Idaho’s Native Milkweeds (Updated)

As David Epstein said in an interview on Longform Podcast, “Any time you write about science, somethings is going to be wrong; the problem is you don’t know what it is yet, so you better be ready to update your beliefs as you learn more.” Thanks to the newly published Guide to the Native Milkweeds of Idaho by Cecilia Lynn Kinter, lead botanist for Idaho Department of Fish and Game, I’ve been made aware of some things I got wrong in the first version of this post. I appreciate being corrected though, because I want to get things right. What follows is an updated version of the original post. The most substantial change is that there are actually five milkweed species native to Idaho rather than six. Be sure to check out Kinter’s free guide to learn more about this remarkable group of plants.

———————

Concern for monarch butterflies has resulted in increased interest in milkweeds. Understandably so, as they are the host plants and food source for the larval stage of these migrating butterflies. But milkweeds are an impressive group of plants in their own right, and their ecological role extends far beyond a single charismatic insect. Work to save the monarch butterfly, which requires halting milkweed losses and restoring milkweed populations, will in turn provide habitat for countless other organisms. A patch of milkweed teems with life, and our pursuits to protect a single caterpillar invite us to explore that.

Asclepias – also known as the milkweeds – is a genus consisting of around 140 species, 72 of which are native to the United States and Canada. Alaska and Hawaii are the only states in the U.S. that don’t have a native species of milkweed. The ranges of some species native to the United States extend down into Mexico where there are numerous other milkweed species. Central America and South America are also home to many distinct milkweed species. Asclepias species found in southern Africa are considered by many to actually belong in the genus Gomphocarpus.

The habitats milkweeds occupy are about as diverse as the genus itself – from wetlands to prairies, from deserts to forests, and practically anywhere in between. Some species occupy disturbed and/or neglected sites like roadsides, agricultural fields, and vacant lots. For this reason they are frequently viewed as a weed; however, such populations are easily managed, and with such an important ecological role to play, they don’t deserve to be vilified in this way.

Milkweed species are not distributed across the United States evenly. Texas and Arizona are home to the highest diversity with 37 and 29 species respectively. Idaho, my home state, is on the low end with five native species. The most abundant species found in Idaho is Asclepias speciosa, commonly known as showy milkweed.

showy milkweed (Asclepias speciosa)

Showy milkweed is distributed from central U.S. westward and can be found in all western states. It occurs throughout Idaho and is easily the best place to look for monarch caterpillars. In fact, the monarch butterfly is Idaho’s state insect, thanks in part to the abundance of showy milkweed, which is frequently found growing in large colonies due to its ability to reproduce vegetatively via adventitious shoots produced on lateral roots or underground stems. Only a handful of milkweed species reproduce this way. Showy milkweed reaches up to five feet tall and has large ovate, gray-green leaves. Like all milkweed species except one (Asclepias tuberosa), its stems and leaves contain milky, latex sap. In early summer, the stems are topped with large umbrella-shaped inflorescences composed of pale pink to pink-purple flowers.

The flowers of milkweed deserve a close examination. Right away you will notice unique features not seen on most other flowers. The petals of milkweed flowers bend backwards, which would otherwise allow easy access to the flower’s sex parts if it wasn’t for a series of hoods and horns protecting them. Collectively, these hoods and horns are called the corona, which houses glands that produce abundant nectar and has a series of slits where the anthers are exposed. The pollen grains of milkweed are contained in waxy sacs called pollinia. Two pollinia are connected together by a corpusculum giving this structure a wishbone appearance. An insect visiting the flower for nectar slips its leg into the slit, and the pollen sacs become attached with the help of the corpusculum. When the insect leaves, the pollen sacs follow. Pollination is successful when the pollen sacs are inadvertently deposited on the stigmas of another flower.

Milkweed flowers are not self-fertile, so they require assistance by insects to sexually reproduce. They are not picky about who does it either, and their profuse nectar draws in all kinds of insects including bees, butterflies, moths, beetles, wasps, and ants. Certain insects – like bumble bees and other large bees – are more efficient pollinators than others. Once pollinated, seeds are formed inside a pod-like fruit called a follicle. The follicles of showy milkweed can be around 5 inches long and house dozens to hundreds of seeds. When the follicle matures, it splits open to release the seeds, which are small, brown, papery disks with a tuft of soft, white, silky hair attached. The seeds of showy milkweed go airborne in late summer.

follicles forming on showy milkweed (Asclepias speciosa)

Whorled or narrowleaf milkweed (Asclepias fascicularis) occurs across western and southern Idaho. Its distribution continues into neighboring states. It is adapted to dry locations, but can be found in a variety of habitats. Like showy milkweed, it spreads rhizomatously as well as by seed. It’s a wispy plant that reaches one to three feet tall and occasionally taller. It has long, narrow leaves and produces tight clusters of greenish-white to pink-purple flowers. Its seed pods are long and slender and its seeds are about 1/4 inch long.

flowers of narrowleaf milkweed (Asclepias fascicularis)

seeds escaping from the follicle of narrowleaf milkweed (Asclepias fascicularis)

Swamp or rose milkweed (Asclepias incarnata) is more common east of Idaho, but occurs occasionally in southwestern Idaho. As its common name suggests, it prefers moist soils and is found in wetlands, wet meadows, and along streambanks. It can spread rhizomatously, but generally doesn’t spread very far. It reaches up to four feet tall, has deep green, lance-shaped leaves, and produces attractive, fragrant, pink to mauve, dome-shaped flower heads at the tops of its stems. Its seed pods are narrow and around 3 inches long.

swamp milkweed (Asclepias incarnata)

Asclepias cryptoceras ssp. davisii, or Davis’s milkweed, is a low-growing, drought-adapted, diminutive species that occurs in southwestern Idaho. It has round or oval-shaped leaves and produces flowers on a short stalk. The flowers have white or cream-colored petals and pink-purple hoods. The range of Asclepias cryptoceras – commonly known as pallid milkweed or jewel milkweed – extends beyond Idaho’s borders into Oregon and Nevada, creeping north into Washington and south into California. Another subspecies – cryptoceras – can be found in Nevada, Utah, and their bordering states.

Davis’s milkweed (Asclepias cryptoceras ssp. davisii)

The final species is rare in Idaho, as Idaho sits at the top of its native range. Asclepias asperula ssp. asperula, or spider milkweed, has a single documented location in Franklin County (southeastern Idaho). Keep your eyes peeled though, because this plant may occur elsewhere, either in Franklin County or neighboring counties. It grows up to two feet tall with an upright or sprawling habit and produces clusters of white to green-yellow flowers with maroon highlights. Its common name comes from the crab spiders frequently found hunting in its flower heads.

A sixth species, horsetail milkweed (Asclepias subverticillata), has been falsely reported in Idaho. Collections previously labeled as A. subverticillata have been determined to actually be the similar looking A. fascicularis.

Advertisement

Field Trip: UBC Botanical Garden and VanDusen Botanical Garden

Last week, we found ourselves in Vancouver, British Columbia for a work-related conference put on by American Public Gardens Association. In addition to learning heaps about plant collections and (among other things) the record keeping involved in maintaining such collections, we got a chance to visit two Vancouver botanical gardens. Both gardens were pretty big, so covering the entire area in the pace we generally like to go in the time that was allotted was simply not possible. Still, we were smitten by what we were able to see and would happily return given the chance. What follows are a few photos from each of the gardens.

UBC Botanical Garden

UBC Botanical Garden is located at the University of British Columbia. Established in 1916, it is Canada’s oldest university botanical garden. We saw a small fraction of the Asian Garden, which is expansive, and instead spent most of our time in other areas, including the Alpine Garden, the Carolinian Forest Garden, the Food Garden, and one of my favorite spots, the BC Rainforest Garden. The Rainforest Garden is a collection of plants native to British Columbia, which was the original focus of UBC Botanical Garden’s first director, John Davidson.

fall foliage of redvein enkianthus (Enkianthus campanulatus)

Franklin tree in bloom (Franklinia alatamaha) in the Carolinian Forest Garden

alpine troughs

bellflower smartweed (Aconogonon campanulatum)

cutleaf smooth sumac (Rhus glabra ‘Laciniata’) in the BC Rainforest Garden

the fruits of Gaultheria pumila in the E.H. Lohbrunner Alpine Garden

Himalayan blueberry (Vaccinium moupinense) in the E.H. Lohbrunner Alpine Garden

VanDusen Botanical Garden

VanDusen Botanical Garden is a 55 acre garden that opened in 1975 and is located on land that was once a golf course. It features an extensive collection of plants from around the world accompanied by a series of lakes and ponds as well as lots of other interesting features (like a Scottish Shelter, a Korean Pavilion, an Elizabethan Maze, and more). Our time there was far too brief. The whirlwind tour we joined, led by the education director, was a lot of fun, and if the threat of missing our bus wasn’t looming, we would have been happy to stay much longer.

Japanese anemone (Anemone x hybrida ‘Whirlwind’)

fall color on the shore of Heron Lake

knees of bald cypress (Taxodium distichum) in R. Roy Forster Cypress Pond

witch hazel (Hamamelis x intermedia ‘Pallida’)

a grove of giant redwoods (Sequoiadendron giganteum)

We tried the fruit of dead man’s fingers (Decaisnea insignis). It tastes a bit like watermelon.

Japanese stewartia (Stewartia pseudocamellia)

More Awkward Botany Field Trips:

On the Genus Euphorbia

This is a guest post. Words and photos by Jeremiah Sandler.

———————

Suspicion

I collect cacti and succulents. The more I collect plants, the more and more I become interested in taxonomic and phylogenetic relationships between them. Not just my own plants – all of them. Most recently, the genus Euphorbia has been on my mind. My favorite species are E. meloformis var. valida and E. horrida.

I’m mostly familiar with the succulent and cacti-looking euphorbia (they are not true cacti) and a few ornamental annuals. Sometimes I would come across a species that I could determine was a euphorbia; but in trying to identify exactly which species, I found countless possibilities within the genus. It seemed odd to me that a single genus could contain so many different forms.

Turns out, Euphorbia consists of over 1800 separate species. What?! That is an insanely high number! Only about 20 genera of plants contain over 1000 separate species. Euphorbia is the fourth most populated genus among all genera of plants.

That staggering number got me thinking: how can a single genus have so many different species? How has the classification worked that out? Has the genus been phylogenetically examined? There’s no way a genus can be so huge. You know what breeders and collectors can do with that much genetic material in a single genus? The man-made hybrids seem endless.

Euphorbia globosa in bloom

Taxonomy

In older taxonomic practices, morphological similarities were the primary method of grouping individuals together. While that is still a common practice today, phylogenetic testing is now an accessible tool for organizing species into related groups.

Organizations such as the Angiosperm Phylogeny Group (APG) have been doing this advanced scientific research – analyzing DNA, doing detailed dissection, etc. Ultimately, they organize plant taxonomy and systematics with greater detail, and examine plant relationships genetically – phylogenetics.

Analyzing genomes is much more expensive and time consuming than observing morphologies. Now, a mix of methods is used, but DNA sequencing has definitely changed the systematics game in a big way. As a result of the APG’s incorporation of widespread phylogenetic DNA analyses, their taxonomical classifications are quickly becoming the generally accepted classifications among plant taxonomists.

Since the inclusion of genetic testing, many plant orders, families, and genera have been reorganized, renamed, expanded, or shrunk.

Euphorbia

One of the identifying features of euphorbias are their very unique flowers. All species in the genus have a cyathium, an inflorescence exclusively produced by euphorbias. Lacking in true petals, sepals, or nectaries, monoecious euphorbia flowers possess only the most essential parts of reproduction. However, bracts, extra-floral nectaries, and other structures surrounding the reproductive parts of the flowers make them appear superficially different.

It would be very time consuming to sequence the DNA of every member of this genus to see where they all fit. Approximately 10% of the euphorbias have been phylogenetically examined, and they confirm the traditional morphological placement. How about that?

Interestingly, of the species genetically analyzed, some were subsequently placed into the genus Euphorbia after historically being considered members of other genera.

Euphorbia horrida and Euphorbia obesa

So? What’s that mean?

Species within the same genus when crossed can (but not always) produce viable offspring. Sometimes they don’t because of differences in pollinators, flowering times, or geographic location, which prevents hybridization. Clades within plant genera also can affect intra-genus reproduction. For example, hard maples won’t naturally hybridize with soft maples, despite both being in the genus Acer. Perhaps the case is similar between the groups within Euphorbia.

As a plant collector and cacti and succulent enthusiast, imagining the endless amounts of hybrids within a massive genus is a fancy idea to me. The APG’s confirming of the initial classifications of Euphorbia into a massive genus makes the idea of endless hybrids all the more real.

Additional guest posts by Jeremiah Sandler:

———————

Jeremiah Sandler lives in southeast Michigan, has a degree in horticultural sciences, and is an ISA certified arborist. Follow him on Instagram: @j.deepsea