To Fruit or Not to Fruit – The Story of Mast Seeding

Perennial plants that are able to reproduce multiple times during their lifetime don’t always yield the same amount of seeds each time they reproduce. For some of these plants, there is a stark difference between high-yield years and low-yield years, with low-yield years outnumbering the occasional high-yield years. In years when yields are high, fruit production can seem excessive. This phenomenon is called masting, or mast seeding, and it takes place at the population level. That is, during a mast year, virtually all individuals in a population of a certain species synchronously produce a bumper crop of seeds.

Plants of many types can be masting species. Bitterroot milkvetch (Astragalus scaphoides) and a tussock grass known as Chionochloa pallens are masting species, for example. However, this behavior is most commonly observed in trees, notably nut producing trees like oaks, beeches, and pecans. As you might imagine, the boom and bust cycles of mast seeding plant populations can have dramatic ecological effects. Animals that eat acorns, for example, are greeted with a veritable buffet in a mast year, which can increase their rate of reproduction for a spell. Then, in years when acorns are scarce, the populations of those animals can plummet.

How and why masting happens is not well understood. It is particularly baffling because masting populations can cover considerably large geographic areas. How do trees covering several square miles all “know” that this is the year to really go for it? While a number of possible explanations have been explored, there is still much to learn, especially since so many different species growing in such varied environments exhibit this behavior.

A popular explanation for mast seeding is predator satiation. The fruits and seeds of plants are important food sources for many animals. When a population of plants produces fruit in an unusually high abundance, its predators won’t possibly be able to eat them all. At least a few seeds will be left behind and can sprout and grow into new plants. By satiating their predators they help ensure the survival of future generations. However, even if a plant species has evolved to behave this way, it still doesn’t explain how all the plants in a particular population seem to know when it’s time for another mast year.

Predator satiation is an example of an economy of scale, which essentially means that individual plants benefit when the population acts as a whole. Another economy of scale that helps explain masting is pollen coupling. This has to do with the timing of flowering in cross pollinating species. If individuals flower out of sync with one another, the opportunities for cross pollination are limited. However, if individuals in a population flower simultaneously, more flowers will be pollinated which leads to increased fruit and seed production.  For this to happen, there are at least two factors that come into play. First, the plants have to have enough resources to flower. Making flowers is expensive, and if the resources to do so (like carbon, nitrogen, and water) aren’t available, it won’t happen. Second, weather conditions have to work in their favor. Timing of flowering depends, not only on daylength, but on temperature, rainfall, and other local weather conditions. If individuals across a population aren’t experiencing similar weather, the timing of their flowering may be off.

pollen-producing (male) flowers of pecan (Carya illinoinensis) — via wikimedia commons; Clemson University

Resource matching and resource budgeting are other proposed explanations for masting. Since plants can only use the resources available to them for things like growth and reproduction, they vary each year in how much growing or reproducing they do. Theoretically, if plants in a population are all going to flower in the same year, they all have to have access to a similar amount of resources. Often, the year following a mast year, there is a significant drop in fruit production, as though the plants have used up all of their available resources for reproduction and are taking a break. Some hypothesize that masting is a result of resource storage, and that plants save up resources for several years until they have what they need for yet another big year.

Another thing to consider is how plant hormones might play a role in masting. Gene expression and environmental cues both result in hormonal responses in plants. As Bogdziewicz, et al. write in Ecology Letters (2020), “if hormones and the genes that control them are hypersensitive to an environmental signal, masting can be at least partially independent of resource- and pollen-based mechanisms.” This and other potential explanations for masting are, at this point, largely theoretical. In their paper, Bogdziewicz, et al. propose a number of ways that theoretical predictions can be experimentally tested. If the “research agenda” outlined in their paper is carried out, they believe it will “take the biology of masting from a largely observational field of ecology to one rooted in mechanistic understanding.”

In her book, Braiding Sweetgrass, Robin Wall Kimmerer proposes an additional explanation for the mechanisms behind masting – the trees are talking to one another. Not in the way that you and I might converse, but rather by sending signals through the air via pheromones and underground via complex fungal networks. There is already evidence for this behavior when it comes to plants defending themselves from predators and in sharing resources, so why not in planning when to reproduce? As Kimmerer writes regarding masting, “the trees act not as individuals, but somehow as a collective.” The question now is how.

seedlings of European beech (Fagus sylvatica), a mast-seeding species — via wikimedia commons; user: Beentree

Additional Resources:

Advertisement

Seed Oddities: Vivipary

Seeds house and protect infant plants. When released from their parent plant, they commence a journey that, if successful, will bring them to a suitable location where they can take up residence (upon germination) and carry out a life similar to that of their parents. Their seed coats (and often – in the case of angiosperms – the fruits they were born in) help direct them and protect them in this journey. Physical and chemical factors inhibit them from germinating prematurely – a phenomenon known as dormancy. Agents of dispersal and mechanisms of dormancy allow seeds to travel through time and space — promises of new plants yet to be realized.

There is rarely a need for a seed to germinate immediately upon reaching maturity. In many cases, such as in temperate climates or in times of drought or low light, germinating too soon could be detrimental. The most vulnerable time in a plant’s life comes when it is a young seedling. Thus, finding the right time and space to get a good start is imperative.

The fruits (and accompanying seeds) of doubleclaw (Proboscidea parviflora) are well equipped for long distance dispersal. (via wikimedia commons)

In rare instances, dispersal via seeds offers little advantage; instead, dispersal of live seedlings or propagules is preferable. For this select group of plants, vivipary is part of the reproductive strategy. In vivipary, seeds lack dormancy. Rather than waiting to be dispersed before germinating, viviparous seeds germinate inside of fruits that are still attached to their parent plants.

Occasionally, seeds are observed germinating inside tomatoes, citrus, squash, and other fruits; however, these fruits are usually overripe and often detached from the plant. In these instances, what is referred to as “vivipary” is not a genetic predisposition or part of the reproductive strategy. It’s just happenstance – a fun anomaly. The type of vivipary discussed in this post is actually quite rare, occurring in only a handful of species and prevalent in a select number of environments.

There are three main types of vivipary: true vivipary, cryptovivipary, and pseudovivipary. In true vivipary, a seed germinates inside the fruit and pushes through the fruit wall before the fruit is released. In cryptovivipary, a seed germinates inside the fruit but remains inside until after the fruit drops or splits open. Pseudovivipary is the production of bulbils or plantlets in the flower head. It does not involve seeds and is, instead, a form of asexual reproduction that will be discussed in a future post.

True vivipary is commonly seen among plant communities located in shallow, marine habitats in tropical or subtropical regions, such as mangroves or seagrasses. The term mangrove is used generally to describe a community of plants found in coastal areas growing in saline or brackish water. It also refers more specifically to the small trees and shrubs found in such environments. While not all mangrove species are viviparous, many of them are.

Seedlings of viviparous mangrove species emerge from the fruit and drop from the plant into the salty water below. From there they have the potential to float long or short distances before taking root. They may land in the soil upright, but often, as the tide recedes, they find themselves lying horizontally on the soil. Luckily, they have the remarkable ability to take root and quickly stand themselves up. Doing this allows young plants to keep their “heads” above water as the tides return. It also helps protect the shoot tips from herbivory.

Viviparous seedlings emerging from the fruits of red mangrove (Rhizophora mangle) via wikimedia commons

Another example of vivipary is found in the epiphytic cactus (and close relative of tan hua), Epiphyllum phyllanthus. Commonly known as climbing cactus, this species was studied by researchers in Brazil who harvested fruits at various stages to observe the development of the viviparous seedlings. They then planted the seedlings on three different substrates to evaluate their survival and establishment.

Epiphyllum phyllanthus is cryptoviviparous, so the germinated seeds don’t leave the fruit until after it splits open. In a sense, the mother plant is caring for her offspring before sending them out into the world. The researchers see this as “a form of parental care with subsequent conspecific [belonging to the same species] nursing.” Since the plant is epiphytic – meaning that it grows on the surface of another plant rather than in the soil – local dispersal is important, since there is no guarantee that seeds or propagules dispersed away from the host plant will find another suitable site. That being said, the researchers believe that “vivipary involves adaptation to local dispersal,” since “the greater the dispersal distance is, the higher the risk and the lower the probability of optimal dispersion.”

Epiphyllum phyllanthus via Useful Tropical Plants

While some viviparous seedlings of mangroves can travel long distances from their parent plant and don’t always root into the ground immediately, they maintain their advantage over seeds because they can root in quickly upon reaching a suitable site and lift themselves up above rising tide waters. As the authors of the Epiphyllum study put it, vivipary is “a reproductive advantage that, in addition to allowing propagules to root and grow almost immediately, favors quick establishment whenever seedlings land on suitable substrates.”

There is still much to learn about this unusual and rare botanical feature. The research that does exist is relatively scant, so it will be interesting to see what more we can discover. For now, check out the following resources:

Also, check out this You Tube video of :

Death by Crab Spider, part two

Crab spiders that hunt in flowers prey on pollinating insects. Thus, pollinating insects tend to avoid flowers that harbor crab spiders. We established this in part one. Now we ask, what effect, if any, does this interaction have on a crab spider infested plant’s ability to reproduce? More importantly, what are the evolutionary implications of this relationship?

In a study published in Ecological Entomology earlier this year, Gavini, et al. found that pollinating insects avoided the flowers of Peruvian lily (Alstroemeria aurea) when artificial spiders of various colors and sizes were placed in them. Bumblebees and other bees were the most frequent visitors to the flowers and were also the group “most affected by the presence of artificial spiders, decreasing the number of flowers visited and time spent in the inflorescences.” This avoidance had a notable effect on plant reproduction, namely a 25% reduction in seed set and a 15% reduction in fruit weight. The most abundant and effective pollinator, the buff-tailed bumblebee, was deterred by the spiders, leading the researchers to conclude that, “changes in pollinator behavior may translate into changes in plant fitness when ambush predators alter the behavior of the most effective pollinators.”

Peruvian lily (Alstroemeria aurea) via wikimedia commons

But missing from this discussion is the fact that crab spiders don’t only eat pollinators. Any flower visiting insect may become a crab spider’s prey, and that includes florivores. In which case, crab spiders can benefit a plant, saving it from reproduction losses by eating insects that eat flowers.

In April of this year, Nature Communications published a study by Knauer, et al. that examined the trade-off that occurs when crab spiders are preying on both pollinators and florivores. Four populations of buckler-mustard (Biscutella laevigata ssp. laevigata) were selected for this study. Bees are buckler-mustard’s main pollinator, and in concurrence with other studies, they significantly avoided flowers when crab spiders were present.  Knauer, et al. also determined that bees and crab spiders are attracted to the same floral scent compound, β-ocimene. This compound not only attracts pollinators, but is also emitted when plants experience herbivory, possibly to attract predators to come and prey on whatever is eating them.

buckler-mustard (Biscutella laevigata) via wikimedia commons

In this study, the predators called upon were crab spiders. Florivores had a notable impact on plants in this study, and the researchers found that when crab spiders were present, florivores were significantly reduced, thereby reducing their negative impact. They also noted that “crab spiders showed a significant preference for [florivore-infested] plants over control plants.”

And so it is, a plant’s floral scent compound attracts pollinators while simultaneously attracting the pollinator’s enemy, who is also called in to protect the flower from being eaten. Luckily, in this case, buckler-mustard is easily pollinated, so the loss of a few pollinators isn’t likely to have a strong negative effect on reproduction. As the authors write, “pollinators are usually abundant and the low number of ovules per flower makes a few pollen grains sufficient for a full seed set.”

crab spider on zinnia

But none of these studies are one size fits all. Predator-pollinator-plant interactions are still not well understood, and there is much to learn through future research. A meta-analysis published in the Journal of Animal Ecology in 2011 looked at the research that had been done up to that point. Included were a range of studies involving sit-and-wait predators (like crab spiders and lizards) as well as active hunters (like birds and ants) and the effects of predation on both pollinators and plant-eating insects. They concluded that where carnivores “disrupted plant-pollinator interactions, plant fitness was reduced by 17%,” but thanks to predation of herbivores, carnivores helped increase plant fitness by 51%. This suggests that carnivores, overall, have a net positive effect on plant fitness.

Many pollinating insects have an advantage over plant-eating insects because they move quickly from flower to flower and plant to plant, unlike many herbivores which move more slowly. This protects pollinators from predation and helps explain why plant-pollinator interactions are not disrupted as easily by carnivores. Additionally, as the authors note, “plants may be buffered against loss of pollination by attracting different types of pollinators, some of which are inaccessible to carnivores.”

But again, there is still so much to discover about these complex interactions. One way to gain a better understanding is to investigate the effects of predators on both pollinators and herbivores in the same study, since many of the papers included in the meta-analysis focused on only one or the other. As far as crab spiders go, Knauer, et al. highlight their importance in such studies. There are so many different species of crab spiders, and they are commonly found on flowers around the globe, so “their impact on plant evolution may be widespread among angiosperms.”

In other words, while we still have a lot to learn, the impact these tiny but skillful hunters have should not be underestimated.