Vacant Lots as Habitat for Insects

Urban areas are increasingly being studied for their potential to help conserve biodiversity and provide habitat for numerous plants and animals. Despite the harsh conditions of the built environment, organisms of all kinds are able to survive in our cities, and as we find ways to make these spaces more hospitable for them, cities actually have great potential for species conservation, even for species that are rare, threatened, or specialized. One obvious way to accomplish this is to manage our yards, parks, and gardens as habitat, such as planting flower strips for pollinators. Another way, perhaps overlooked at times, is to manage and maintain vacant lots as habitat. Every urban area has some degree of vacant land that for one reason or another has not been developed, or that once was developed but has since been bulldozed or abandoned. Spontaneous vegetation quickly moves in to occupy these sites, and while some may see them as eyesores, their potential for providing habitat for an untold number of plants and animals is substantial.

In cities that are growing – like Boise, Idaho – vacant and abandoned lots are disappearing quickly as development strives to keep up with population growth. My first Weeds of Boise post took place at an abandoned Pizza Hut, which has since been demolished and is now the future site of a large building (see photo below). This is happening all over the city – the City of Trees is looking more like the City of Cranes these days. On the other hand, cities that are shrinking due to economic downturn, loss of industry, and other factors, have an increasing number of vacant lots, which offers the opportunity not only to maintain these lots as habitat, but also to carry out research that will help us understand how these locations can be best managed for species conservation.

Abandoned Pizza Hut Lot Now Under Construction

Cleveland, Ohio is one example of a “shrinking city.” Due to significant population decline, Cleveland has a growing number of vacant lots, many of which are maintained by the City of Cleveland Land Bank. For researchers at The Ohio State University, all of this vacant land presents an opportunity to study, among other things, urban biodiversity. Hence, the Cleveland Pocket Prairie Project was born. By assigning different management treatments to groups of vacant lots and observing the differences between each treatment, researchers can help determine the best strategies for managing vacant lots, particularly when it comes to biological conservation. One of the major focuses of the Cleveland Pocket Prairie Project is to determine how vacant land can provide habitat for insects and other arthropods.

In a study published in Sustainability (2018), researchers in Cleveland compared the species richness and abundance of bees found on vacant lots to those found on urban farms. Bee collections were made three times a year over a three year period. Of the more 2733 bees collected, researchers identified 98 total species representing 5 different families. The vast majority of the species were native to the area. Significantly more bees were found in vacant lots compared to urban farms. In both vacant lots and urban farms, the total number of ground nesting bees decreased as the proportion of impervious surfaces near the study sites increased. Plants that received the most bee visits on the urban farms during the study period were common milkweed (Asclepias syriaca), chives (Allium schoenoprasum), and squash (Cucurbita pepo); while the top three plants with the most bee visits on vacant lots were red clover (Trifolium pratense), white clover (Trifolium repens), and Queen Anne’s lace (Daucus carota).

ground nesting bee (photo credit: Sierra Laverty)

Bee communities differed between vacant lots and urban farms: 29 of the 98 total species were seen only in vacant lots, while 14 species were seen only at urban farms. Most of the bees collected in this study were ground nesting species, and researchers suspect the reason more bees were found on vacant lots compared to urban farms is that farms experience frequent soil disturbance in the form of tillage, weeding, mulching, and irrigation, while vacant lots generally do not. The researchers conclude that their study “adds to the growing body of literature advocating for the maintenance of minimally-managed vacant lot habitats as a conservation resource.” Vacant land that is “surrounded locally by high concentrations of impervious surface,” however, may not be the most suitable location to carry out conservation efforts.

In a study published in Urban Ecosystems (2020), researchers in Cleveland looked at the species richness and abundance of lady beetles in vacant lots. They were particularly interested in the potential that vacant lots may have in providing habitat for lady beetles that are native to the region. The study consisted of 32 vacant lots, each assigned one of four habitat treatments: control (seeded with turfgrass and mowed monthly), meadow (seeded with turfgrass and mowed annually), low-diversity prairie (seeded with three species of prairie grasses and four species of native prairie forbs), and high-diversity prairie (seeded with three species of prairie grasses and sixteen species of native prairie forbs). The two prairie treatments were mown annually. The majority of the nearly 3000 lady beetles captured across all of the plots over a two-year study period were exotic (introduced) species. Sixteen species total were collected: four exotic and twelve native.

The researchers predicted that the lots seeded with prairie plants native to the region would support a higher abundance of native lady beetles than those composed of turfgrass, especially those that are frequently mown. Surprisingly, a similar abundance and species richness of both native and exotic lady beetles were found across all treatments. What appeared to be important for native lady beetle abundance were vegetation features like bloom abundance, height, and biomass. The surrounding environment also matters. As the researchers put it, “vacant lots embedded in landscapes dominated by impervious surface and with a high degree of habitat isolation were less suitable habitats” – a similar conclusion to that made in the bee study.

Brachiacantha ursina (photo credit: Wikimedia Commons / NY State IPM Program at Cornell University)

The most abundant native lady beetle collected in the study was the ursine spurleg lady beetle (Brachiacantha ursina). The larvae of this beetle “infiltrate the nests of Lasius ants,” which is “one of the most common genera of ants found in urban environments.” Researchers posit that the abundance of B. ursina reflects the habitat preferences of ants in the Lasius genus. Several species of lady beetles native to the region are experiencing significant population declines, and the researchers were disappointed to find that none of the most rare species were collected during their study period. However, it was promising to find that “pollen and nectar provided by both seeded native and naturally occurring weedy plants” appeared to be important food sources for native lady beetles.

Both studies indicate that vacant lots can be important locations for habitat conservation in urban areas, particularly when they are part of a larger collection of greenspaces. In combination with managing our yards, parks, and urban farms as quality habitat for plants and animals, conserving vacant lots that consist of diverse vegetation (both planted and spontaneous) can help support insect populations within our cities.

Weeds of Boise: Vacant Lot on West Kootenai Street

Every urban area is bound to have its share of vacant lots. These are sites that for whatever reason have been left undeveloped or were at one point developed but whose structures have since been removed. The maintenance on these lots can vary depending on who has ownership of them. Some are regularly mowed and/or treated with herbicide, while others go untouched for long periods of time. Even when there is some weed management occurring, vacant lots are locations where the urban wild flora dominates. Typically no one is coming in and removing weeds in an effort to cultivate something else, and so weeds run the show.

As with any piece of land populated by a diverse suite of wild plants, vacant lots are dynamic ecosystems, which you can read all about in the book Natural History of Vacant Lots by Matthew Vessel and Herbert Wong. The impact of humans can be seen in pretty much any ecosystem, but there are few places where that impact is more apparent than in a vacant lot. In lots located in bustling urban centers, human activity is constant. As Vessel and Wong write, “numerous ecosystem interactions are affected when humans intervene by spraying herbicides or insecticides, by trampling, by physically altering the area, or by depositing garbage and waste products.” These activities “can abruptly alter the availability and types of small habitats; this will in turn affect animal as well as plant diversity and population dynamics.” The dynamic nature of these sites is a reason why vacant lots are excellent places to familiarize yourself with the wild urban flora.

Kōura relaxing in a vacant lot

On our morning walks, Kōura and I have been visiting a small vacant lot on West Kootenai Street. We have watched as early spring weeds have come and gone, summer weeds have sprouted and taken off, perennial weeds have woken up for the year, and grass (much of which appears to have been intentionally planted) has grown tall and then been mowed with some regularity. Someone besides us is looking after this vacant lot, and it’s interesting to see how the plant community is responding. As Vessel and Wong note, “attempts to control weedy plants by mowing, cultivating, or spraying often initiate the beginning of a new cycle of growth.” For plants that are adapted to regular disturbance, measly attempts by humans to keep them in check are only minor setbacks in their path to ultimate dominance.

What follows are a few photos of some of the plants we’ve seen at the vacant lot on Kootenai Street, as well as an inventory of what can be found there. This list is not exhaustive and, as with other Weeds of Boise posts, will continue to be updated as I identify more species at this location.

dandelion (Taraxacum officinale)
grape hyacinth (Muscari armeniacum)
henbit (Lamium amplexicaule)
wild barley (Hordeum murinum) backed by cheatgrass (Bromus tectorum)
narrowleaf plantain (Plantago lanceolata) and broadleaf plantain (Plantago major)
perrennial sweet pea (Lathyrus latifolius) surrounded by redstem filaree (Erodium cicutarium)
whitetop (Lepidium sp.)
white clover (Trifolium repens)
  • Bromus tectorum (cheatgrass)
  • Capsella bursa-pastoris (shepherd’s purse)
  • Ceratocephala testiculata (bur buttercup)
  • Convolvulus arvensis (field bindweed)
  • Descurainia sophia (flixweed)
  • Draba verna (spring draba)
  • Erodium cicutarium (redstem filaree)
  • Geum urbanum (wood avens)
  • Holosteum umbellatum (jagged chickweed)
  • Hordeum murinum (wild barley)
  • Lactuca serriola (prickly lettuce)
  • Lamium amplexicaule (henbit)
  • Lathyrus latifolius (perennial sweet pea)
  • Lepidium sp. (whitetop)
  • Malva neglecta (dwarf mallow)
  • Medicago lupulina (black medic)
  • Muscari armeniacum (grape hyacinth)
  • Plantago lanceolata (narrowleaf plantain)
  • Plantago major (broadleaf plantain)
  • Poa bulbosa (bulbous bluegrass)
  • Poa pratensis (Kentucky bluegrass)
  • Rumex crispus (curly dock)
  • Taraxacum officinale (dandelion)
  • Tragopogon dubius (salsify)
  • Trifolium repens (white clover)
  • Veronica sp. (speedwell)

If you live in an urban area, chances are good there is a vacant lot near you. What have you found growing in your neighborhood vacant lot? Feel free to share in the comment section below.

What Bugs Can Tell Us About the Value of Vacant Urban Land

Back in October 2017, we discussed some potential benefits of spontaneous urban vegetation (commonly referred to as weeds) and the abandoned or undeveloped urban spaces they inhabit. There is much to learn about the role these plant communities play in the ecology of cities and their contribution to vital ecosystem services. In a review published in the December 2013 issue of Environmental Entomology, researchers from Ohio State University discuss how studying arthropod communities on vacant lands can help “advance our ecological understanding of the functional role” these habitats may have in our cities.

Arthropods were selected as the subject of study because their “populations respond quickly to changes in the urban environment, making them key indicators of how land use change influences biodiversity.” Urban-dwelling arthropods “are diverse and occupy multiple trophic levels” and are “easy to sample.” Additionally, many of the services that vacant, unmanaged land offers are “arthropod-mediated,” including “pollination, decomposition, nutrient cycling, and biological pest control.”

photo credit: wikimedia commons

Vacant land was selected as the study site because “understanding [its] ecological value is important to the advancement of urban ecology and ecosystem management,” and even though such areas are often overlooked in conservation planning, studies have shown that they “have the potential to be valuable reservoirs of biodiversity.” In order to determine just how valuable vacant land might be, more research is needed comparing these spaces to other parts of the city. In addition, vacant lots are generally ephemeral and in due time may be developed. Whether this means that a building or parking lot takes their place or that they are converted into a park, garden, or urban farm, it is important to understand what these land use changes mean for urban biodiversity and ecological functions.

Urbanization is often measured by comparing the amount of built area to the remaining green space. Where there is a high degree of urbanization, there is a low degree of green space comparatively. As urbanization increases, so does habitat fragmentation, pollution, and the urban heat island. In the meantime, biodiversity suffers. The authors cite a number of studies demonstrating that increased urbanization negatively impacted beneficial insect populations. For example, a study in the United Kingdom found that bumblebee diversity in gardens “decreased with increasing urbanization of the surrounding landscapes.” Similar results were found in a study we wrote about.

photo credit: wikimedia commons

Together with remnant natural areas, parks, private and public gardens, greenways, and commercial landscapes, vacant lots are part of a mosaic of urban green space. Each of these areas “experience different levels of disturbance and harbor varying plant species,” which, in turn, “influence arthropods and the services they can supply within and between patches.” Because vacant lots can remain undisturbed and virtually unmanaged for long periods of time, they help provide a contrast to the homogeneous, highly managed green spaces that are common in cities. By their very nature, they “have the potential to aid conservation and enhance green space quality and connectivity within city centers.”

It’s one thing to recognize the value of vacant lots; it’s another thing to change the negative perception of them. Aesthetics are important, and to many people vacant lots are an eyesore and a sign of neglect. Some management may be necessary in order to retain their important ecological value and assuage the feelings of the public. The authors present a number of ways that vacant lots can be and have been managed in order to achieve this goal. They also consider how certain management strategies (mowing, removing and/or introducing plant species) can impact arthropod populations for better or worse. Yet, where vacant lots are left alone and allowed to advance in the stages of ecological succession, changes in arthropod diversity and ecosystem function also occur. For this reason, “the regional species pool of a city requires a mosaic of all successional stages of vacant land patches.”

photo credit: wikimedia commons

Finally, the authors discuss the conversion of vacant land to urban agriculture. Even this land use change can have dramatic effects on the arthropod community. For example, undisturbed or unmanaged areas are a habitat requirement for cavity and soil nesting bees, and regular disturbance associated with farming may interfere with this. Also where pesticides are used or plant diversity is minimized, the arthropod community will be affected.

Thus, “the study of vacant land ecology necessitates a transdisciplinary approach” in order to determine how changes in vacant, urban land “will affect diverse ecosystem functions and services.” A variety of management strategies are required, and land managers must “determine the most appropriate strategies for improving the sustainability of cities from a connected landscape perspective.” It is clear that vacant lots have a role to play. The extent of their role and our approaches to managing them requires careful investigation.

One thing is certain – for biodiversity’s sake – don’t pave over vacant lots to put up parking lots.

Bumblebees and Urbanization

Urban areas bear little resemblance to the natural areas that once stood in their place. Concrete and asphalt stretch out for miles, buildings of all types tower above trees and shrubs, and turfgrass appears to dominate whatever open space there is. Understandably, it may be hard to imagine places like this being havens for biodiversity. In many ways they are not, but for certain forms of life they can be.

An essay published earlier this year in Conservation Biology highlights the ways in which cities “can become a refuge for insect pollinators.” In fact, urban areas may be more inviting than their rural surroundings, which are often dominated by industrial agriculture where pesticides are regularly used, the ground is routinely disturbed, and monocultures reign supreme. Even though suitable habitat can be patchy and unpredictable in the built environment, cities may have more to offer than we once thought.

Yet, studies about bee abundance and diversity in urban areas show mixed results, largely because all bee species are not created equal (they have varying habitat requirements and life histories) and because urban areas differ wildly in the quality and quantity of habitat they provide both spatially and temporally. For this reason, it is important for studies to focus on groups of bees with similar traits and to observe them across various states of urbanization. This is precisely what researchers at University of Michigan set out to do when they sampled bumblebee populations in various cities in southeastern Michigan. Their results were published earlier this year by Royal Society Open Science.

common eastern bumble bee (Bombus impatiens) – photo credit: wikimedia commons

The researchers selected 30 sites located in Dexter, Ann Arbor, Ypsilanti, Dearborn, and Detroit. Most of the sites were gardens or farms in urban centers. They collected bumblebees from May to September using pan traps and nets. The species and sex of each individual bumblebee was identified and recorded for each site. The percentage of impervious surface that surrounded each site was used as a measurement of urban development. Other measurements included the abundance of flowers and average daily temperatures for each location.

Bumblebees were selected as a study organism because the genus, Bombus, “represents a distinct, well-studied set of traits that make it feasible to incorporate natural history into analysis.” Bumblebees live in colonies – eusocial structures that include “a single reproductive queen, variable numbers of non-reproductive female workers, and male reproductive drones.” They are generalist foragers, visiting a wide variety of flowering species for pollen and nectar, and they nest in holes in the ground, inside tree stumps, or at the bases of large clumps of grass. The authors believe that their nesting behavior makes them “a good candidate for testing the effects of urban land development,” and the fact that members of the colony have “distinct roles, [behaviors], and movement patterns” allows researchers to make inferences regarding “the effects of urbanization on specific components of bumblebee dynamics.”

Across all locations, 520 individual bumblebees were collected. Nearly three quarters of them were common eastern bumblebees (Bombus impatiens). Among the remaining nine species collected, brown-belted bumblebees (Bombus griseocollis) and two-spotted bumblebees (Bombus bimaculatus) were the most abundant.

brown-belted bumblebee (Bombus griseocollis) – photo credit: wikimedia commons

Because bumblebees are strong fliers with an extensive foraging range, impervious surface calculations for each site had to cover an area large enough to reflect this. Results indicated that as the percentage of impervious surfaces increased, bumblebee abundance and diversity declined. When male and female bumblebee data was analyzed separately, the decline was only seen in females; males were unaffected.

Female workers do most of their foraging close to home, whereas males venture further out. The researchers found it “reasonable to hypothesize that worker abundance is proportional to bumblebee colony density.” Thus, the decline in female bumblebees observed in this study suggests that as urban development increases (i.e. percent coverage of impervious surface), available nesting sites decline and the number of viable bumblebee colonies shrinks. Because male bumblebees responded differently to this trend, future studies should consider the responses of both sexes in order to get a more complete picture of the effects that urbanization has on this genus.

Interestingly, results obtained from the study locations in Detroit did not conform to the results found elsewhere. Bumblebee abundance and diversity was not decreasing with urbanization. Unlike other cities in the study, “Detroit has experienced decades of economic hardship and declining human populations.” It has a high proportion of impervious surfaces, but it also has an abundance of vacant lots and abandoned yards. These areas are left unmaintained and are less likely to be mowed regularly or treated with pesticides. Reducing disturbance can create more suitable habitat for bumblebees, resulting in healthy populations regardless of the level of urbanization. Thus, future studies should examine the state of insect pollinators in all types of cities – shrinking and non-shrinking – and should consider not just the amount of available habitat but also its suitability.

two-spotted bumblebee (Bombus bimaculatus) – photo credit: wikimedia commons