everyday chemistry both in the botanical world and beyond.

Speaking of Food: A Recap

The theme for the past 15 posts has been the October 2014 Special Issue of American Journal of Botany, Speaking of Food: Connecting Basic and Applied Plant Science. After a brief introduction to the issue, I spent the next 14 posts (spanning a period of 5 weeks) reading and writing summaries of each of the 17 articles. If you actually read every post, you are a champion in my eyes, and I probably owe you a prize of some sort. And even if you just read one or two, thank you, and I hope you found value in what you read.

I have to admit that it was kind of a grueling process. Many of the articles, along with being lengthy, included high level discussions that were beyond my current understanding, especially concerning topics like genetics, genomics, and phylogenetics. I learned a lot while reading them, but I am still far from truly grasping many of the concepts. For that reason, I did not feel completely comfortable writing summaries of some of these discussions. I made an effort not to misrepresent or oversimplify the research, but I can’t say for sure that my attempts were always successful. I welcome any criticisms, corrections, complaints, or comments in this regard, and I am open to making edits or updates to any of the posts as necessary. I consider this blog my learning platform, as well as a place to share my phyto-curiosity. Perhaps you find it a place for learning, too?

The main purpose of this post is to provide a Table of Contents for the last 14 posts, something that will make it easier to navigate through this series without having to scroll through each post. If you are interested in reading the entire series (again, you’re a champion), you can access them all in order here by clicking on the titles. Otherwise, you can pick and choose whatever topics interest you the most.

  • On the Origins of Agriculture – A deep dive into plant domestication and the beginnings of agriculture, including the revision of theoretical approaches to thinking about the history of plant domestication and a discussion of emerging methods and tools for exploring early domestication and emerging agriculture.
  • The Legacy of a Leaky Dioecy – Does pre-Colombian management of North American persimmon trees explain why non-dioecious individuals are found in an otherwise dioecious species?
  • Dethroning Industrial Agriculture: The Rise of Agroecology – The environmentally devastating effects of industrial agriculture can and must be replaced by a more sustainable, ecologically-focused from of agriculture. This will require reforming our economic system and rethinking our “one size fits all” approach to scientific research.
  • An Underutilized Crop and the Cousins of a Popular One – Safflower, an underutilized oilseed crop, could be improved by introducing genes from wild relatives. Soybean, a very popular and valuable crop, could also be improved by introducing genes from its perennial cousins.
  • Carrots and Strawberries, Genetics and Phylogenetics – An exploration of the genetics and phylogenetics of carrots and strawberries. Better understanding of their genetics will aid in crop improvements; better understanding of their phylogenetics gives us further insight into the evolution of plants.
  • Exploring Pollination Biology in Southwestern China – A fascinating look at the pollination biology of edible and medicinal plants in southwestern China, revealing significant gaps in scientific understanding and the need for conservation and continued research.
  • Your Food Is a Polyploid – Polyploidy is more prevalent in plants than we once thought. This article examines the role of polyploidy in crop domestication and future crop improvements.
  • Tales of Weedy Waterhemp and Weedy Rice – How agriculture influenced the transition to invasiveness in two important weed species.
  • Cultivated Sunflowers and Their Wild Relatives – An investigation into the flowering times of wild sunflowers reveals potential for improvements in cultivated sunflowers.
  • The Nonshattering Trait in Cereal Crops – Is there a common genetic pathway that controls the shattering/nonshattering trait in cereal crops?
  • Apples and Genetic Bottlenecks – Domestication generally leads to a loss of genetic variation compared to wild relatives, but apples have experienced only a mild loss. That loss may increase as commercial apple production relies on fewer and fewer cultivars.
  • Improving Perennial Crops with Genomics – The nature of perennial crops can be an impediment to breeding efforts, which makes the introduction of new perennial crop varieties both time consuming and costly. Advances in genomics may help change that.
  • Using Wild Relatives to Improve Crop Plants – Crop plants can be improved through the introduction of genes from wild relatives. They could potentially experience even greater improvement through systematic hybridization with wild relatives.
  • Developing Perennial Grain Crops from the Ground Up – Some of the environmental issues resulting from agriculture could be addressed by switching from annual to perennial grain crops, but first they must be developed from wild species.
A small harvest of sweet potatoes (Ipomoea batatas ' Hong Hong') from this year's backyard mini-farm. Ipomoea batatas ' Hong Hong.'

A small harvest of sweet potatoes (Ipomoea batatas ‘ Hong Hong’) from this year’s backyard mini-farm.

If I had to pick a favorite article in this issue it would be Think Globally, Research Locally: Paradigms and Place in Agroecological Research (Reynolds et al.). I know I said it in the post, but this article really sums up the reasons why this special issue of AJB is so important. Humans are incredibly resourceful, creative, and resilient, and as we have spread ourselves across the globe and grown our population into the billions, we have found ways to produce enormous amounts of food relatively cheaply. Frankly, the fact that anyone is going hungry or dying of starvation is shameful and appalling as there is plenty of food to go around…for now. But we are doing a lot of things wrong, and the earth is suffering because of it. If the biosphere is in trouble, we are all in trouble. Thus, we are overdue for some major shifts in the way we do things, particularly agriculture as that’s what this series of posts is all about. I advocate for science-based sustainable agriculture, and I am hopeful, thanks to this issue of AJB and other signs I’ve seen recently, that we are moving more in that direction. I’ll step off my soapbox now and leave you with an excerpt from the article by Reynolds, et al.

“There is increasing recognition that the current industrial model of agricultural intensification is unsustainable on numerous grounds. Powered by finite and nonrenewable stores of fossil fuels over the last 200 years, humans have come to see themselves, their technology, and their built environments as controllers of nature rather than interdependent with it, even as our activities threaten to exceed planetary boundaries of resilience in multiple environmental dimensions, such as climate, biodiversity, ozone, and chemical pollution. … In the ‘full world’ we now live in, continuing to use high input, highly polluting methods of food production to support continued economic growth is counterproductive to achieving food security. Continued growth of population and per capita consumption on a finite planet fails to meet the basic requirement of sustainability, that of meeting needs within the regenerative and assimilative capacity of the biosphere. And prolonging the shift to a sustainable economic paradigm risks a harder landing.”

Using Wild Relatives to Improve Crop Plants

This is the thirteenth in a series of posts reviewing the 17 articles found in the October 2014 Special Issue of American Journal of Botany, Speaking of Food: Connecting Basic and Applied Science.

Back to the Wilds: Tapping Evolutionary Adaptations for Resilient Crops through Systematic Hybridization with Crop Wild Relatives by Emily Warschefsky, Varma Penmetsa, Douglas R. Cook, and Eric J. B. von Wettberg

The nature of domestication involves the narrowing of genetic diversity through a series of crosses and selections that results in organisms well suited for particular environments and/or purposes. In the short term, this arrangement seems to suit our needs, that is until the climate shifts, novel pests and diseases invade, agricultural soils become degraded, or some other calamity ensues. Then we must select a new form to take the place of the old one that is no longer suitable. Additionally, the varieties currently in use may be doing well within their current parameters, but their performance may be found lacking if placed in different environments or grown in alternate systems, such as one that relies on fewer petrochemical inputs.

The wild relatives of crop plants have a long history of being used in breeding programs to provide specific traits for improving domesticated varieties. Interest in this has increased thanks to technological advancements (such as marker-assisted selection and genomic selection) and the greater availability of germplasm. Introgression (the transfer of genes from one species to another through hybridization and repeated backcrossing) using crop wild relatives has mainly been aimed at introducing traits like resistance to specific pests and diseases, tolerance of certain abiotic stresses, and greater yields. In other words, crop wild relatives are typically screened for a few main traits that might be useful in breeding programs, neglecting the possibility that the introgression of a larger suite of traits may be beneficial long-term.

This article discusses the possibility of using “crop wild relative collections that [have been] systematically built to represent the range of adaptations found in natural populations” to improve crop plants. By using these “purpose-built populations that are hybrids between crops and their wild relatives,” crop plants introgressed with “full sets of wild diversity” will be better adapted to a wide variety of environments, soils, climates, and agricultural systems. In order to “illustrate the gains that are possible,” the authors review published studies of hybridization (both naturally occurring and human mediated). They then “propose a multi-step framework for utilizing naturally occurring variation in wild relatives of crops.”

Grapefruit (Citrus x paradisi) - A hybrid between sweet orange (Citrus sinensis) and shaddock (Citrus maxima) that "occurred far beyond the region of domestication and rather recently [the 18th centruy]." (photo credit: wikimedia commons)

Grapefruit (Citrus x paradisi) – A hybrid between sweet orange (C. sinensis) and shaddock (C. maxima) that “occurred far beyond the region of domestication and rather recently [the 18th century].” (photo credit: wikimedia commons)

Hybridization can occur between two individuals of different cultivars, varieties, subspecies, species, genera, etc. The genetics of the resulting offspring is a combination of the two parents, and depending on the circumstances, a hybridization event “can have drastically different consequences.” For this reason, “hybridization is thought of as both a creative and a restrictive force in evolution.” It is, however, “the potential for the production of novelty that makes hybridization such an intriguing – and potentially useful – phenomenon.”

In their discussion of hybridization between crops and their wild relatives, the authors reveal some “obstacles that limit the use of wild relatives in breeding programs.”

  • Poor Agronomic Performance – “Crop wild relatives often lack important domestication traits.” They may have shattering pods, irregular germination timing, or phenologies that inhibit their use in certain regions.
  • Poor Representation in Germplasm Collections – “Only 2-6% of international germplasm collections are of crop wild relatives.” There are some crop wild relatives that are well-represented, but others have been “poorly collected” or “almost ignored,” and some crops still “lack well-identified wild relatives.” One reason for this disparity is that a large number of these plants “occur in geopolitically unstable areas where collection has long been complicated.”
  • Unpredictability of Phenotypes – “Phenotypes of wild individuals are often assessed in agricultural settings, a largely uninformative practice when the overall wild phenotype is specifically adapted for fitness in the wild but not cultivated settings.” This makes for an inaccurate comparison with domesticated varieties, so when “crop-wild hybrids” are formed, phenotypes are hard to predict. Backcrossing is necessary in order to recover the “essential crop phenotype” while capturing the desired traits of the wild relative.

The authors also highlight the need for conservation of crop wild relatives, as “these species are nearly universally threatened.” The catalog of threats to their survival is similar to so many other threatened species: the loss, fragmentation, and degradation of habitats, climate change, invasive species, and over-harvesting (“in the case of medicinally and pharmaceutically useful species”). One threat, perhaps ironically, is agricultural crops crossing with nearby wild relatives, especially where transgenic genes in crops are being transferred to wild populations. In order to better realize the potential that crop wild relatives have in improving domesticated varieties, they must first be protected in their natural habitats.

Desert sunflower (Helianthus deserticola) - One of three hybrid species born of H. annuus and H. petiolaris, "highlighting the expanded potential of hybrid species...through colonization of extreme habitats where neither parental species can survive." (photo credit: www.eol.org)

Desert sunflower (Helianthus deserticola) – One of three hybrid species born of H. annuus and H. petiolaris, “highlighting the expanded potential of hybrid species…through colonization of extreme habitats where neither parental species can survive.” (photo credit: www.eol.org)

The authors propose a 5 step plan for systematic utilization of crop wild relatives in agricultural breeding programs. The steps include building a comprehensive collection of crop wild relatives, sequencing their genomes, creating purpose-driven hybrid populations between wild relatives and crop plants, developing a predictive network of genotype-phenotype associations, and deploying identified phenotypes into crop breeding efforts. This article is one of the open access articles in this issue. If you are interested in this topic, including this 5 step plan, I encourage you to read the article to learn more. 

The Nonshattering Trait in Cereal Crops

This is the tenth in a series of posts reviewing the 17 articles found in the October 2014 Special Issue of American Journal of Botany, Speaking of Food: Connecting Basic and Applied Science.

Morphological Diversity and Genetic Regulation of Inflorescence Abscission Zones in Grasses by Andrew N. Doust, Margarita Mauro-Herrera, Amie D. Francis, and Laura C. Shand

Seed dispersal is a key aspect of reproduction in plants. Producing seeds requires large amounts of energy and resources, and if the seeds don’t find their way to a suitable environment where they can germinate and grow, then it may be all for naught. There are several modes of seed dispersal (wind, gravity, water, animals, ballistics), and each plant species has its own story to tell in this regard. However, one commonality that most all seed dispersal stories share is “disarticulation [separation] of the seed or fruit from the body of the plant via means of the formation of an abscission zone.”

Seeds are typically dispersed inside fruits, and attached to the fruits may be other plant structures (such as parts of the inflorescence or, in the case of tumbleweeds, the whole plant). The entire dispersal unit (seed, fruit, etc.) is known as a diaspore. In the grass family, a fruit is called a caryopsis. It is a unique fruit because the fruit wall is fused to the seed, making it difficult to distinguish between the two. Methods of disarticulation in grasses are diverse, with diaspores varying greatly in their sizes and the plant parts they contain. Below is a figure from this article showing this diversity. Abscission zones are depicted using red dotted lines.

Domesticated crop plants do not exhibit the same levels of disarticulation that their wild relatives do. This is because “nonshattering forms” were selected during early stages of domestication due to their ease of harvest. Today, all domesticated cereal crops are nonshattering, and all began by selecting “a nonshattering phenotype where the grain [did] not fall easily from the inflorescence.”  However, the wild relatives of cereal crops, “as well as grasses as a whole, differ widely in their manner of disarticulation [as indicated in the figure above].” A mutation in the genes that control abscission is what leads to nonshattering phenotypes. Because all domesticated cereal crops began as nonshattering mutants, the authors of this study were interested in investigating whether or not there is a common genetic pathway across all cereal crops and their wild grass relatives that controls the abscission trait.

The “genetic control of loss of shattering” is important to those interested in domestication, thus it “has been studied in all major crops.” Some of these studies suggest that there is a common genetic pathway that controls abscission in cereal crops, while others suggest there may not be. The authors of this study suspect that “there is potential for considerable genetic complexity” in this pathway, and so before we can determine “the extent to which there are elements of a common genetic pathway,” we must first develop “a better understanding of both diversity of disarticulation patterns and genetic evidence for shared pathways across the grasses.”

In an effort to begin to answer this question, the authors used herbaria vouchers to analyze “morphological data on abscission zones for over 10,000 species of grasses.” They also reviewed published scientific studies concerning the genetics of disarticulation in grasses and cereal crops. They determined that “the evidence for a common genetic pathway is tantalizing but incomplete,” and that their results could be used to inform a “research plan that could test the common genetic pathway model more thoroughly.” Further studies can also “provide new targets for control and fine-tuning of the shattering response” in crop plants, which could result in “reducing harvest losses and providing opportunities for selection in emerging domesticated crops.”

Foxtail millet, Setaria italic (photo credit: www.eol.org)

Foxtail millet (Setaria italica), a widely cultivated species of millet, has “shattering genes” similar to those found in sorghum and rice (photo credit: www.eol.org)

 

Cultivated Sunflowers and Their Wild Relatives

This is the ninth in a series of posts reviewing the 17 articles found in the October 2014 Special Issue of American Journal of Botany, Speaking of Food: Connecting Basic and Applied Science.

Transistions in Photoperiodic Flowering Are Common And Involve Few Loci in Wild Sunflowers (Helianthus; Asteraceae) by Lucas P. Henry, Ray H. B. Watson, and Benjamin K. Blackman

The seasonal timing of flowering is an important trait to consider in crop plants, because it dictates where geographically a particular crop can be grown and also plays a role in fitness and yield. Flowering time is determined by a combination of genetics and environmental factors. One of the major environmental factors is day length, a phenomenon known as photoperiod response (or photoperiodism).  There are three main types of photoperiod response: short-day (plants flower when “grown in day lengths below a critical maximum threshold”), long-day (plants flower when “grown in day lengths above a critical minimum threshold”) and day-neutral (“plants flower at the same time under all day length conditions”). A plant’s response to day length can be obligate – restricted to a particular response – or facultative – capable but not restricted. Understanding the genetics of photoperiod response is important for breeding efforts, and can help in the development of crop varieties that have improved yields and that can be either grown in broader geographic areas or that are specifically selected for local regions.

Agricultural breeding programs often investigate wild relatives of crop plants for potential traits that could lead to improvements. There is “renewed interest” in these investigations “because genome-enabled methods [of identifying desirable genes] and international investment in germplasm resources have dramatically reduced the associated labor, time, and risk.” The authors of this study, recognizing extensive variation in flowering time in both common sunflower (Helianthus annuus) and its wild relatives, examined the genetic basis for this variation in an effort to support sunflower breeding programs.

Common Sunflower, Helianthus annuus (photo credit: Wikimedia commons)

Common Sunflower, Helianthus annuus (photo credit: wikimedia commons)

Helianthus is a genus consisting of around 70 species, most of which are native to North America (a few occur in South America). Several species in this genus are cultivated as food crops and/or as ornamental plants. H. annuus is the most commonly cultivated species, valued for its edible seeds and the oil they produce as well as for various other things. Wild relatives of H. annuus have “been a frequent source of genetic raw material for agricultural innovation,” aided by the fact that “barriers to interspecies crosses are incomplete or can be overcome through embryo culture or chromosomal doubling.” Helianthus is a diverse genus, including generalist species occurring in “diverse environments over broad geographic regions” and specialist species occurring in “habitats characterized by high temperature, water, or salt stress.” For this reason, “wild sunflowers are prime sources to mine for alleles that confer higher yield in new or marginal” agricultural settings.

A relatively small subset of Helianthus species were involved in this study; however, the subset represented a “phylogenetically dispersed sample.” One interesting finding was that the evolution of an obligate short-day requirement for flowering has occurred in several species, “particularly those with ranges restricted to the southern United States.” The authors suggest that a reason for this finding could be that “long, hot, and humid summers” in this region “may be unfavorable for growth or reproduction.” Thus, while populations of H. annuus “likely escape these conditions by flowering in the long days of late spring,” other Helianthus species put off “flowering until the arrival of cooler, less humid falls.” Flowering during cooler times is beneficial because pollen fertility decreases and seed maturation slows at high temperatures. The risk of fungal pathogens attacking flowers and dispersed seeds is also reduced during periods of lower humidity.

Another important finding was that the diversity in photoperiod response in Helianthus appears to have a “relatively simple genetic architecture.” If this is the case, it could “greatly facilitate rapid crop improvement by marker-assisted selection.” Further studies are necessary, specifically those involving “intra- and interspecific crosses segregating for variation in photoperiod response,” in order to confirm the authors’ findings and justify “broader investment of resources into these applied efforts.”

Nuttall's Sunflower (Helianthus nuttallii), one of Common Sunflower's wild relatives (photo credit: www.eol.org)

Nuttall’s Sunflower (Helianthus nuttallii), one of Common Sunflower’s wild relatives (photo credit: www.eol.org)

While much was learned from this study, the authors acknowledge the need for “future investigations with greater taxonomic and environmental sampling.” Researchers recently produced a “draft genome” for sunflower. This additional resource will greatly aid breeding programs and further inform studies, like this one, that are interested in the “mechanistic factors and ecological agents that have promoted the emergence of the great diversity and lability in photoperiod response observed in wild sunflowers.”

Tales of Weedy Waterhemp and Weedy Rice

This is the eighth in a series of posts reviewing the 17 articles found in the October 2014 Special Issue of American Journal of Botany, Speaking of Food: Connecting Basic and Applied Science.

Population Genetics and Origin of the Native North American Agricultural Weed Waterhemp (Amaranthus tuberculatus; Amarantheaceae) by Katherine E. Waselkov and Kenneth M. Olsen

Weeds are “the single greatest threat to agricultural productivity worldwide, costing an estimated $33 billion per year in the United States alone.” Understanding the origins, population structures, and genetic compositions of agricultural weeds will not only help us better mitigate current weed problems but may also help prevent the development of future weed species.

In the introduction, the authors present three modes of weed origination: 1. De-domestication (“domesticated species becoming feral”) 2. Hybridization of domesticated species with related wild species 3. Expansion of wild plants into agricultural ecosystems “through plasticity, adaptation, or exaptation [a shift in function of a particular trait].” In this study, the authors focused on the third mode – the wild-to-weed pathway – claiming that it receives “less attention by evolutionary biologists, even though all weeds without close crop relatives must have followed this pathway to agricultural invasion, and even though this type of weed species is the most common.”  Due to the dearth of research, there are several questions yet to be fully addressed: Does invasion require evolutionary changes in the plant and/or changes in agricultural practices? What is more common, single or multiple wild sources? What are the morphological, physiological, and ecological traits that might “predispose a wild species to expand into agricultural habitats?”

To help answer these questions, the authors turned to waterhemp (Amaranthus tuberculatus), a weed that, since first invading agricultural land in the 1950’s, has “become a major problem for corn and soybean farmers in Missouri, Iowa, and Illinois.” Waterhemp is native to the midwestern United States, where it can be found growing along riverbanks and in floodplains. It is a small seeded, dioecious (“obligately outcrossing”), wind-pollinated, annual plant with fruits that can be either dehiscent or indehiscent. Herbicide resistance has been detected in A. tuberculatus for at least six classes of herbicides, making it a difficult weed to control.

There is evidence that A. tuberculatus was previously in the process of diverging into two species, an eastern one and a western one, geographically separated by the Mississippi River. However, “human disturbance brought the taxa back into contact, and possibly gave rise to the agriculturally invasive strain through admixture.” Using population genetic data, the authors set out to determine if the present-day species would show evidence of a past divergence in progress prior to the 20th century. They also hypothesized that “the agricultural weed originated through hybridization between the two diverged lineages.”

Waterhemp, Amaranthus tuberculatus (photo credit: www.eol.org)

Waterhemp, Amaranthus tuberculatus (photo credit: www.eol.org)

After genotyping 38 populations from across the species range, the authors confirmed that A. tuberculatus was indeed diverging into two species. Today, the western variety (var. rudis) has expanded eastward into the territory of the eastern variety (var. tuberculatus), extending as far as Indiana. Its expansion appears to be facilitated by becoming an agricultural weed. Data did not confirm the hypothesis that the weedy strain was a hybridized version of the two varieties, but instead mainly consists of the western variety, suggesting that “admixture is not a pre-requisite for weediness in A. tuberculatus.”

Further investigation revealed that the western variety may have already been “genetically and phenotypically suited to agricultural environments,” and thus did not require “genetic changes to be successful” as an agricultural weed. “Finer-scale geographic sampling” and deeper genetic analyses may help determine whatever genetic basis there might be for this unfortunate situation.

The Evolution of Flowering Strategies in US Weedy Rice by Carrie S. Thurber, Michael Reagon, Kenneth M. Olsen, Yulin Jia, and Ana L. Caicedo

This paper looks at an agricultural weed that originated from the de-domestication of a crop plant (one of the three modes of weed origination stated above). A weed that belongs to the same species as the crop it invades is referred to as a conspecific weed, and weedy rice is “one of the most devastating conspecific weeds in the United States.”  Oryza sativa is the main species of rice cultivated in the US, and most varieties are from the group tropical japonica. The two main varieties of weedy rice are straw hull (SH) and black-hull awned (BHA), which originated from cultivated varieties in the groups indica and aus respectively. Because weedy rice is so closely related to cultivated rice, it is incredibly difficult to manage, and there is concern that cross-pollination will result in the movement of traits between groups. For this reason, the authors of this study investigated flowering times of each group in order to assess the “extent to which flowering time differed between these groups” and to determine “whether genes affecting flowering time variation in rice could play a role in the evolution of weedy rice in the US.”

Rice, Oryza sativa (illustration credit: wikimedia commons)

Rice, Oryza sativa (illustration credit: wikimedia commons)

Crop plants have typically been selected for “uniformity in flowering time to facilitate harvesting.” The flowering time of weed species helps determine their effectiveness in competing with crop plants. Flowering earlier than crop plants results in weed seeds dispersing before harvest, “thereby escaping into the seed bank.” Flowering simultaneously with crop plants can “decrease conspicuousness, and seed may be unwittingly collected and replanted” along with crop seeds. Simultaneous flowering of weeds and crops is of special concern when the two are closely related since there is potential for gene transfer, especially when the crop varieties are herbicide resistant as can be the case with rice (“60-65% of cultivated rice in [the southern US] is reported to be herbicide resistant”).

For this study, researchers observed phenotypes and gene regions of a broad collection of Oryza, including cultivated varieties, weed species, and ancestors of weed and cultivated species. They found that “SH weeds tend to flower significantly earlier than the local tropical japonica crop, while BHA weeds tend to flower concurrently or later than the crop.” When the weeds were compared with their cultivated progenitors, it was apparent that both weed varieties had “undergone rapid evolution,” with SH weeds flowering earlier and BHA weeds flowering later than their respective relatives. These findings were consistent with analyses of gene regions which found functional Hd1 alleles in SH weeds (resulting in day length sensitivity and early flowering under short-day conditions) and non-functional Hd1 alleles in BHA weeds (“consistent with loss of day-length sensitivity and later flowering under short-day conditions”). However, the authors determined that there is more to investigate concerning the genetic basis of the evolution of flowering time in weedy rice.

In light of these results, hybridization is of little concern between cultivated rice and SH weeds. BHA weeds, on the other hand, “have a greater probability of hybridization with the crop based on flowering time and Hd1 haplotype.” The authors “predict that hybrids between weedy and cultivated rice are likely to be increasingly seen in US rice fields,” which, considering the current level of herbicide resistant rice in cultivation, is quite disconcerting.