Bumblebees and Urbanization

Urban areas bear little resemblance to the natural areas that once stood in their place. Concrete and asphalt stretch out for miles, buildings of all types tower above trees and shrubs, and turfgrass appears to dominate whatever open space there is. Understandably, it may be hard to imagine places like this being havens for biodiversity. In many ways they are not, but for certain forms of life they can be.

An essay published earlier this year in Conservation Biology highlights the ways in which cities “can become a refuge for insect pollinators.” In fact, urban areas may be more inviting than their rural surroundings, which are often dominated by industrial agriculture where pesticides are regularly used, the ground is routinely disturbed, and monocultures reign supreme. Even though suitable habitat can be patchy and unpredictable in the built environment, cities may have more to offer than we once thought.

Yet, studies about bee abundance and diversity in urban areas show mixed results, largely because all bee species are not created equal (they have varying habitat requirements and life histories) and because urban areas differ wildly in the quality and quantity of habitat they provide both spatially and temporally. For this reason, it is important for studies to focus on groups of bees with similar traits and to observe them across various states of urbanization. This is precisely what researchers at University of Michigan set out to do when they sampled bumblebee populations in various cities in southeastern Michigan. Their results were published earlier this year by Royal Society Open Science.

common eastern bumble bee (Bombus impatiens) – photo credit: wikimedia commons

The researchers selected 30 sites located in Dexter, Ann Arbor, Ypsilanti, Dearborn, and Detroit. Most of the sites were gardens or farms in urban centers. They collected bumblebees from May to September using pan traps and nets. The species and sex of each individual bumblebee was identified and recorded for each site. The percentage of impervious surface that surrounded each site was used as a measurement of urban development. Other measurements included the abundance of flowers and average daily temperatures for each location.

Bumblebees were selected as a study organism because the genus, Bombus, “represents a distinct, well-studied set of traits that make it feasible to incorporate natural history into analysis.” Bumblebees live in colonies – eusocial structures that include “a single reproductive queen, variable numbers of non-reproductive female workers, and male reproductive drones.” They are generalist foragers, visiting a wide variety of flowering species for pollen and nectar, and they nest in holes in the ground, inside tree stumps, or at the bases of large clumps of grass. The authors believe that their nesting behavior makes them “a good candidate for testing the effects of urban land development,” and the fact that members of the colony have “distinct roles, [behaviors], and movement patterns” allows researchers to make inferences regarding “the effects of urbanization on specific components of bumblebee dynamics.”

Across all locations, 520 individual bumblebees were collected. Nearly three quarters of them were common eastern bumblebees (Bombus impatiens). Among the remaining nine species collected, brown-belted bumblebees (Bombus griseocollis) and two-spotted bumblebees (Bombus bimaculatus) were the most abundant.

brown-belted bumblebee (Bombus griseocollis) – photo credit: wikimedia commons

Because bumblebees are strong fliers with an extensive foraging range, impervious surface calculations for each site had to cover an area large enough to reflect this. Results indicated that as the percentage of impervious surfaces increased, bumblebee abundance and diversity declined. When male and female bumblebee data was analyzed separately, the decline was only seen in females; males were unaffected.

Female workers do most of their foraging close to home, whereas males venture further out. The researchers found it “reasonable to hypothesize that worker abundance is proportional to bumblebee colony density.” Thus, the decline in female bumblebees observed in this study suggests that as urban development increases (i.e. percent coverage of impervious surface), available nesting sites decline and the number of viable bumblebee colonies shrinks. Because male bumblebees responded differently to this trend, future studies should consider the responses of both sexes in order to get a more complete picture of the effects that urbanization has on this genus.

Interestingly, results obtained from the study locations in Detroit did not conform to the results found elsewhere. Bumblebee abundance and diversity was not decreasing with urbanization. Unlike other cities in the study, “Detroit has experienced decades of economic hardship and declining human populations.” It has a high proportion of impervious surfaces, but it also has an abundance of vacant lots and abandoned yards. These areas are left unmaintained and are less likely to be mowed regularly or treated with pesticides. Reducing disturbance can create more suitable habitat for bumblebees, resulting in healthy populations regardless of the level of urbanization. Thus, future studies should examine the state of insect pollinators in all types of cities – shrinking and non-shrinking – and should consider not just the amount of available habitat but also its suitability.

two-spotted bumblebee (Bombus bimaculatus) – photo credit: wikimedia commons

Advertisements

Year of Pollination: Scarlet Gilia and Its Pollinators

Flowers that are visited and/or pollinated by hummingbirds typically fit the following description: petals are brightly colored, often red; petals are fused to form a long, narrow tube; a “landing pad” is absent; abundant nectar is produced deep within the flower; and fragrance is weak or nonexistent. Scarlet gilia (Ipomopsis aggregata) is a typical example of such a flower, and hummingbirds are indeed among its most common visitors. But there is so much more to the story.

Scarlet gilia (also commonly known as skyrocket) is a wildflower in the phlox family (Polemoniaceae) that occurs in many parts of western North America. It is considered a biennial or short-lived perennial. It spends the first year or so of its life as a compact rosette of fern-like leaves. Later it sends up a branched, flowering stem that can reach 5 feet tall or more. The flowers are slender, trumpet-shaped, and composed of five fused petals that flare outward creating five prominent, pointed lobes. They are self-incompatible and require a pollinator in order to set seed. The stamens of an individual flower produce mature pollen before the stigma of that flower is ready to receive it – this is called protandry and is one mechanism of self-incompatibility.

The rosette of scarlet gilia (Ipomopsis aggregata)

The rosette of scarlet gilia (Ipomopsis aggregata)

The flowering period of scarlet gilia can last several months. Depending on the location, it can begin in mid-summer and continue through the fall. During this period, it produces dozens of flowers. It is also at this time that it runs the risk of being browsed by elk, mule deer, and other animals. This doesn’t necessarily set it back though, as it has the potential to respond by producing additional flowering stalks and more flowers. Its flowers are visited by a variety of pollinators including bumblebees, hawkmoths, butterflies, syrphid flies, solitary bees, and of course, hummingbirds. But hummingbirds, in many parts of scarlet gilia’s range are migratory, and that’s where things get interesting.

Early flowers of scarlet gilia are usually red. As the season progresses, flowers slowly shift from red to pink. In some cases, they lose all pigmentation and become white. In the early 1980’s, pollination biologists Ken Paige and Thomas Whitman set out to determine the reason for this shift in flower color. They spent three years observing a population of scarlet gilia on Fern Mountain near Flagstaff, Arizona. They noted that the change in flower color corresponded with the migration of hummingbirds and that the now lighter colored flowers continued to be pollinated by hawkmoths until the end of the flowering season.

ipomopsis aggregata

A series of experiments and observations led them to conclude that hummingbirds prefer darker colored flowers and hawkmoths prefer lighter colored flowers. By shifting to a lighter flower color, scarlet gilia appeared to be taking advantage of remaining pollinators after hummingbirds had migrated. They also concluded that the color change was not the cause of hummingbird migration since other flowers with nectar-rich, red, tubular flowers (specifically Penstemon barbatus) remained available in the area throughout their migration. It was also noted that the flowers of scarlet gilia shifted the timing of nectar production, presumably to better match the behavior of hawkmoths which are more active in the evenings.

No plants were observed shifting from light colored flowers to dark colored flowers, which further supported their conclusion. They also compared the population they studied to populations that do not lose their hummingbird pollinator and noted that when hummingbirds remain, the flowers of scarlet gilia don’t change color.

Scarlet gilia (Ipomopsis aggregata) with white flowers

Scarlet gilia (Ipomopsis aggregata) with white flowers

But just how effective are hummingbirds as pollinators of scarlet gilia? A seperate study carried out by a different group of researchers determined that, while hummingbirds were “the most common floral visitor,” long-tongued bumblebees were the more effective pollinator when it came to pollen deposition and seed set. The study involved observations of a scarlet gilia population in Colorado over a 5 year period. Considering how well the floral traits of scarlet gilia match up with the hummingbird pollination syndrome, it is surprising to learn that long-tongued bumblebees are comparatively more effective at pollinating them.

This study provides further evidence against strict adherence to pollination syndromes and the most effective pollinator principle, both of which imply specialized plant-pollinator interactions. (I wrote about these topics here, here, and here in earlier Year of Pollination posts.) In their discussion, the authors propose two possible explanations as to why scarlet gilia, despite its phenotypic floral traits, does not appear to be specialized. One explanation is that “natural selection favors a specialized [floral] morphology that excludes all but a single type of visitor, but there are constraints on achieving this outcome.” Perhaps the pollinators aren’t cooperating; their opportunism is leading them to “exploit flowers on which they can realize an energetic profit, even if they do not mechanically ‘fit’ very well.” The “sensory abilities” of the pollinators may be “broadly tuned,” making it difficult for plants to develop flowers with “private signals detectable only by specific types of pollinators.”

The second explanation proposed by the authors is that “selection favors some degree of floral generalization, but that flowers can retain features that adapt them to a particular type of pollinator in spite of generalization.” In the case of scarlet gilia, specialization could be detrimental because after they send up their flower stalks, they are doomed to die. This gives them only one season to set seed, and if hummingbirds are either not available that year or only available in limited numbers, a scarlet gilia population can lose the opportunity to reproduce. As the authors put it, “the fact that individual plants enjoy only a single season of reproduction, suggests the value of ‘backup’ pollinators.” This may also explain why flower color shifts in order to take full advantage of hawkmoth pollination after hummingbirds are gone.

Scarlet gilia is not only a beautiful and widespread wildflower, but also a plant with a very interesting story. Follow the links below to learn more about this fascinating plant:

Year of Pollination: Bumblebees and Climate Change

Bumblebees, generally speaking, are having a rough time. In a world increasingly dominated by humans, some bumblebee species continue to thrive while many others are seriously struggling. Several are nearing extinction. A recent study involving 67 species of European and North American bumblebees concluded that climate change is having a major impact. Bumblebees do not appear to be migrating north in response to warming climates – a hesitation that could spell disaster.

There are over 250 species of bumblebees worldwide (46 are found in North America north of Mexico). Unlike other bees, whose diversity is greatest in Mediterranean climates, bumblebee diversity is highest in cool, temperate climates and montane regions. The majority of bumblebee species are native to the Northern Hemisphere; a few species are native to South America, and a handful of species from Europe have been introduced to New Zealand and Tasmania. Some species of bumblebees, such as the polar bumble bee (Bombus polaris) and the forest bumble bee (Bombus sylvicola), can be found in extreme cold climates and are among a select group of pollinators found in such areas.

The field guide, Bumble Bees of North America, by Paul Williams, et al. provides this description:

“Bumble bees are very hairy bees with combinations of contrasting bright colors, mostly black and yellow, sometimes with various combinations of red or white. They have two pairs of wings that are usually folded back over the abdomen while they are foraging on flowers, or hooked together as a single unit when in flight. Bumble bees also have slender elbowed antennae, and females of the pollen-collecting species have the hind tibia expanded, slightly concave, and fringed with long hairs to form a pollen basket or corbicula.”

Most bee species are solitary insects; bumblebees, like honeybees, are social insects. Unlike honeybees, bumblebee colonies begin with a new queen each year. New queens, after mating in late summer, overwinter in a protected area and emerge in the spring. They then search for food and a nesting site. Suitable nests include abandoned rodent dens,  the bases of bunchgrasses, hollow logs, and human-made structures. They build up a colony of workers which maintain the nest and forage for food and other resources. As the season comes to a close, the queen produces males and new queens. The new queens mate, go into hibernation, and the rest of the bumblebee colony dies off.

Brown-belted Bumblebee (Bombus griseocollis) - photo credit: wikimedia commons

Brown-belted Bumblebee (Bombus griseocollis) – photo credit: wikimedia commons

Bumblebees face numerous threats, both natural and human-caused. Despite their defensive sting, they are regularly eaten or attacked by various mammals, birds, and invertebrates. They are also host to a variety of pests, parasites, and pathogens, some of which have been introduced or exacerbated by human activities. The commercial bee industry is particularly at fault for the spread of certain maladies. Other major threats include loss of habitat and excessive and/or poorly timed use of insecticides. One looming threat that new research suggests is especially concerning is climate change.

A group of researchers from various institutions looked at the historical ranges of 67 species of bumblebees in Europe and North America over a 110 year period. They “measured differences in species’ northern and southern range limits, the warmest or coolest temperatures occupied, and their mean elevations in three periods relative to a baseline period.” They found that on both continents bumblebees are not tracking climate change by expanding their northern range limits and that their southern range limits are shrinking. They also observed that within the southern range limits, some bumblebee species have retreated to higher elevations. They investigated land use changes and pesticide applications (in the US only) to determine the effect they had on the results. While these things certainly affect populations on an individual level, climate change was determined to be the most important factor that lead to nearly universal range contractions of the bumblebees in this study.

The question then is why are they not tracking changing climates the same way that many other species of plants and animals have already been observed doing? Bumblebees evolved in cooler climates, so shrinking southern range limits is not as surprising as the bumblebees’ delay in moving north. Many factors may be contributing to this phenomenon including lack of specialized habitats beyond their historical ranges, daylength differences, and population dynamics. The researchers call for further investigation in order to better evaluate this observed “range compression.” They also suggest experimenting with assisted migration of certain bumblebee colonies, which in general is a controversial topic among conservation biologists. (Read more about this study here.)

Buff-tailed Bumblebee (Bombus terrestris) - photo credit: wikimedia commons

Buff-tailed Bumblebee (Bombus terrestris) – photo credit: wikimedia commons

The loss of bumblebees is concerning because they play a prominent role in the various ecosystems in which they live. They are prolific and highly effective pollinators of both agricultural crops and native plants, and they are also a major component in the food web. Some species of plants “prefer” the pollination services of bumblebees, such as those in the family Solanaceae. Many plants in this family benefit greatly from buzz pollination – a process in which a bumblebee (or occasionally bees of other species) grabs hold of the flower and vibrates its body, dislodging the pollen.

Participating in bumblebee conservation is simple. It’s similar to any other kind of pollinator conservation. Just learning about the pollinators in your region and being mindful of them can make a big difference. If you own or rent property and have space for a garden (even if its just a few containters on a patio), choose plants that provide food for bumblebees, including spring and summer bloomers. If you live in North America, this Xerces Society publication and the field guide mentioned above are great resources that can help you determine which plants are best for your region. Additionally, if you are working in your yard and happen upon a hibernating queen or a bumblebee nest, do your best not to disturb it. It may disrupt your gardening plans for a season, but the bumblebee sightings and the pollination service they provide will be worth it.

One family of plants in particular that you should consider representing in your yard is the legume family (Fabaceae). Bumblebees are commonly seen pollinating plants in this family, and because these plants have the ability to convert nitrogen in the air into fertilizer, their pollen is especially rich in protein. In his book, A Sting in the Tale, Dave Goulson describes the relationship between bumblebees and legumes:

“From a bumblebee’s perspective, legumes are among the most vital components of a wildflower meadow. Plants of this family include clovers, trefoils and vetches, as well as garden vegetables such as peas and beans, and they have an unusual trick that allows them to thrive in low-fertility soils. Their roots have nodules, small lumps inside which live Rhizobium, bacteria that can trap nitrogen from the air and turn it into a form usable by plants. … This relationship gave legumes a huge advantage in the days before artificial fertilizers were widely deployed. Ancient hay meadows are full of clovers, trefoils, vetches, meddicks and melilots, able to outcompete grasses because they alone have access to plentiful nutrients. Most of these plants are pollinated by bumblebees.”

More information about bumblebees and bumblebee conservation:

Bumblebee Conservation Trust

Bumble Bee Watch

BugGuide (Bombus)

The Xerces Society – Project Bumble Bee