Eating Weeds: Cleavers Coffee

One of the world’s most beloved beverages comes from a species of plant found in the fourth largest family of flowering plants. Rubiaceae, also known as the coffee or bedstraw family, consists of around 13,500 species, placing it behind just Asteraceae, Orchidaceae, and Fabaceae for the most number of species. Coffea arabica, and other species in the genus Coffea, are grown for their fruits which are used to make coffee. This makes Rubiaceae one of the most economically important plant families. A family this size is bound to be home to a weed or two, and in fact, one of the most widespread and obnoxious weeds is also a member of Rubiaceae.

Galium aparine, known commonly by a slew of names including cleavers, occurs naturally across large portions of Europe, Asia, North Africa, and possibly even parts of North America. It has been introduced as a weed in many locations across North America, South America, Australia, New Zealand, Japan, and parts of Africa. It is of particular concern in agricultural settings where its lengthy, sprawling branches and sticky leaves get tangled up in harvesting equipment, while its tiny, prickly fruits get mixed in with seeds of similar size like canola.

Galium aparine

Sticky willy, as it is also known, is an annual plant that, in some cases, can have two generations per year – one in the spring (having germinated the previous fall) and one in the summer. Its stems are square, though not as sharply square as plants in the mint family, and can grow to around six feet long. They are weak, brittle, and don’t stand upright on their own; instead they are found scrambling across the ground or, when given the opportunity, climbing up the lengths of other plants in order to reach the sunlight. Leaves occur in whorls of six to eight and are simple and slender with entire margins. Flowers are produced at leaf axils along the lengths of the branches and are tiny, four-petaled, star-shaped, and greenish white. Fruits are borne in pairs and are round, single-seeded, indehiscent nutlets. The stems, leaves, and fruits are covered in stiff, hooked hairs or trichomes, earning it other names like catchweed bedstraw, grip grass, stickyweed, and velcro plant.

flowers and immature fruit on Galium aparine

Galium aparine is a climbing plant, but unlike other climbing plants, it doesn’t twine up things or produce structures like tendrils to hold itself up. Instead, its ability to climb is made possible by its abundant bristly hairs. A paper published in Proceedings of the Royal Society B (2011) investigates the way G. aparine climbs up other plants using the hairs on its leaves. A close inspection of the leaves reveals that the trichomes on the top of the leaf (the adaxial leaf surface) differ significantly from those found on the bottom of the leaf (the abaxial leaf surface). Adaxial trichomes curve towards the tip of the leaf, are hardened mainly at the tip, and are evenly distributed across the leaf surface. Abaxial trichomes curve towards the leaf base, are hardened throughout, and are found only on the midrib and leaf margins.

Having different types of hairs on their upper and lower leaf surfaces gives cleavers an advantage when it comes to climbing up neighboring plants. The authors of the paper describe the technique as a “ratchet mechanism.” When the upper surface of their leaf makes contact with the lower surface of another plant’s leaf, the flexible, outwardly hooked trichomes inhibit it from slipping further below the leaf and allow it to easily slide out from underneath it. When the lower surface of their leaf makes contact with the upper surface of another plant’s leaf, the stiff, inwardly hooked trichomes keep it attached to the leaf even if the other leaf starts to slip away and allows it to advance further across the leaf for better attachment and coverage. Using this ratchet mechanism, cleavers climb up the leaves of other plants, keeping their leaves above the other plant’s leaves, which gives them better access to sunlight. The basal stems of cleavers are highly flexible, which keeps them from breaking as the plant sways in the wind, tightly attached to their “host” plant.

fruits of Galium aparine

The hooked trichomes on the tiny fruits of cleavers readily attach to the fur and clothing of passing animals. The nutlets easily break free from the plants and can be transported long distances. They can also be harvested and made into a lightly caffeinated tea. Harvesting the fruit takes time and patience. I spent at least 20 minutes trying to harvest enough fruits for one small cup of cleavers coffee. The fruits don’t ripen evenly, and while I tried to pick mostly ripe fruits, I ended up with a selection of fruits in various stages of ripeness.

To make cleavers coffee, first toast the seeds for a few minutes in a pan heated to medium high, stirring them frequently. Next, grind them with a mortar and pestle and place the grinds in a strainer. Proceed as you would if you were making tea from loose leaf tea.

The toasted fruits and resulting tea should smell similar to coffee. The smell must not be strong, because my poor sense of smell didn’t really pick up on it. The taste is coffee-like, but I thought it was more similar to black tea. Sierra tried it and called it “a tea version of coffee.” If the fruits were easier to collect, I could see myself making this more often, but who has the time?

The leaves and stems of Galium aparine are also edible, and the plant is said to be a particular favorite of geese and chickens, bringing about yet another common name, goosegrass. In the book Weeds, Gareth Richards discusses the plant’s edibility: “It’s edible for humans but not that pleasant to eat; most culinary and medicinal uses center around infusing the plant in liquids.” Cooking with the leaves or turning them into some sort of spring tonic is something I’ll consider for a future post about eating cleavers.

More Eating Weeds Posts on Awkward Botany

Randomly Selected Botanical Terms: Glochids

The spines of a cactus are an obvious threat. They are generally sharp, smooth, and stiff; as soon as you are stabbed by one, it is immediately clear that you’ve gotten too close. Sitting at the base of the spines – or in place of spines – on many species of cacti is a less obvious, but significantly more heinous threat. Unless you’re looking closely, this hazard is practically invisible, and the pain and irritation that can come as a result of close contact has the potential to last significantly longer than the sharp poke of a spine. This nefarious plant part is called a glochid, and if you’ve ever made contact with one (or more likely several dozen of them), it’s not something you will soon forget.

Opuntia polyacantha x utahensis

The spine of a cactus is actually a leaf. The area from which a spine emerges from the fleshy, photosynthetic stem of a cactus is called an areole, which is equivalent to a node or bud on a more typical stem or branch from which leaves emerge. In place of typical looking leaves, a cactus produces spines and glochids. Like spines, glochids are also modified leaves, although they appear more like soft, little tufts of hair. However, this unassuming little tuft is not to be trifled with.

Close inspection of a glochid (with the help of a microscope) reveals why you don’t want them anywhere near your skin. While the surface of a cactus spine is often smooth and free of barbs, glochids are covered in backwards-facing barbs. The miniscule size of glochids combined with their pliable nature and retrose barbs, make it easy for them to work their way into your skin and stay there. Unlike spines, glochids easily detach from a cactus stem. Barely brushing up against a glochid-bearing cactus can result in getting stuck with several of them.

Opuntia basilaris var. heilii

Because glochids can be so fine and difficult to see, you may not even be aware they are there. You probably won’t even feel them at first. Removing them is a challenge thanks to their barbs, and since you may not be able to remove them all, the glochids that remain in your skin can continue to cause irritation for days, weeks, or even months after contact. For this reason, cactuses are generally best seen and not touched, or at the very least, handled with extreme care.

Apart from being a good form of defense, the glochids of some cactus species can serve an additional function. Most cactus species occur in arid or semi-arid climates, where access to water can be quite limited. In order to increase their chances of getting the water they need, some desert plants are able to collect water from the air. A few species of cactus do this, and glochids are a critical component in making this happen.

Cylindropuntia whipplei

A study published in the Journal of King Saud University – Science (2020) examined the dew harvesting ability of Opuntia stricta, commonly known as erect prickly pear. As described above, the spines of O. stricta are smooth, while the glochids are covered in retrose barbs. Both structures are waterproof due to hardened cell walls and cuticles. However, due in part to the conical shapes of both the glochids and their barbs, water droplets from the air are able to collect on the tips of the glochids. From there, the researchers observed the droplets in their travel towards the base of the glochids. As they moved downward, small droplets combined to form larger droplets.

At the base of the glochids are a series of trichomes, which are small hair-like outgrowths of the epidermis. The trichomes do not repel water, but rather are able to absorb the droplets as they reach the base of the glochids. For a plant species that receives very little water from the soil, being able to harvest dew from the air is critical for its survival, and this is thanks in part to those otherwise obnoxious glochids.

See Also: Prickles

Randomly Selected Botanical Terms: Prickles

Let’s start by getting something out of the way: roses have prickles, not thorns. However, just like peanuts aren’t actually nuts and tomatoes are actually fruits, our colloquial terms for things don’t always match up with botanical terminology. This doesn’t mean that we should be pedants about things and go spoiling a friendly dinner party with our “well, actually…” corrections. If you hear someone saying (or singing) something about every rose having its thorn, it’s okay to just let it go.

So why don’t roses have thorns? And what even is a prickle anyway?

Plants have a way of modifying various body parts to form a variety of features that look like something totally new and different. When the development of these features are observed at a cellular level, we find that what once may have grown into something familiar, like a stem, is now something less familiar, like a thorn. A thorn, then, is a modified stem. Stem tissue was used by the plant to form a hardened spike. Thorns help protect a plant from being eaten, so going through the trouble of producing this feature is a benefit to the plant.

thorns of hawthorn (Crataegus sp.)

Spines and prickles are similar features to thorns and serve a similar purpose, but they have different origins. Spines are modified leaf or stipule tissue (the spines on a cactus are actually modified leaves). Prickles are outgrowths of the epidermis or bark. In plants, epidermis is a single, outer layer of cells that covers all of the organs (i.e. leaves, roots, flowers, stems). Outgrowths on this layer are common and often appear as little hairs. The technical term for these hairs or hair-like structures is trichomes.

the stems of staghorn sumac (Rhus typhina) are covered in dense trichomes

Prickles are much like trichomes, but there are usually less of them and they are hardened and pointy. They can be sharp like a thorn or spine and so are often confused for them. (Spines are also confused for thorns, as is the case with Euphorbia milii, whose common name is crown of thorns but whose “thorns” are actually spines.) As stated above, their cellular origin is different, and unlike thorns and spines, prickles don’t have vascular tissue, which is the internal tissue that transports water and nutrients throughout all parts of the plant. In general, prickles can be easily broken off, as they are often weakly attached to the epidermis.

Prickles are most commonly observed on roses and come in a variety of shapes, sizes, and colors.

Prickles on roses are commonly called thorns, and that’s okay. Thorn is perhaps a more poetic word and easier to relate to. But really, I’m torn and forlorn that they aren’t thorns. It puts me in a pickle trying to rhyme words with prickle.

Check out the linktree for various ways to follow and support Awkward Botany.