Ground Beetles as Weed Seed Predators

As diurnal animals, we are generally unaware of the slew of animal activity that occurs during the night. Even if we were to venture out in the dark, we still wouldn’t be able to detect much. Our eyes don’t see well in the dark, and shining a bright light to see what’s going on results in chasing away those creatures that prefer darkness. We just have to trust that their out there, and in the case of ground beetles, if they’re present in our gardens we should consider ourselves lucky.

Ground beetles are in the family Carabidae and are one of the largest groups of beetles in the world with species numbering in the tens of thousands. They are largely nocturnal, so even though they are diverse and relatively abundant, we rarely get to see them. Look under a rock or log during the day, and you might see a few scurry away. Or, if you have outdoor container plants, there may be a few of them hiding out under your pots with the pillbugs. At night, they leave the comfort of their hiding places and go out on the hunt, chasing down grasshoppers, caterpillars, beetle grubs, and other arthropods, as well as slugs and snails. Much of their prey consists of common garden pests, making them an excellent form of biological control. And, as if that weren’t enough, some ground beetles also eat the seeds of common weeds.

Harpalus affinis via wikimedia commons

Depending on the species, a single ground beetle can consume around a dozen seeds per night. In general, they prefer the seeds of grasses, lambsquarters (Chenopodium album), pigweeds (Amaranthus spp.), and various plants in the mustard family (Brassicaceae). The seeds of these species are small with seed coats that are easily crushed by a beetle’s mandibles. Providing suitable habitat, avoiding insecticides, and minimizing soil disturbance (i.e. reducing or eliminating tillage) are ways that healthy ground beetle populations can be encouraged and maintained. Ground beetles prefer dense vegetation where they can hide during the daytime. Strips of bunchgrasses and herbaceous perennials planted on slightly raised bed (referred to as beetle banks) are ideal because they provide good cover and keep water from puddling up in the beetles’ hiding spots.

The freshness of weed seeds and the time of year they are available may be determining factors in whether or not ground beetles will help control weed populations. A study published in Weed Science (2014), looked at the seed preferences of Harpalus pensylvanicus, a common species of ground beetle that occurs across North America. When given the choice between year old seeds and freshly fallen seeds of giant foxtail (Setaria faberi), the beetles preferred the fresh ones. The study also found that when giant foxtail was shedding the majority of its seeds, the density of beetles was on the decline, meaning that, at least in this particular study, most of the seeds would go uneaten since fewer beetles were around when the majority of the seeds were made available. Creating habitat that extends the ground beetles’ stay is important if the goal is to maximize the number of weed seeds consumed.

Harpalus pensylvanica via wikimedia commons

Of course, the seeds of all weed species are not considered equal when it comes to ground beetle predation. Several studies have sought to determine which species ground beetles prefer, offering seeds of a variety of weeds in both laboratory and field settings and seeing what the beetles go for. Pinning this down is difficult though because there are numerous species of ground beetles, all varying in size and activity. Their abundances vary from year to year and throughout the year, as do their food sources. Since most of them are generalists, they will feed on what is available at the time. A study published in European Journal of Entomology (2003) found a correlation between seed size and body mass – small beetles were consuming small seeds and large beetles were consuming large seeds, relatively speaking.

Another study published in European Journal of Entomology (2014) compared the preferences of ground beetles in the laboratory to those in the field and found that, in both instances, the seeds of field pansy (Viola arvensis) and shepherd’s purse (Capsella bursa-pastoris) were the preferred choice. The authors note that both species have lipid-rich seeds (or high “energy content”). Might that be a reason for their preference? Or maybe it’s simply a matter of availability and “the history of individual predators and [their] previous encounters with weed seed.” After all, V. arvensis was “the most abundant seed available on the soil surface” in this particular study.

Pterostichus melanarius via wikimedia commons

A study published in PLOS One (2017), looked at the role that scent might play in seed selection by ground beetles. Three species of beetles were offered the seeds of three different weed species in the mustard family. The seeds of Brassica napus were preferred over the other two by all three beetle species. The beetles were also offered both imbibed and non-imbibed seeds of all three plants. Imbibed simply means that the seeds have taken in water, which “can result in the release of volatile compounds such as ethanol and acetaldehyde.” The researchers wondered if the odors emitted from the imbibed seeds would “affect seed discovery and ultimately, seed consumption.” This seemed to be the case as all three beetle species exhibited a preference for the imbibed seeds.

Clearly, ground beetles are fascinating study subjects, and there is still so much to learn about them and their eating habits. If indeed their presence is limiting the spread of weeds and reducing weed populations, they should be happily invited into our farms and gardens and efforts should be made to provide them with quality habitat. For a bit more about ground beetles, check out this episode of Boise Biophilia.

Further Reading:

Dr. Beal’s Seed Viability Experiment

In 1879, Dr. William J. Beal buried 20 jars full of sand and seeds on the grounds of Michigan State University. He was hoping to answer questions about seed dormancy and long-term seed viability. Farmers and gardeners have often wondered: “How many years would one have to spend weeding until there are no more weeds left to pull?” Seeds only remain viable for so long, so if weeds were removed before having a chance to make more seeds, the seed bank could, theoretically, be depleted over time. This ignores, of course, the consistent and persistent introduction of weed seeds from elsewhere, but that’s beside the point. The question is still worth asking, and the study still worth doing.

When Dr. Beal set up the experiment, he expected it would last about 100 years, as one jar would be tested every 5 years. However, things changed, and Dr. Beal’s study is now in its 140th year, making it the longest-running scientific experiment to date. If things go as planned, the study will continue until at least 2100. That’s because 40 years into the study, a jar had to be extracted in the spring instead of the fall, as had been done previously, and at that point it was decided to test the remaining jars at 10 year intervals. In 1990, things changed again when the period was extended to 20 years between jars. The 15th jar was tested in 2000, which means the next test will occur in the spring of next year.

In preparing the study, Dr. Beal filled each of the 20 narrow-necked pint jars with a mixture of moist sand and 50 seeds each of 21 plant species. All but one of the species (Thuja occidentalis) were common weeds. He buried the jars upside down – “so that water would not accumulate about the seeds” – about 20 inches below ground. Near each bottle he also buried seeds of red oak and black walnut, but they all rotted away early in the study.

After the retrieval of each bottle, the sand and seed mixture is dumped into trays and exposed to conditions suitable for germination. The number of germinates are then counted and recorded. Over the years, the majority of the seeds have lost their viability. In 2000, only three species germinated  – Verbascum blattaria, a Verbascum hybrid, and Malva rotundifolia. There were only two individuals of the Verbascum hybrid, and only one Malva rotundifolia. The seeds of Verbascum blattaria, however, produced 23 individuals, suggesting that even after 120 years, the seeds of this species could potentially remain viable long into the future.

moth mullein (Verbascum blattaria)

In the 2000 test, the single seedling of Malva rotundifolia germinated after a cold treatment. Had the cold treatment not been tried, germination may not have occurred, which begs the question, how many seeds in previous studies would have germinated if subjected to additional treatments? Dr. Beal himself had wondered this, expressing that the results he had seen were “indefinite and far from satisfactory.” He admitted that he had “never felt certain that [he] had induced all sound seeds to germinate.”

There are also some questions about the seeds themselves. For example, the authors of the 2000 report speculate that poor germination seen in Malva rotundifolia over most of the study period could be “the result of poor seed set rather than loss of long-term viability.” The presence of a Verbascum hybrid also calls into question the original source of those particular seeds. A report published in 1922 questions whether or not the seeds of Thuja occidentalis were ever actually added to the jars, and also expresses uncertainty about the identify of a couple other species in the study.

Despite these minor issues, Dr. Beal’s study has shed a great deal of light on questions of seed dormancy and long-term seed viability and has inspired numerous related studies. While questions about weeds were the inspiration for the study, the things we have been able to learn about seed banks has implications beyond agriculture. Seed bank dynamics are particularly important in conservation and restoration. If plants that have disappeared due to human activity have maintained a seed bank in the soil, there is potential for the original population to be restored.

In future posts we will dive deeper into seed banks, seed dormancy, and germination. In the meantime, you can read more about Dr. Beal’s seed viability study by visiting the following links: