Botany in Popular Culture: The Sunset Tree by the Mountain Goats

My obsession with plants means that I see botany everywhere – in the music I listen to, the shows I watch, the books I read, whatever. Just a fleeting mention of something plant related in any type of media will catch my attention, no matter how ancillary it is to the major themes. And that is the impetus behind this series of posts about botany in popular culture. Well that and, believe it or not, I do enjoy many non-plant related things, and this gives me an excuse to write about those things on a plant-centric blog.

TheSunsetTreeFrontCover

The Mountain Goats are a folk rock band formed by John Darnielle in 1991. It could be said that John Darnielle is synonymous with the Mountain Goats, as Darnielle is the chief songwriter and at times has been the only member of the band. The Sunset Tree is the Mountain Goats ninth studio album and only the second album featuring songs that are primarily autobiographical. The album that preceded The Sunset Tree, entitled We Shall All Be Healed, was about Darnielle’s teenage years as a methamphetamine user. The Sunset Tree describes growing up with an abusive stepfather. Heavy topics are kind of the Mountain Goats’ thing.

Darnielle’s lyrics are highly poetic and often nebulous – the listener is left to fill in the gaps. Thus, the storytelling in The Sunset Tree isn’t always direct. However, the scene begins to unfold in the second track, “Broom People,” as Darnielle seems to be describing his childhood living conditions: “all sorts of junk in the unattached spare room,” “dishes in the kitchen sink,” “floor two foot high with newspapers,” “white carpet thick with pet hair.” He also sings of “friends who don’t have a clue; well meaning teachers,” and how he would “write down good reasons to freeze to death in [his] spiral ring notebook.”

“Dance Music” reveals more as Darnielle at 5 or 6 years old is getting “indications that there’s something wrong.” As he sits watching TV, his stepfather is yelling at his mom, then “launches a glass across the room, straight at her head, and [Darnielle] dashes upstairs to take cover.” He turns on his “little record player on the floor” and makes a discovery: “so this is what the volume knob is for.”

A similar scene unfolds in “Hast Thou Considered the Tetrapod,” only this time Darnielle is the victim. He arrives home to find his stepfather asleep, so he sneaks up to his room knowing that if he awakes his stepfather, “there will be hell to pay.” But he does wake up, and he bursts into Darnielle’s room to find him sitting with his headphones on oblivious. The beating begins, and Darnielle sings, “then I’m awake and I’m guarding my face / hoping you don’t break my stereo / because it’s the one thing that I couldn’t live without / and so I think about that and then I sorta black out.” Darnielle describes being “held under these smothering waves” by his stepfather’s “strong and thick-veined hand.” But he remains hopeful that eventually – “one of these days” – he will “wriggle up on dry land.”

That sense of hopefulness can be found throughout the album. In “This Year,” Darnielle is a 17 year old longing to break free. The chorus repeats resolutely: “I am gonna make it through this year if it kills me.” In “Up the Wolves,” he assures us, “there’s gonna come a day when you feel better / you’ll rise up free and easy on that day.”

But there is obviously some anger and frustration expressed as well. Later in “Up the Wolves,” Darnielle sings that he’s going to get himself in “fighting trim” and then makes a series of threats: “I’m gonna bribe the officials, I’m gonna kill all the judges, It’s gonna take you people years to recover from all of the damage.” The song “Lion’s teeth” is a revenge fantasy. Darnielle envisions “the king of the jungle asleep in his car,” and since “nobody in this house wants to own up to the truth,” he takes it upon himself to wrestle the beast. He reaches into the lion’s mouth, grabs onto “one long sharp tooth,” and holds on. The chaos that ensues makes him realize he is “gonna regret the day [he] was born,” but since there is no good way to end it, he is determined to “hold on for dear life.”

The mood lightens during the last two tracks of the album. They seem to be about forgiveness, understanding, and letting go. In “Pale Green Things,” Darnielle tells of hearing from his sister that their stepfather had died “at last, at last.” Upon hearing the news, one of the first memories Darnielle has is of he and his stepfather going to a racetrack to watch horses run. In one scene he recalls looking down at the cracked asphalt and “coming up through the cracks, pale green things.”

It’s a poignant ending to an album full of dark memories. It’s also fitting, as it adds to the bits of hope scattered throughout. Seeing plants push up through concrete or sprout up in detritus collected in gutters and corners of rooftops or even just up out of the dirt in the middle of summer when the ground is hot and bone dry, all of these moments are testaments to the tenacity of living things. Life can, rightfully so, be described as fleeting, short, and fragile – easily snuffed out and erased. But the struggle for life is also fierce, enduring, and relentless. Darnielle’s story is one example of that.

sedums in a hole 2

The “pale green things” that Darnielle saw also symbolize the struggles of the little guy, the underdog, the downtrodden – a tiny, fragile plant pushing its way past solid, suffocating asphalt. It’s a common theme in Darnielle’s music – his latest album is called Beat the Champ, for example. His song “Wild Sage” is also a sign of that ongoing theme.

I work with plants all day, and I am continually awed by them. Daily I am stopped in my tracks, practically forced by some plant to admire one or more of the fascinating features it displays. It doesn’t surprise me that Darnielle would use “pale green things” to express hope and resiliency. Every day I find some kind of hope in plants, that whatever tough thing we are going through, we can one day “wriggle up on dry land” – pale green things pushing up through asphalt, wild sage growing in the weeds.

Year of Pollination: An Argentinian Cactus and Its Unlikely Pollinator

A few weeks ago I wrote about pollination syndromes – sets of floral triats that are said to attract specific groups of pollinators. In that post I discussed how pollination syndromes have largely fallen out of favor as a reliable method of predicting the pollinators that will visit particular flowers. In this post I review a recent study involving a species of cactus in Argentina that, as the authors state in their abstract, “adds another example to the growing body of mismatches between floral syndrome and observed pollinator.”

Denmoza rhodacantha is one of many species of cacti found in Argentina. It is the only species in its genus, and it is widely distributed across the east slopes and foothills of the Andes. It is a slow growing cactus, maintaining a globulous (globe-shaped) form through its juvenile phase and developing a columnar form as it reaches maturity. D. rhodacantha can reach up to 4 meters tall and can live beyond 100 years of age. Individual plants can begin flowering in their juvenile stage. Flowers are red, nectar rich, scentless, and tubular. The stigma is lobed and is surrounded by a dense grouping of stamens. Both male and female reproductive organs are extended above the corolla. The flowers have been described by multiple sources as being hummingbird pollinated, not based on direct observation of hummingbirds visiting the flowers, but rather due to the floral traits of the species.

Denmoza rhodacantha illustration - image credit: www.eol.org

Denmoza rhodacantha illustration  (image credit: www.eol.org)

In a paper entitled, Flowering phenology and observations on the pollination biology of South American cacti – Denmoza rhodacantha, which was published in volume 20 of Haseltonia (the yearbook of the Cactus and Succulent Society of America), Urs Eggli and Mario Giorgetta discuss their findings after making detailed observations of a population of D. rhodacantha in early 2013 and late 2013 – early 2014. The population consisted of about 30 individuals (both juveniles and adults) located in the Calchaqui Valley near the village of Angastaco, Argentina. At least three other species with “hummingbird-syndrome flowers” were noted in the area, and three species of hummingbirds were observed during the study periods. Over 100 observation hours were logged, and during that time “the studied plants, their flowering phenology, and flower and fruit visitors were documented by means of photographs and video.”

The flowers of D. rhodacantha only persist for a few short days, and in that time their sexual organs are only receptive for about 24 hours. The flowers are self-sterile and so require a pollinator to cross pollinate them. Despite their red, tubular shape and abundant nectar, no hummingbirds were observed visiting the flowers. One individual hummingbird approached but quickly turned away. Hummingbirds were, however, observed visiting the flowers of an associated species, Tecoma fulva ssp. garrocha. Instead, a species of halictid bee (possibly in the genus Dialictus) was regularly observed visiting the flowers of D. rhodacantha. The bees collected pollen on their hind legs and abdomen and were seen crawling across the lobes of the stigma. None of them were found feeding on the nectar. In one observation, a flower was visited by a bee that was “already heavily loaded with the typical violet-coloured pollen of Denmoza,” suggesting that this particular bee species was seeking out these flowers for their pollen. Small, unidentified beetles and ants were seen entering the flowers to consume nectar, however they didn’t appear to be capable of offering a pollination service.

D. rhodacantha populations have been observed in many cases to produce few fruits, suggesting that pollination success is minimal. The authors witnessed “very low fruit set” in the population that they were studying, which was “in marked contrast to the almost 100% fruit set rates of the sympatric cactus species at the study site.” This observation wasn’t of great concern to the authors though, because juvenile plants are present in observed populations, so recruitment appears to be occurring. In this study, dehisced fruits were “rapidly visited by several unidentified species of ants of different sizes.” The “scant pulp” was harvested by smaller ants, and larger ants carried away the seeds after “cleaning them from adhering pulp.”

The authors propose at least two reasons why hummingbirds avoid the flowers of D. rhodacantha. The first being that the native hummingbirds have bills that are too short to reach the nectar inside the long tubular flowers, and often the flowers barely extend beyond the spines of the cactus which may deter the hummingbirds from approaching. The second reason is that other plants in the area flower during the same period and have nectar that is easier to gather. The authors acknowledge that this is just speculation, but it could help explain why the flowers are pollinated instead by an insect (the opportunist, generalist halictid bee species) for whom the flowers “could be considered to be ill adapted.” The authors go on to say, “it should be kept in mind, however, that adaptions do not have to be perfect, as long as they work sufficiently well.”

Patagona gigas (giant hummingbird) was observed approaching the flower of a Denmoza rhodacantha but quickly turned away (photo credit: www.eol.org)

Patagona gigas (giant hummingbird) was observed approaching the flower of a Denmoza rhodacantha but quickly turned away (photo credit: www.eol.org)

More Year of Pollination posts on Awkward Botany:

Podcast Review: Gastropod

I am a voracious consumer of podcasts and have a long list that I regularly listen to. Despite being unable to get through all of them in a reasonable amount of time, I am still continually on the lookout for more. I am particularly interested in science or educational podcasts – something that I can listen to for an hour or so and learn new things about the world, whether it be breaking news or historical facts.

This year a new podcast was born – a podcast exploring the science and history of food.  It is called Gastropod, and it has quickly found its way into my regular rotation of podcast consumption. It wasn’t a difficult climb either, as the general theme of the podcast is something that fascinates me and the hosts do a top-notch job presenting the information and telling the stories.

gastropod

Gastropod is hosted by Cynthia Graber and Nicola Twilley, each of whom have impressive backgrounds in researching and reporting on science, technology, food, and other topics for a variety of outlets both large and small. Among numerous other projects, Nicola has a blog called Edible Geography and Cynthia contributes regularly to Scientific American’s 60 Second Science podcast. Gastropod just happens to be their latest endeavor, and it is a welcome one.

Full length episodes of Gastropod are released once a month, with “snack-sized interludes” called Bites released in between to tide listeners over until the next helping. Since Gastropod is in its infancy (the first episode was released in September 2014), catching up on past episodes is simple. An afternoon of binge listening will do it.

Topics covered so far in full length episodes include the history and evolution of cutlery (which involves a taste test using spoons made of various metals), a discussion with Dan Barber about his book The Third Plate, an exploration of the emerging “microbe revolution” in agriculture (which piggybacks on an article that Cynthia wrote for NOVANext and which I reviewed back in July), and the rising popularity of kelp (“the new kale”) and the growth of seaweed farms. Bite-sized episodes have discussed things like modern day domestication of wild plants, underused American seafood resources, a meal replacement drink called Soylent, the expansive yet underappreciated (and disappearing) diversity of apples, and subnatural foods (smoked pigeon, anyone?).

So far every episode has been great, but if I had to pick a favorite, the interview with Dan Barber really stands out. His discussion of “ecosystem cuisines” – which moves beyond the farm-to-table movement – was new to me but seems like an important idea and one that I would like to see play a pivotal role in the development of science-based sustainable agriculture.

Gastropod is a young but promising podcast, and I look forward to many more captivating episodes in 2015 and beyond. Learn more about Gastropod and its hosts here.

Do you have a favorite podcast, science-themed or otherwise? Share it in the comments section below.

Developing Perennial Grain Crops from the Ground Up

This is the fourteenth in a series of posts reviewing the 17 articles found in the October 2014 Special Issue of American Journal of Botany, Speaking of Food: Connecting Basic and Applied Science.

Useful Insights from Evolutionary Biology for Developing Perennial Grain Crops by Lee R. DeHaan and David L. Van Tassel

The environmental impacts of modern agriculture are diverse and extensive. Our growing population needs to be fed; however, practices that have long-term negative effects on soil, water, and air quality are unsustainable. It is imperative that we find better alternatives. Developing perennial grain crops is one way that plant breeders are working to address this issue.

Moving from annual to perennial grain crops could potentially “increase water quality, reduce soil erosion, increase soil carbon, and improve habitat for wildlife.” It may also help “address the looming challenges of land degradation, food security, energy supply, and climate change.” Sounds like a major win if we can do it, right? And maybe we will, but first we must domesticate perennial grain varieties that perform on a similar level with annual ones. Most plant breeding today involves “improvement of previously domesticated species;” however, new perennial grain crops must be developed “de novo” (i.e. from wild species) in a matter of “decades rather than centuries to millennia.”

The roots of perennial grasses are considerably more extensive than annual grasses. (photo taken from an article about perennial grain crops at nationalgeographic.com)

The roots of perennial grasses are considerably more extensive than annual grasses, which helps reduce erosion and limits the need for fertilizer applications. (photo taken from an article about perennial grain crops at nationalgeographic.com)

Little has been published concerning “strategies for the wholesale remodeling of plants,” and so the authors reviewed findings in other fields, such as evolutionary biology and population genetics, in order to devise strategies for developing perennial grain crops. In this article, the authors summarize the published research they reviewed and describe how it relates to breeding perennial grains. It is a dense and lengthy article, so rather than offering a thorough review, I will briefly describe some of the main areas explored by the authors and then summarize their conclusions.

  • Trade-offs – This occurs when “resources allocated to one trait are unavailable for other traits.” Can perennial grain crops achieve yields comparable to annual varieties when faced with “trade-offs between seed and perennial organs?” Are such yields only attainable by “sacrificing longevity?” Strategies must be devised to “create herbaceous perennial crops with abundant seed production.”
  • Genetic Loads – This is simply defined as “the presence of deleterious alleles in a population.” In perennials, compared to annuals, “highly recessive deleterious alleles can arise at a rate faster than they can be efficiently eliminated.” Low seed set, among other things, may be a result of genetic load, so breeders of perennial grains must “account for and actively reduce genetic load.”
  • Bottlenecks – This refers to the loss of genetic diversity that occurs when population size is reduced. During a bottleneck, “previously rare deleterious recessive genes” can accumulate; however, some models indicate that “inbreeding and the associated bottlenecks may be useful in accelerating domestication.” If the population is isolated and introduced to a new environment simultaneously, “the newly exposed variation could now be adaptive.” Also, “if additional genetic diversity is required,” crosses can be made with wild populations.
  • Pleiotropy – This means that “a single gene [is] affecting multiple traits.” When domesticating wild species, “it would be useful to predict the prevalence of pleiotropy and whether to expect positive or negative pleiotropy to dominate.”
  • Epistatsis – This occurs when the effect of one gene is dependent on the presence of another gene or genes. This is particularly important if “large-effect genes” (pleiotropy) are dependent on a “particular genetic background to function optimally,” because “removing one critical element will severely impact the whole structure.” Perennial grain crops will have to undergo “many generations of plant breeding” in order to ensure that desired genes are found “within a genetic background where their benefits can be used without negative side effects.”
  • Cryptic Variation – Genetic variation is cryptic when “the inheritance of a particular mutated allele has no effect on phenotype and thus is hidden from natural and artificial selection.” New environments or mutations can release cryptic variation. “Ranking candidate species for their likely domesticability” may be an effective approach to cryptic variation. “The best candidates for domestication” originate from areas where conditions are highly favorable for growth and reproduction as opposed to areas that are “resource-limited,” because they have experienced periods of “selective enrichment” that make them suitable for agriculture settings.
  • Past Domestication – Domestication involves a series of “evolutionary changes that may decrease the fitness of a species in the wild but increase it under human management.” Historically this was “likely driven by unconscious selection pressures,” but currently it is “driven by conscious selection.” Studies of past domestication events reveal “somewhat predictable stages” in the process. Even though “current domestication efforts might not follow historical precedent,…the order in which traits are subjected to strong selection may be important.” Investigation into domestication also suggests that “dramatic changes” in plant morphology can be accomplished by selection for a “small number of major-effect genes,” so breeding programs are advised to “first search for useful major genes and evaluate their effects before moving on to strategies designed to accumulate genes of small effect.”
  • Selection – The authors describe “four major limits to selection.” 1.) Desired traits “may only exist in our imagination.” 2.) “The necessary genetic variation may not exist in the population,” and so waiting for or inducing mutations may be required. 3.) There may be “negative genetic correlations between characters being selected,” which will slow response to selection. This can be addressed by subdividing the population, evaluating the population in a new environment, or crossing with other populations. 4.) Conversely, “insufficient genetic correlation between traits may reduce the response to selection.” This makes “finding superior genotypes challenging,” so the authors suggest breeding plants in a “uniform environment,” and then later the plants can “accumulate genes for tolerance to specific stresses in separate populations.”
Intermediate wheatgrass (Thinopyrum intermedium) "produces much larger seeds in the greenhouse during the winter than ever seen in the field during the summer," an example of phenotypic plasticity. (photo credit: www.eol.org)

Intermediate wheatgrass (Thinopyrum intermedium) “produces much larger seeds in the greenhouse during the winter than ever seen in the field during the summer,” an example of phenotypic plasticity. (photo credit: www.eol.org)

The authors determined that the best candidates for perennial grain breeding programs are plant populations that have high diversity between and within individual plants, plastic phenotypes (i.e. adaptable to changes in the environment), and “an evolutionary history that includes adaptation to high resource environments.” They also suggest that breeders “focus more on the required functions [like nonshattering fruits] than on morphological traits” because it will increase the feasibility of evaluating “very large experimental populations.” The ideal experimental set-up would consist of very large populations of widely spaced plants that are subdivided in order to perform evaluations from various angles. Lastly, the authors encourage breeders to embrace new plant forms and breeding strategies and be open to the possibility that perennial grain crops may not “look like modern annual grains.”

An Underutilized Crop and the Cousins of a Popular One

This is the fourth in a series of posts reviewing the 17 articles found in the October 2014 Special Issue of American Journal of Botany, Speaking of Food: Connecting Basic and Applied Science.

Genetic Diversity in Carthamus tinctorius (Asteraceae; Safflower), An Underutilized Oilseed Crop by Stephanie A. Pearl and John M. Burke

Safflower (Carthamus tinctorius) was first domesticated in the Fertile Crescent about 4,500 years ago. It was originally desired for its flowers which were used in dye making. Commercial production of safflower began in North America in the 1950’s, where it is now mainly grown for its seeds which are used to produce oil for human consumption and are a main ingredient in bird seed mixes. Despite this, it is categorized as an “underutilized crop,” one “whose genetic potential has not been fully realized.” With increased interest in food security and feeding a growing population, researchers are turning to new and underutilized crops in order to increase the “availability of a diverse assemblage of crop species.”

A major step in improving a crop plant is understanding the genetic diversity that is available within its gene pool. With this aim in mind, researchers observed a “broad cross section of the safflower gene pool” by examining the DNA of a “worldwide sampling of diversity from the USDA germplasm collection [134 accessions consisting of 96 from the Old World and 38 from the New World]”, 48 lines from two major commercial safflower breeding programs in North America, and 8 wild collected safflower individuals.

Safflower, Carthamus tinctorius (photo credit: www.eol.org)

Safflower, Carthamus tinctorius (photo credit: www.eol.org)

Researchers found that the cultivated safflower varieties had a significant reduction in genetic diversity compared to the wild safflower plants. They also noted that the 96 Old World accessions could be grouped into “four clusters that corresponded to four different geographic regions that presumably represent somewhat distinct breeding pools.” They found that the wild safflowers “shared the greatest similarity with the Iran-Afghanistan-Turkey cluster” from the Old World group of accessions, a finding that “is consistent with safflower’s presumed Near Eastern center of origin.”

The researchers determined that there may be “agronomically favorable alleles present in wild safflowers,” and that “expanded efforts to access wild genetic diversity would facilitate the continued improvement of safflower.” Safflower is an important but underused oilseed crop that is adapted to dry climates; studies like this one that can lead to further crop improvements may help bring it out of niche production and into more widespread use.

The Wild Side of a Major Crop: Soybean’s Perennial Cousins from Down Under by Sue Sherman-Broyles, Aureliano Bombarely, Adrian F. Powell, Jane L. Doyle, Ashley N. Egan, Jeremy E. Coate, and Jeff J. Doyle

Soybean production is a major money maker in the United States ($43 billion total revenue in 2012); corn is the only crop that tops it. Soybean oil has myriad uses from food to feedstock and from pharmaceuticals to biofuel. As much as 57% of the world’s seed oil comes from soybeans produced in the United States. Hence, soybean (Glycine max and its wild progenitor, G. soja) is a well researched crop. Most research has been focused on the two annual species in the subgenus Soja; “less well known are the perennial wild relatives of soybean native to Australia, a diverse and interesting group that has been the focus of research in several laboratories.”

Given the agricultural importance of soybean and the increasing demands that will be placed on this crop as population rises, it is imperative that improvements continue to be made. Exploring soybean’s “extended gene pool,” including both its annual “brother” and its perennial “cousins,” will aid in making these improvements.

Soybean's wild annual relative, Glycine soja (photo credit: www.eol.org)

Soybean’s wild annual relative, Glycine soja (photo credit: www.eol.org)

Perennial soybeans in the subgenus Glycine include around 30 species. They are adapted to a wide variety of habitats “including desert, sandy beaches, rocky outcrops, and monsoonal, temperate, and subtropical forests.” They are of particular interest to researchers because several of them are allopolyploids, meaning that they have more than the usual two sets of chromosomes and that the additional sets of chromosomes were derived from different species. The authors state that “the distributional differences between diploids and independently formed polyploids [in the subgenus Glycine] suggests underlying ecological, physiological, and molecular differences related to genome doubling and has led to the development of the group as a model for studying allopolyploidy.” The group is also worth studying because they demonstrate resistance to various soybean pathogens and are adapted to a variety of environmental conditions.

By continuing to work with soybean’s perennial cousins to gain a better understanding of “polyploidy and legume evolution,” the authors hope to apply their research to achieve increases in soybean yields. Past research suggests that the study of polyploidy in the perennial soybeans could lead to crop improvements in areas such as photosynthesis, nitrogen fixation, flowering time, and disease resistance.

Glycine tomentella - one of soybean's perennial cousins (photo credit: www.eol.org)

Glycine tomentella – one of soybean’s perennial cousins (photo credit: www.eol.org)

 

The Legacy of a Leaky Dioecy

This is the second in a series of posts reviewing the 17 articles found in the October 2014 Special Issue of American Journal of Botany, Speaking of Food: Connecting Basic and Applied Science.

The Ecological Side of an Ethnobotanical Coin: Legacies in Historically Managed Trees by Nanci J. Ross, M. Henry H. Stevens, Andrew W. Rupiper, Ian Harkreader, and Laura A. Leben

As much as we like to think otherwise, pre-Colombian Native Americans altered the natural landscape in drastic and measurable ways. What we often consider an unaltered, pristine natural area before European colonization, actually has human fingerprints all throughout it. Determining just how deep these fingerprints go, however, is a challenge that requires careful and thorough anthropological and ecological studies.

Many such studies have been done, mostly at the community and ecosystem level. For example, Native Americans used fire extensively as a land management tool. This is how prairies were maintained as prairies. Today, forests in eastern North America that were once dominated by oaks have shifted over to maple dominated forests. This is largely (although not solely) because anthropogenic fires have ceased and wildfires are now suppressed. If fires had never been used as a management tool, would oaks (an important Native American food source) have ever maintained such dominance?

Native Americans participated in the domestication of numerous plant species. Much of this was done by way of – as Charles Darwin termed it – unconscious selection. Rather than selecting specific individuals and breeding them to achieve a desired type, they would simply discard undesirable plants and maintain desirable ones. Much of this selection, especially for woody, perennial species was done through land management techniques – such as fire – as opposed to typical cultivation. The authors of this article, interested in whether or not the “legacy” of this method of selection through land management could be observed today in an individual species, developed a preliminary study to begin to answer this question.

Diospyros – a genus in the ebony family (Ebenaceae) consisting of around 500 species – is mainly pantropical with a few species occurring in temperate regions. One temperate species is Diospyros virginiana – common persimmon – which “has a broad distribution throughout the United States from Connecticut south to Florida and west to the eastern edge of Nebraska.” Persimmons were used and managed extensively by Native Americans; however, they are “now viewed as a rare, weedy, wild fruit tree that is known primarily by hobbyists and wild harvesters.”

Fruits of common persimmon, Diospyros virginiana )photo credit: Wikimedia commons)

Fruits of common persimmon, Diospyros virginiana (photo credit: wikimedia commons)

D. virginiana is a dioecious species, meaning that it produces male flowers and female flower on separate individuals. Despite this, some individuals have been reported bearing both male and female flowers while others have been seen having perfect flowers along with either male or female flowers. Some trees have even been reported to be dioecious one year and then having perfect flowers and/or some combination of male, female, and perfect flowers the next year. This variation from the norm – what the authors call “leaky dioecy” – can either be a result of artificial selection or environmental pressures. The authors hypothesized that “leaky dioecy in D. virginiana is a result of historical selection by Native Americans for trees with copious fruit production.” This preliminary study was designed to see if climate and soil conditions might be the reason for the observed “sex expression.”

Skipping ahead, the authors found “no compelling evidence…to suggest segregation due to environmental factors,” signaling them to “move forward in [their] investigation of potential long-term impacts of historical management on the evolution of reproductive traits in American persimmon without the noise of a strong environmental driver.” The authors go on to discuss challenges in their study, including the length of time since “extensive management” making it hard to “uncover a signal of precontact management” and the limitations of having to rely on herbarium specimens. Either way, it is a worthy study to pursue. Even if it does not reveal the full story of how Native Americans managed persimmons in pre-colonial times, further insight into “adaptive flexibility in reproductive systems of long-lived perennial species” and other interesting things that persimmons might teach us will be well worth the effort.

Characteristic bark of common persimmon, Diospyros virginiana (photo credit: www.eol.org)

Characteristic bark of common persimmon, Diospyros virginiana (photo credit: www.eol.org)

 

On the Origins of Agriculture

This is the first in a series of posts reviewing the 17 articles found in the October 2014 Special Issue of American Journal of Botany, Speaking of Food: Connecting Basic and Applied Science.

Agricultural Origins from the Ground Up: Archaeological Approaches to Plant Domestication by BrieAnna S. Langlie, Natalie G. Mueller, Robert N. Spengler, and Gayle J. Fritz

Concern about food and the environment has been on the rise for a while now. Interest in healthy food grown and produced in a responsible manner has prompted people to investigate where their food is coming from. Archaeologists studying plant domestication and the rise of agriculture are also concerned with where our food came from; however, their research efforts are more focused on prehistoric events rather than on what is being stocked on today’s grocery store shelves.

The authors of this paper, all archaeologists specializing in paleoethnobotany or archaeobotany, offer a broad overview of the study of plant domestication and the emergence of agricultural economies. In their studies the authors “treat domestication as a process that originally preceded the formation of agricultural economies” and they define domestication as “genetic and morphological changes [in] a plant population in response to selective pressures imposed by cultivation.”

The first section of the paper explains why certain theoretical approaches to thinking about early plant domestication should be revised. These approaches include a centric view of plant domestication, single domestication trajectories, rapid pace plant domestication, and domestication being coupled with the development of agricultural economies.

The concept of centers of origin refers to specific regions in the world where the majority of crop domestication is thought to have occurred. Often these are regions where a high number of wild relatives of crops are found and where large civilizations emerged. But research has revealed numerous locations in various parts of the world where crop domestication occurred independently from traditional centers of origin leading archaeologists to further explore a noncentric view of domestication.

Related to the centers of origin debate is the single vs. multiple domestications debate. Single site domestication refers to a plant being domesticated in one location and then spread to other locations. Multiple site domestication refers to the same plant being domesticated in multiple sites independently. With the aid of genetic research, crops that were once thought to have been domesticated in a single region and then disseminated to other regions are now being shown to have multiple domestication sites. For example, it has been suggested that barley was domesticated independently in various locations, including the western Mediterranean region, Ethiopia, Morocco, and Tibet, as well as various parts of Southwest Asia.

Barley - Hordeum vulgare (photo credit: Wikimedia commons)

Barley – Hordeum vulgare (photo credit: wikimedia commons)

Concerning the pace of crop domestication, “many scholars have presented evidence that domestication was slower and more gradual than previously envisioned” probably because the first domesticated crop plants were not “developed by plant breeders with clear end products in mind.” On this point, the authors conclude that debates over timelines are “likely to continue for some time,” and that “close communication between geneticists and archaeologists, including those with archaeobotanical expertise” will be necessary to tell the full story.

Domestication is typically viewed as a precursor to agriculture. But the authors point out that domestication occurred first and that agriculture did not immediately follow. To illustrate this point, they tell the story of the bottle gourd (Lagenaria siceraria), possibly the oldest domesticated plant. Native to Africa, the gourds likely floated across the Atlantic Ocean to the Americas (they also made their way to East Asia and other places) where they were domesticated multiple times by various groups of people at least 10,000 years ago. The gourds had numerous potential uses including containers, rattles, net floats, and even food (the young, immature fruits are edible). Large gourds with thick rinds were preferred by early humans, and the seeds of these were planted. The plants needed little attention, so caring for them did not mean having to adopt a sedentary lifestyle. The authors conclude that “although this example might seem peripheral to the development of serious food-producing economies or social complexity, it highlights early, intimate plant-people relationships and the abilities of people to modify their environments to enhance availability of desirable resources.”

Bottle gourds (Lagenaria sicericia) were possibly the earliest domesticated plant species (photo credit: eol.org)

Bottle gourds (Lagenaria siceraria) were possibly the earliest domesticated plant species (photo credit: www.eol.org)

In the next section of the paper, the authors discuss new and improved methods being used today to “address questions about the timing, scale, and causes of domestication.” Narrowing down the dates that plants were first domesticated is a major interest of archaeologists, and advances in radiocarbon dating have assisted in this quest. When DNA is being extracted, it is important to know the age of the material being analyzed in order to better reveal its history. Combining several methods for analyzing the data – especially as these methods are improved and new methods are developed – is  crucial.

Advances in microscopy have helped to better analyze morphological changes in plants over time as well as to examine microfossils, like starch granules, pollen, and phytoliths (silica particles left behind after a plant decays). Observing phenotypic changes in fruits, seeds, and other plant parts and determining the presence of things like starch granules and pollen helps us to understand the pace and scope of domestication as well as to determine when certain domesticated plants were introduced to areas outside of their perceived center of origin. Advances in the science of taphonomy – “the study of decay processes following the death of an organism until it is fossilized or exhumed” – also aid researchers in better understanding the stories behind plant domestication.

Scanning electron microscope (SEM) image of pollen grains from common sunflower - Helianthus annuus (photo credit: Wikimedia commons)

Scanning electron microscope (SEM) image of pollen grains from common sunflower – Helianthus annuus (photo credit: wikimedia commons)

Working with experts in other areas of archaeology will also lead to greater understanding of plant domestication and the emergence of agricultural economies. The authors give examples of how studying human and animal bones can provide information about plant domestication and state that “other classes of archaeological data, such as household structure and storage features, agricultural and culinary tools, and soil morphology” will aid in better understanding “how and why domestication occurred as an historical and evolutionary process.”

Next the authors discuss anthropological views on the causes of plant domestication. One of the main debates among anthropologists when discussing agriculture is whether or not early humans were “pushed” or “pulled” into agricultural economies. Did increasing populations and/or decreasing availability of resources compel people to produce more of their own food or did human populations cultivate and domesticate plants in areas where resources were readily available, allowing them to live sedentary and stable existences? The authors conclude that “it is not necessary for one of these scenarios to explain all transitions to agriculture” as agriculture emerged independently in multiple locations around the globe, each time under its own specific set of circumstances.

The final section of the paper is a short discussion on the relatively under-researched topic of the diet and cuisine of ancient humans. Surely, a desire for particular foods and beverages lead to cultivation and domestication. The authors assert that “cuisines provide people with social identities, nationalism, spirituality, and a package of cognitive tools for coping with their environment. Without a doubt, culturally constructed food preferences played a role in the origins and spread of agriculture.”

This is a brief summary of a well-researched and detailed article concerning the fascinating topic of early plant domestication. Honestly, my synopsis hardly does it justice, so I urge you to read it for yourself if this topic interests you. I particularly appreciated the emphasis that the authors placed on using multiple methods and tools to collect and interpret data and how our perspectives should be revised as new and updated data emerge. The call for multiple disciplines to come together in collaboration to better understand the history of domestication and agriculture is also encouraging. In summation the authors state that “archaeological evidence indicates that every case of transition form hunter-gatherers to agricultural economies was unique … Identifying the specific nature of when, where, and how domestication occurred will undoubtedly elucidate how agriculture transformed the trajectory of human societies.”