In Praise of Poison Ivy

This is a guest post by Margaret Gargiullo. Visit her website, Plants of Suburbia, and check out her books for sale on Amazon.


No one seems to like Toxicodendron radicans, but poison ivy is an important plant in our urban and suburban natural areas. Poison ivy (Anacardiaceae, the cashew family) is a common woody vine, native to the United States and Canada from Nova Scotia to Florida, west to Michigan and Texas. It is also found in Central America as far south as Guatemala. It is all but ubiquitous in natural areas in the Mid-Atlantic United States. It has been recorded in over 70 wooded parks and other natural areas in New York City.

Leaflets of three? Let if be. Poison ivy (Toxicodendron radicans). photo credit: wikimedia commons

Leaflets of three? Let if be. Poison ivy (Toxicodendron radicans) – photo credit: wikimedia commons

Poison ivy does have certain drawbacks for many people who are allergic to its oily sap. The toxins in poison ivy sap are called urushiols, chemicals containing a benzene ring with two hydroxyl groups (catechol) and an alkyl group of various sorts (CnHn+1).

These chemicals can cause itching and blistering of skin but they are made by the plant to protect it from being eaten by insects and vertebrate herbivores such as rabbits and deer.

Poison ivy is recognized in summer by its alternate leaves with three, shiny leaflets and by the hairy-looking aerial roots growing along its stems. In autumn the leaves rival those of sugar maple for red and orange colors. Winter leaf buds are narrow and pointed, without scales (naked). It forms extensive colonies from underground stems and can cover large areas of the forest floor with an understory of vertical stems, especially in disturbed woodlands and edges. However, It generally only blooms and sets fruit when it finds a tree to climb. When a poison ivy stem encounters a tree trunk, or other vertical surface, it clings tightly with its aerial roots and climbs upward, reaching for the light (unlike several notorious exotic vines, it does not twine around or strangle trees). Once it has found enough light, it sends out long, horizontal branches that produce flowers and fruit.

Flowers of poison ivy are small and greenish-white, not often noticed, except by the honeybees and native bees which visit them for nectar and exchange pollen among the flowers. Honey made from poison ivy nectar is not toxic. Fruits of poison ivy are small, gray-white, waxy-coated berries that can remain on the vine well into winter. They are eaten by woodpeckers, yellow-rumped warblers, and other birds. Crows use poison ivy berries as crop grist (instead of, or along with, small stones) and are major dispersers of the seeds.

The fruits of poison ivy (Toxicodendron radicans) - photo credit: Daniel Murphy

The fruits of poison ivy (Toxicodendron radicans) – photo credit: Daniel Murphy

It is as a ground cover that poison ivy performs its most vital functions in urban and suburban woodlands. It can grow in almost any soil from dry, sterile, black dune sand, to swamp forest edges, to concrete rubble in fill soils, and along highways. It enjoys full sun but can grow just fine in closed canopy woodlands. It is an ideal ground cover, holding soil in place on the steepest slopes, while collecting and holding leaf litter and sticks that decay to form rich humus. It captures rain, causing the water to sink into the ground, slowing runoff, renewing groundwater, filtering out pollutants, and helping to prevent flooding.

Poison ivy is usually found with many other plants growing up through it – larger herbs, shrubs, and tree seedlings that also live in the forest understory. It seems to “get along” with other plants, unlike Japanese honeysuckle or Asian bittersweet, which crowd out or smother other plants. Poison ivy is also important as shelter for birds and many invertebrates.

While those who are severely allergic to poison ivy have reason to dislike and avoid it, Toxicodendron radicans has an important place in our natural areas. No one would advocate letting it grow in playgrounds, picnic areas, or along heavily used trail margins, but it belongs in our woods and fields and should be treated with respect, not hatred. Recognize it but don’t root it out.


Further Reading: Uva, R. H., J.C. Neal and J. M. DiTomaso. 1997. Weeds of the Northeast. Comstock Publishing. Ithaca, NY.

This piece was originally published in the New York City Dept. of Parks & Recreation, Daily Plant.

Book Review: The New Wild

What if we were to look at invasive species with fresh eyes? Traditionally we have viewed them as interlopers hellbent on environmental destruction, but have we considered the good they can do? Should our efforts to eradicate them be tempered – eliminating them when it seems absolutely necessary, but accepting them when they are doing some good; welcoming them when they have something to offer. What does their presence mean anyway? What does it say about the ecosystems they inhabit and about us? Invasive species are convenient scapegoats, taking the blame for much of the ecological devastation that we started in the first place. Is that justified?

This is, essentially, the theme of The New Wild, a book by Fred Pearce that urges us to reconsider the ways we think, talk, and act towards invasive species. More than that, it is about dumping the idea that pristine nature (a mythological concept anyway, and one that is not all that useful) is the only true wild, and that nature invaded by alien species is a lesser thing that needs to be fixed. The truth is, nature is and always has been in a constant state of flux, and it is unconcerned about the provenance of the species that compose it. As Pearce puts it, if it’s doing “a useful job,” “it matters not a jot where a species comes from.”


Invasion biology is a relatively new field of study, stemming from the publishing of Charles Elton’s book, The Ecology of Invasions by Animals and Plants, in 1958. For thousands of years, humans have had a hand in moving species of all kinds around the planet, but it was in the latter half of the 20th century that our awareness of the ecological damage that some of these species can do really developed. Since then we have made great efforts to remove such species and put things back the way we found them. The zeal with which we have done so hasn’t always been justified or effective, and throughout what at times has felt like an all out war against foreigners, a profound sense of animosity and suspicion towards anything non-native has taken root in our psyche.

Pearce hopes to mitigate these feelings and get us to reconsider some of our actions. To start with, he calls into question the distinction between aliens and natives: “A broad time horizon shows there is no such thing as a native species. All lodgings are temporary and all ecosystems in a constant flux, the victims of circumstance and geological accident.” Also, “many aliens are so well integrated that they are assumed to be native,” and “species come and go so much, as a result of both human and natural forces, that conventional hard distinctions about what belongs where have long been all but meaningless.”

Instead of judging a species by its provenance, “we should treat species on their merits and learn a little tolerance and respect for foreigners.” While “being alien can sometimes be problematic,” it can equally result in the renewal of “flagging ecosystems, creating new space for natives and providing ecosystem services.” Seeing that those services are in place is what should really matter, and “[ecological services] are best done by the species on hand that do it best.” After all, nature is not a system of “preordained perfection,” but instead “a workable mishmash of species, constantly reorganized by the throw of the dice.”

In his criticisms of the field of invasion biology, Pearce investigates some of the “constantly recycled ‘facts’ about alien species.” He finds many of the claims to be unfounded and oft-repeated statistics to be blatant misrepresentations of the original studies. He concludes that “some of the most widely used statistics in the canon of invasion biology do not stand up.” To support his point, he offers several examples of how alien species have added to the biodiversity in certain ecosystems and he shares stories that “show how we instinctively blame aliens for ecological problems that may have a lot more to do with our own treatment of nature.”

Immigrant Killers by Carolyn King, one of many books making a case for the war on alien species.

Immigrant Killers by Carolyn King, one of many books published in the past few decades that makes the case for waging war on alien species.

In so many words, Pearce’s stance is that the classic “aliens are bad, and natives are good” approach is outdated – “nature doesn’t care about conservationists’ artificial divide between urban and rural or between native and alien species,” which means that our perception of aliens should shift from being “part of the problem to part of the solution.” Abandoned farmlands, secondary forests, recolonized waste places, urban sprawl, and other novel ecosystems across the globe offer explicit examples of species from all backgrounds coming together to create functional habitats. This is the new wild.

Pearce is not advocating that we throw in the towel and let invasive species run rampant: “It would be foolish to claim that alien species never do any harm or that efforts to uproot them are always doomed to fail.” His support for the new wild is “not a call to let it rip.” Instead, “conservation in the twenty-first century requires an open-minded assessment of what might work – not a sullen retreat into blinkered orthodoxy.” So, rather than try to stop the flux of nature (an act that is decidedly “anti-nature”), let’s see where it goes, alien species and all; and when we do decide to beat back invasives and intervene “to preserve what we like,” we should be mindful that nature may be “traveling in a different direction.” As Pearce writes, “the new wild is flourishing, and it will do better if we allow it to have its head.”


Obviously this is a controversial topic, but the ideas in this book are worth exploring further. Pearce’s notes are extensive, and I intend to read through many of his resources. Stay tuned for more posts. Meanwhile, you can listen to an interview with Pearce on this episode of Talking Plants. For a more critical veiw of Pearce’s book, check out these reviews by Los Angeles Review of Books and The EEB & Flow.


Introducing Invasive Species

The terms “invasive” or “invasive species” get thrown around a lot. They are frequently used to describe anything that is “misbehaving,” or acting in a way that doesn’t fit our idealized vision for how a landscape should look and function. Oftentimes a species that is introduced (by humans) or is not native to an area automatically gets labeled invasive, even if it isn’t acting aggressively or having any sort of dramatic impact on the ecosystem. It is an alien species in an alien environment; it has invaded, therefore it is invasive.

image credit: cartoon movement

image credit: cartoon movement

Determining what is actually invasive in what location and at what time is much more complex than that. We do our best to understand the natural features and functions of ecosystems, and we single out any species, whether introduced or not, that is acting to upset things. That species is considered invasive and, if the goal is to restore the natural balance, it must be controlled. To what degree a species should be controlled depends on the degree that it is upsetting things. Ultimately, it comes down to human judgement. Hopefully that judgement is based on the best available evidence, but that isn’t always the case.

But we are getting ahead of ourselves. What I mostly want to accomplish with this post is to introduce the concept of invasive species and point you to a selection of resources to learn more about them. I defined invasive species in a post I wrote back in August 2015, so I will repeat myself here:

“Invasive species” is often used inappropriately to refer to any species that is found outside of its historic native range (i.e. the area in which it evolved to its present form). More appropriate terms for such species are “introduced,” “alien,” “exotic,” “non-native,” and “non-indigenous.” The legal definition of an invasive species (according to the US government) is “an alien species that does or is likely to cause economic or environmental harm or harm to human health.” Even though this definition specifically refers to “alien species,” it is possible for native species to behave invasively.

These terms refer not just to plants but to all living organisms. The term “noxious weed,” on the other hand, is specific to plants. A noxious weed is a plant species that has been designated by a Federal, State, or county government as “injurious to public health, agriculture, recreation, wildlife, or property.” A “weed” is simply a plant that, from a human perspective, is growing in the wrong place, and any plant at any point could be determined to be a weed if a human says so.

Invasive species are easily one of the most popular ecological and environmental topics, and resources about them abound – some more credible than others. Here is a list of places to start:

That should get you started. There are, of course, numerous books on the subject, as well as a number of peer-reviewed journals dedicated to biological invasions. You should also be aware that IUCN maintains a list of the Top 100 World’s Worst Invasive Species and that there is a National Invasive Species Awareness Week, which is quickly approaching. This episode of Native Plant Podcast with Jamie Reaser (executive director of National Invasive Species Council) offers an informative discussion about invasive species, and a search for “invasive species” on You Tube brings up dozens of results including this brief, animated video:


I want to believe that we are doing the right thing when we make concerted efforts to remove invasive species and restore natural areas, but I’m skeptical. The reason why I have chosen to spend an indefinite amount of time exploring the topic of invasive species is because I truly want us to get it right. Yet I don’t even know that there is a “right.” It seems to me that there are endless trajectories – each one of them addressing different objectives and producing different outcomes. In a way we are playing God, regardless of which approach we take. We are making decisions for nature as if we know what’s best for it or that there even is a “best.”

Humans have had major impacts on virtually every square inch of the planet and have been placing our fingerprints on every ecosystem we touch since long before we became the humans we are today, and so it is difficult for me to envision a planet sans humans. It is also difficult for me to buy into the idea that our planet should look as though humans haven’t touched it (i.e. pristine). Because we have been touching it – for hundreds of thousands of years. Efforts to rewind time to before introductions occurred or to hold an ecosystem in stasis, securing life for only those species that “belong” there, seem noble yet fanciful at best and misguided, arrogant, and fruitless at worst.

To be the best conservationists we can be, we probably need to find a middle ground regarding invasive species – not a deter and eliminate at all costs approach, but also not a complete surrender/all are welcome and all can stay stance. Somewhere in between seems reasonable, acknowledging that the strategy taken will be different every time based on the location, the species in question, and our objectives. Of course, none of my beliefs or opinions on this topic (or any topic for that matter) are fully formed. I am trying to do my best to maintain an open mind, seeking out the best information available and following the evidence where it takes me. A topic as complex as invasion biology, however, is never going to be easy to finalize one’s opinions on, and so this journey will be boundless. I hope you will join me.


Last but not least, here are two articles that discuss updating our approach to dealing with invasive species:


Our Urban Planet

As the human population balloons and cities sprawl, ecological studies in urban areas are following suit. Nature has always been a component of cities – we can’t escape it after all, as hard as we may try – but urban nature (and the enhancement of it) has become increasingly important as the human species continues to urbanize. More and more we are seeing the importance of melding the built environment with the natural one. Our motivations are diverse – albeit largely anthropocentric. But that’s fine. As we make improvements to the live-ability of cities for human’s sake, other living beings benefit. We are finding ways to get along with our neighbors, and we are learning to appreciate and value them as well.

Since 2008, the world’s urban population has outnumbered its rural population, and it is predicted that by 2050, more than two-thirds of humans will be urbanites. Immense resources are required to support such large, concentrated populations, and most of these resources are produced outside of urban areas. This results in an ecological footprint that is significantly larger than the city itself. Additionally, waste and pollution produced within cities negatively effects surrounding areas and beyond in abundant ways.

st louis

In May of this year, Science put out a special issue entitled, “Urban Planet,” which features a series of articles that address some of the latest research in urban ecology and discuss current developments and future research needs – a sort of state of the union address for urban ecology in 2016. A series of 13 articles covered diverse topics including city-integrated renewable energy, innovative solutions to water challenges, transportation and air pollution, and food security in an urban world. Rodent-borne diseases in urban slums, creating sustainable cities in China, and Vancouver’s push to become the “greenest city” were also features of this special issue.

The issue serves to highlight the importance of this field of study and the urgency there is in finding solutions to major environmental challenges. But it also offers hope. Bright minds are working towards solutions to this century’s biggest problems as we look towards a more sustainable future. The introduction emphasizes that “the rise of cities is not…all doom and gloom.” Urbanization has upsides: “consolidating human populations helps shrink our individual environmental footprints, and cities are serving as living laboratories for further improvements.”

Urban ecology is a relatively recent subfield of ecology. In The Ecological Future of Cities, Mark McDonnell and Ian MacGregor-Fors describe how it “arose in the 1990’s out of a need to increase our…understanding of the ecological and human dimensions of urban ecosystems.” Initially the field was mainly concerned with biodiversity and the ecosystem processes and services found within cities. Findings from these studies are now influencing urban planning, design, and management. Such decisions are also informed by more recent studies in the field of urban ecology, which has grown to include “issues of sustainability, environmental quality, and human well-being in urban ecosystems.”

The authors note that our ecological understanding of cities was waylaid because “nature within cites was long considered unworthy of study, except when it involved solving environmental problems that threatened human well-being.” Cities were perceived as unnatural because humans had “disrupt[ed] the natural ecological conditions and processes that scientists [were] attempting to understand.” Today, ecologists recognize that studies in the field of urban ecology help us better understand basic ecological principles, while also providing “valuable information for creating liveable, healthy, and resilient urban environments.”

Studies in urban ecology have also increased our understanding of the mechanisms involved in evolution and adaptation. To illustrate this, the authors offer examples of birds that modified their songs “to communicate at noisy locations” and plants that shifted their seed dispersal strategies to survive in “highly fragmented urban habitats.” The authors also highlight the importance of maintaining or restoring natural vegetation in urban areas in order to help preserve struggling species of plants and animals, citing a study that found that “fewer local plant extinctions occurred in cities that maintained at least 30% native vegetation cover.” Additionally, the authors note that “the scope of urban ecology research extends well beyond city limits,” since urbanization is partly to blame for numerous environmental issues including habitat loss and fragmentation, biodiversity loss, climate change, and invasive species.

In Living in Cities, Naturally, Terry Hartig and Peter Kahn, Jr. address the topic of mental health and urban living. While there is still much to learn about the relationship between the two, it is generally believed that viewing or spending time in nature can help improve one’s mental well-being. As the authors put it, “parks and green spaces” can be viewed as “health resources for urban populations,” and including natural areas and natural processes in the design and creation of cities is necessary “for psychological as well as ecological purposes.”

Green roofs

Green roofs are one way to add green space to urban areas. They help replace vegetation that was removed when buildings were constructed, and they offer numerous environmental benefits.

Interacting with nature in an urban setting can help people develop positive feelings about the natural world and may encourage support for environmental protection. The authors worry that if future generations grow up without an intimate connection to the natural world, elevated amounts of environmental degradation will be seen as normal and a feeling of urgency to protect the environment from continued degradation will fade. This is why including plentiful amounts of green space within cities is essential: “Providing opportunities for people to experience more robust, healthy, and even wilder forms of nature in cities offers an important solution to this collective loss of memory and can counter the shifting baseline.”

This special issue of Science highlights some of the current ecological and environmental research regarding urbanization. For a great introductory look at urban ecology and basic ecological principles, check out the book, Nature All Around Us. Also, expect to see many more urban ecology themed posts on Awkward Botany. Tell your friends.

Thoughts on Equisetum Phylogenesis

This a guest post. Words and photos by Jeremiah Sandler.

These notes do not discuss either anatomy or medicinal uses of Equisetum. Both topics are worthy of their own discourse.

Plants in the genus Equisetum can be found on each continent of our planet, except for Antarctica. The plants are collectively referred to as scouring rush or horsetail.  Equisetum is in the division of plants called Pteridophytes, which contains all of the ferns and fern-allies (lycopods, whisk ferns, etc.) Pteridophytes are characterized by having a vascular system and by reproducing with spores, rather than seeds. Equisetum is the only living genus within the entire class Equisetopsida.  Within this single genus, there are a mere 20 species.

Picture 1

Equisetums can live pretty much anywhere. They can tolerate lots of shade, lots of sun, and virtually any soil condition (including submerged soil). Rhizomatous stems make it difficult for either disease or insects to kill an entire population. They do not require pollinators because they reproduce with spores.  Sounds like a recipe for reproductive and evolutionary success. Yet with all of these traits working in their favor, there is only a single genus left.  

Where’d they all go?

Picture 2

Let’s briefly consider the origin of these plants first. In the late Paleozoic Era, during the end of the Cambrian Period, these plants began their takeover. Shortly thereafter (about 70 million years later), in the Devonian Period, land plants began to develop a tree-like habit, also called “arborescence.” Tree-sized ferns and fern-allies ruled the planet. They formed the ancient forests.

The elements required for photosynthesis were plentiful. The planet was warm. Competition from the Cambrian Explosion of flora and fauna drove plants upwards towards the sky. Larger plants can both shade their competition and remain out of reach of herbivores. None of the Equisetum species alive today are near their ancestors’ height.  

picture 3

It is rather obvious why we don’t see as many Equisetum species, and why they are not as large: The planet now is not the same planet it once was. Oxygen levels back in those times were about 15% higher than today’s levels. Seed plants can diversify much faster than non-seed-bearing plants; Equisetum cannot compete with the rate of diversification of seed-bearing plants.

The most interesting predicament comes when Equisetum is compared with other Pteridophytes. Some ancient Pteridophytes still do have diversity of genera. True Ferns, as they’re called, are broad-leaved ferns. In the class Filicopsida, there are 4 orders of True Ferns containing about 100 genera combined. Equisetum has 1 order and 1 genera.

What’s the primary difference between these two classes of Pteridophytes?  Broad leaves.

Most pteridophytes tolerate some shade; most other plants can’t tolerate as deep of shade as ferns. More specifically, the amount of shade the plants create could be a deciding factor in this question. True ferns have all of the traits equisetums have, with one additional physical trait that has pulled them ahead: Broad leaves allow true ferns to actively shade out local competition while creating more habitat for themselves. Equisetums don’t have this aggressive capacity.

Of course there are other biological and evolutionary pressures affecting equisetums beside their lack of broad leaves. The structure they do possess has benefited them at a time when it was advantageous to have it.  Otherwise why would it exist? Equisetums remind me of the dynamic nature of a planet. I don’t anticipate equisetums coming back. 

Although, I find it entertaining to humor the idea that they might return to their former glory. The planet’s climate could change toward any direction (I’m not a climatologist, though). Maybe equisetums are adequately prepared to adapt to whatever changes come – or maybe we are observing the gradual decline of an old branch on the tree of life.  


Ethnobotany: Cattails

“If you ever eat cattails, be sure to cook them well, otherwise the fibers are tough and they take more chewing to get the starchy food from them than they are worth. However, they taste like potatoes after you have been eating them for a couple weeks, and to my way of thinking are extremely good.”  – Sam Gribley in My Side of the Mountain by Jean Craighead George


Illustration by Franz Anthony (

Ask anyone to list plants commonly found in American wetlands, and you can guarantee that cattails will make the list nearly every time. Cattails are widespread throughout the Northern Hemisphere. They are so successful, that it is hard to picture a wetland without them. In her book, Braiding Sweetgrass, Robin Wall Kimmerer discusses this well known association:

Cattails grow in nearly all types of wetlands, wherever there is adequate sun, plentiful nutrients, and soggy ground. Midway between land and water, freshwater marshes are among the most highly productive ecosystems on earth, rivaling the tropical rainforest. People valued the supermarket of the swamp for the cattails, but also as a rich source of fish and game. Fish spawn in the shallows; frogs and salamanders abound. Waterfowl nest here in the safety of the dense sward, and migratory birds seek out cattail marshes for sanctuary on their journeys.

The two most abundant species of cattails in North America are Typha latifolia (common cattail) and Typha angustifolia (narrow leaf cattail). T. angustifolia may have been introduced from Europe. The two species also hybridize to form Typha x glauca. There are about 30 species in the genus Typha, and they share the family Typhaceae with just one other genus. The common names for cattail are nearly as abundant as the plant itself: candlewick, water sausage, corn dog plant, cossack asparagus, reedmace, nailrod, cumbungi, etc., etc.

Cattails have long, upright, blade-like leaves. As they approach the base of the plant, the leaves wrap around each other to form a tight bundle with no apparent stem. As Kimmerer puts it, this arrangement enables the plants to “withstand wind and wave action” because “the collective is strong.” Flowers appear on a tall stalk that reaches up towards the tops of the leaves. The inflorescence is composed of hundreds of separate male and female flowers. Male flowers are produced at the top of the stalk and female flowers are found directly below them. In the spring, the male flowers dump pollen down onto the female flowers, and wind carries excess pollen to nearby plants, producing what looks like yellow smoke.

After pollination, the male flowers fade away, leaving the female flowers to mature into a seed head. Just like the flowers, the seeds are small and held tightly together, maintaining the familiar sausage shape. Each seed has a tuft of “hair” attached to it to aid in wind dispersal. In The Book of Swamp and Bog, John Eastman writes about the abundant seeds (“an estimated average of 220,000 seeds per spike”) of cattail: “A quick experiment, one that Thoreau delighted to perform, demonstrates how tightly the dry seeds are packed in the spike – pull out a small tuft and watch it immediately expand to fill your hand with a downy mass.”

cattails bunch

cattail fluff

Because cattails spread so readily via rhizomes, prolific airborne seeds mostly serve to colonize new sites, away from the thick mass of already established cattails. The ability to dominate vast expanses of shoreline gives cattails an invasive quality that often results in attempts at removal. Various human activities may be aiding their success. Regardless, they provide food and habitat to numerous species of insects, spiders, birds, and mammals. A cattail marsh may not be diverse plant-wise, but it is teeming with all sorts of other life.

Ethnobotanically speaking, it is hard to find many other species that have as many human uses as cattails. For starters, nearly every part of the plant is edible at some point during the year. The rhizomes can be consumed year-round but are best from fall to early spring. They can be roasted, boiled, grated, ground, or dried and milled into flour. Starch collected from pounding and boiling the rhizomes can be used as a thickener. In the spring, young shoots emerging from the rhizomes and the tender core of the leaf bundles can be eaten raw or cooked and taste similar to cucumber. Young flower stalks can be boiled and eaten like corn on the cob and taste similar to artichoke. Pollen, which is high in protein, can be mixed with flour and used to make pancakes and baked goods, among other things. The seeds can be ground into flour or pressed to produce cooking oil.

Cattail leaves can be used to make cords, mats, baskets, thatch, and many other things. Kimmerer writes about the excellent wigwam walls and sleeping mats that weaved cattail leaves make:

The cattails have made a suburb material for shelter in leaves that are long, water-repellent, and packed with closed-cell foam for insulation. … In dry weather, the leaves shrink apart from one another and let the breeze waft between them for ventilation. When the rains come, they swell and close the gap, making the [wall] waterproof. Cattails also make fine sleeping mats. The wax keeps away moisture from the ground and the aerenchyma provide cushioning and insulation.

The fluffy seeds make great tinder for starting fires, as well as excellent insulation and pillow and mattress stuffing. The dry flower stalks can be dipped in fat, lit on fire, and used as a torch. Native Americans used crushed rhizomes as a poultice to treat burns, cuts, sores, etc. A clear gel is found between the tightly bound leaves of cattail. Kimmerer writes, “The cattails make the gel as a defense against microbes and to keep the leaf bases moist when water levels drop.” The gel can be used like aloe vera gel to soothe sunburned skin.

Eastman rattles off a number of commercial uses for cattail: “Flour and cornstarch from rhizomes, ethyl alcohol from the fermented flour, burlap and caulking from rhizome fibers, adhesive from the stems, insulation from the downy spikes, oil from the seeds, rayon from cattail pulp, …” To conclude his section on cattails he writes, “With cattails present, one need not starve, freeze, remain untreated for injury, or want for playthings.”

Additional Resources:

Happy American Wetlands Month!

To kick off this year’s American Wetlands Month, I am reposting something I posted three years ago. I have updated the links and added a few more resources. In celebration, all Awkward Botany posts in May will have something to do with wetlands. An underlying goal of American Wetlands Month is to encourage people to get out and visit wetlands in their area and find out what they can do to help conserve them. Hopefully this series of posts helps to further that aim.


“May is American Wetlands Month! No matter where you live, chances are there’s a wetland nearby that provides important environmental benefits to your community. Wetlands support diverse fish and wildlife species, filter pollutants from rain water runoff, help recharge groundwater supplies, prevent flooding and enhance property values.” – Earth Gauge (A program of the National Environmental Education Foundation)

Wetlands are ecosystems that are characterized by their vegetation (aquatic plants), their soils (formed during anaerobic conditions caused by being flooded or saturated with standing water), and, of course, their state of being largely saturated with water either seasonally or permanently. Examples of natural wetlands include bogs, fens, marshes, and swamps. Wetlands can also be constructed by humans for the purpose of collecting storm water runoff from urban areas in efforts to reduce the risk of flooding and avoid overwhelming municipal sewer systems during large rainstorms.

Wetlands are the most threatened type of ecosystem on earth, and we are losing them at a steady clip. Major threats to wetlands include land development, pollution (agricultural, commercial, residential, etc.), and the introduction of invasive species. Considering the benefits we receive from having wetlands around, it is imperative that we protect them. Earth Gauge offers some suggestions on how to do so.

wetland benefits

Speaking of wetlands, one of my favorite wetland plant species is marsh marigold (Caltha palustris). It is in the buttercup family (Ranunculaceae) and is common throughout the Northern Hemisphere. I became familiar with this plant when I was volunteering at a wetland in Edwardsville, IL. Perhaps you’ve seen it growing near you.

Marsh Marigold (Caltha palustris) - Photo taken at Idaho Botanical Garden.

Marsh Marigold (Caltha palustris) – Photo taken at Idaho Botanical Garden.

Additional Resources

The Making of a Kill Jar

I often hear stories from plant lovers about their initial nonchalance concerning plants. The common refrain seems to be that they were fascinated by wildlife and largely ignored plant life until they came to the realization that plants were integral in the lives of animals and play a major role in shaping the environments that support all life. Such an epiphany spawns an insatiable obsession with botany, at least for some people.

I seem to be on the opposite trajectory. It’s not like I have ever really been disinterested in animals; I’ve just been significantly more interested in plants and haven’t bothered to learn much about the animal kingdom (with the exception of entomology). My growing fascination with pollination biology (see last year’s Year of Pollination series) isn’t much of a stretch because insects have always appealed to me, and their intimate interactions with plants are hard to ignore. Ultimately, it is my interest in urban ecology and wildlife friendly gardening that is driving me to learn more about animals.

I started this year off by finally reading Doug Tallamy’s popular book, Bringing Nature Home. Tallamy wrote a lot about birds in his book, which got me thinking more about them. I then discovered Welcome to Subirdia, a book by John Marzluff that explores the diversity of birds that live among us in our urban environments. I then found myself paying more attention to birds. Many bird species rely on insects for food at some point in their lives. Plants regularly interact with insects both in defending themselves against herbivory and in attracting insects to assist in pollination. It’s all connected, and it seems I wouldn’t be much of a botanist then if I didn’t also learn about all of the players involved in these complex interactions.

So, now I’m a birdwatcher and an insect collector. Or at least I’m learning to be. Insects are hard to learn much about without capturing them. They often move quickly, making them hard to identify, or they go completely unnoticed because they are tiny and so well hidden or camouflaged. With the help of a net and a kill jar, you can get a closer look. This not only allows you to determine the species of insects that surround you, but it can also help give you an idea of their relative abundances, their life cycles, where they live and what they feed on, etc.

insect net 2_bw

As the name implies, if you’re using a kill jar, your actions will result in the death of insects. Some people will be more pleased about this than others. If killing insects bothers you, don’t worry, insect populations are typically abundant enough that a few individuals sacrificed for science will not hurt the population in a serious way.

Kill jars can be purchased or they can be made very simply with a few easy to find materials. Start with a glass jar with a metal lid. Mix up a small amount of plaster of paris. Pour the wet plaster in the jar, filling it to about one inch. Allow the plaster to dry completely. This process can be sped up by placing the jar in an oven set on warm. When the plaster is dry, “charge” the jar by soaking the plaster with either ethyl acetate, nail polish remover, or rubbing alcohol. I use nail polish remover because it is cheap and easily accessible. It doesn’t work as quickly as pure ethyl acetate, but it is less toxic. Place a paper towel or something soft and dry in the jar. This keeps the insects from getting beaten up too much as they thrash about. Once the insect is dead, it can be easily observed with a hand lens or a dissecting microscope. It can also be pinned, labeled, and added to a collection.

There are several resources online that describe the process of collecting and preserving insects, including instructions for making an inexpensive kill jar, which is why I am keeping this brief and will instead refer you to a couple of such sites. Like this one from Purdue University’s extension program. It’s directed toward youth, but it includes great information for beginners of any age. This post by Dragonfly Woman is a great tutorial for making a kill jar, and there are several other posts on her blog that are very informative for insect collectors of all experience levels.

I guess you could consider this part of my journey of becoming a naturalist. Perhaps you are on a similar journey. If so, share your thoughts and experiences in the comment section below.

Biodiversity Dips When Japanese Rice Paddies Go Fallow

Large-scale farms that generally grow a single crop at a time and are managed conventionally are, by design, lacking in biodiversity. Abandoning such farms and allowing nature to take its course should, not surprisingly, result in a dramatic uptick in biodiversity. Plant colonization of abandoned farmland (also referred to as old field succession) is well studied and is regularly used as an example of secondary succession in ecology textbooks. The scenario seems obvious: cease agriculture operations, relinquish the land back to nature, and given enough time it will be transformed into a thriving natural community replete with diverse forms of plants and animals. This is an oversimplification, of course, and results will vary with each abandoned piece of land depending on the circumstances, but it generally seems to be the story. So what about when it isn’t?

Rice farming in Japan began at least 2400 years ago. Rice had been domesticated in China long before that, and when it eventually arrived in Japan it shaped the culture dramatically. For hundreds of years rice was farmed in small, terraced paddies in the mountains of Japan. Dennis Normile writes about these traditional, rice paddies in a recent issue of Science. He describes how they were found in villages “nestled in a forested valley” accompanied by vegetable plots, orchards, and pasture. Today, farms like these are “endangered,” and as they have become increasingly abandoned, plants, insects, and other wildlife that have historically thrived there are suffering.

Since the 1960’s, a combination of factors has resulted in the decline of traditional rice farming in Japan. For one, large scale farming has led to the consolidation of paddies, which are farmed more intensively. Diets in Japan have also shifted, resulting in a preference for bread and pasta over rice. Additionally, Japan’s population is shrinking, and residents of rural areas are migrating to cities. Traditional rice farmers are aging, and younger generations are showing little interest in pursuing this career.

Red rice paddy in Japan - photo credit: wikimedia commons

Red rice paddy in Japan – photo credit: wikimedia commons

Demographic and dietary concerns aside, why in this case is the abandonment of agriculture imperiling species? The answer appears to be in both the way that the rice paddies have been historically managed and the length of time that they have been managed that way. Agriculture, by its very nature, creates novel ecosystems, and if the practice continues long enough, surrounding flora and fauna could theoretically coevolve along with the practice. When the practice is discontinued, species that have come to rely on it become threatened.

Traditional rice paddies are, as Normile describes, “rimmed by banks so that they can be flooded and drained.” Farmers “encouraged wild grassland plants to grow on the banks because the roots stabilize the soil.” The banks are mowed at least twice a year, which helps keep woody shrubs and trees from establishing on the banks. In some areas, rice farming began where primitive people of Japan were burning frequently to encourage grassland habitat. Maintaining grassland species around rice paddies perpetuated the grassland habitat engineered by primitive cultures.

As rice paddies are abandoned and the surrounding grasslands are no longer maintained, invasive species like kudzu and a North American species of goldenrod have been moving in and dominating the landscape resulting in the decline of native plants and insects. Normile reports that the abandoned grasslands are not expected to return to native forests either since “surrounding forests…are a shadow of their old selves.”

Additionally, like most other parts of the world, Japan has lost much of its natural wetland habitat to development. Rice paddies provide habitat for wetland bird species. On paddies that have been abandoned or consolidated, researchers are finding fewer wetland bird species compared to paddies that are managed traditionally.

The gray-faced buzzard (Butastur indicus) is listed as vulnerable in Japan. It nests in forests and preys on insects, frogs, and other animals found in grasslands and rice paddies. It's decline has been linked to the abandonment and development of traditionally farmed rice paddies. (photo credit: wikimedia commons)

The gray-faced buzzard (Butastur indicus) is listed as vulnerable in Japan. It nests in forests and preys on insects, frogs, and other animals found in grasslands and rice paddies. Its decline has been linked to the abandonment and development of traditionally farmed rice paddies. (photo credit: wikimedia commons)

All of this adds fodder to an ongoing debate: “whether allowing farmland to revert to nature is a boon to biodiversity or actually harms it.” Where agriculture is a relatively new practice or where conventional practices dominate, abandoning agriculture would be expected to preserve and promote biodiversity. However, where certain agricultural practices have persisted for millenia, abandoning agriculture or converting  to modern day practices could result in endangerment and even extinction of some species. In the latter case, “rewilding” would require thoughtful consideration.

The thing that fascinates me the most about this report is just how intertwined humans are in the ecology of this planet. In many ways humans have done great harm to our environment and to the myriad other species that share it. We are a force to be reckoned with. Yet, the popular view that we are separate, above, apart, or even dominant over nature is an absurd one. For someone who cares deeply about the environment, this view has too often been accompanied by a sort of self-flagellation, cursing myself and my species for what we have done and continue to do to our home planet. Stories like this, however, offer an alternative perspective.

Humans are components of the natural world. We evolved just like every other living thing here, and so our actions as well as the actions of other species have helped shape the way the world looks. If our species had met its demise early in its evolutionary trajectory, the world would look very different. But we persisted, and as it turns out, despite the destruction we have caused and the species we have eliminated, we have simultaneously played a role in the evolution and persistence of many other species as well. We must learn to tread lightly – for the sake of our own species as well as others – but we should also quit considering ourselves “other than” nature, and we should stop beating ourselves up for our collective “mistakes.” It seems that when we come to recognize how connected we are to nature we will have greater motivation to protect it.

Additional Resources:

President Obama’s Lichen

It is a presidential election year in the United States of America and, as per usual, it’s a circus. Prolific coverage of the surrounding events is hard to avoid. President Barack Obama is in the final year of his second term, which means that 8 years ago he was in the same position as today’s presidential hopefuls. Ultimately Obama was elected President, but during that lively process something else was afoot.

Kerry Knudsen is the lichen curator at the University of California Riverside Herbarium. In the final weeks of the 2008 campaign season, Knudsen was making collections of a species of lichen that he had discovered a year earlier. As Obama was being elected President, and (as Knudsen terms it) “the international jubilation” surrounding the event proceeded, Knudsen was drafting a paper describing and naming the newly discovered species. The final draft was completed during President Obama’s inauguration, and so it seemed fitting to Knudsen that he name the lichen after Obama. Caloplaca obamae it was – named after the 44th President of the United States, in honor of “his support of science and scientific education.”

President Obama's lichen - Caloplaca obamae - discovered and described by Kerry Knudsen (photo credit: UCR Herbarium/J.C. Lendemer

President Obama’s lichen – Caloplaca obamae – discovered and described by Kerry Knudsen (photo credit: UCR Herbarium/J.C. Lendemer)

Caloplaca obamae is a rare find. It is endemic to Santa Rosa Island, a member of the Channel Islands off the coast of Southern California near Santa Barbara. Cattle ranching and the introduction of elk and deer nearly removed it from existence. Now that cattle ranching has ceased and elk and deer are being removed, the lichen has a chance of survival.

Lichens are unique organisms. They are the result of a symbiosis between fungi and algae and/or cyanobatcteria. In this symbiosis, a mycobiont (the fungus) is essentially farming a photobiont (the algae/cyanobacteria) in order to feed off the sugars produced when the photobiont photosynthesizes. Photobionts in turn receive protection as well as water and other nutrients collected by the mycobiont.

There are at least 17,000 species of lichens known to science. They occur throughout the world in all manner of habitats from low to high elevation, and they adhere to virtually any stable surface including glass, plastic, and rubber. Lichens are ancient organisms, having existed for as long as 300 million years, with early lichens – or protolichens – dating back at least 400 million years. They are also very slow growing and can be incredibly long-lived.

Lichens are named after the fungal component, which can cause confusion since a particular species of fungus may form lichens with more than one species of algae or cyanobacteria. One way lichens are classified is according to their growth form, which is determined by their thallus – their non-reproductive, vegetative tissues. Three common thallus forms are fruticose (shrub-like), foliose (leaf-like), and crustose (crust-like).

While unassuming and benign in appearance, lichens have great ecological importance. They are involved in soil formation, the water cycle, and nitrogen fixation. They are homes to insects and microorganisms and are used as food by some animals and nesting materials by others. Some species of lichens are even consumed by humans. Lichens have also been used to develop medicines and dyes. Lichens are sensitive to air pollution, and are used to help determine the environmental health of urban areas. If your neighborhood has a healthy lichen population, chances are your air is pretty clean.

Santa Rosa Island - home to Caloplaca obamae (photo credit: wikimedia commons)

Santa Rosa Island – home to Caloplaca obamae (photo credit: wikimedia commons)

Caloplaca obamae is an orange, crustose lichen. It is terricolous, which means that it grows on soil. It is part of a community of soil dwelling lichens and bryophytes that form a biological soil crust on the Pleistocene soils of Santa Rosa Island. This sensitive community is easily disturbed by activities like grazing, which is why removing cattle, deer, and elk (all of which were introduced by humans to the island) is important for its survival.

Lichens are great, and they deserve much more attention than they get. A lichen named after President Obama is also pretty cool. However, as I researched this story the thing that impressed me the most was Kerry Knudsen himself. Knudsen is a retired construction worker with no academic degrees. He started studying lichens on his own after a medical condition forced him into early retirement. His initial interest grew into an obsession, and he is now among the few lichen experts in the world. He has added thousands of lichens to The Lichen Herbarium at UCR and has helped describe and name dozens of new species. He currently studies and collects lichens in California and the Czech Republic. You can read more about Knudsen in this 2004 article in the Los Angeles Times.

Selected Resources: