Camel Crickets and the Dust Seeds of Parasitic Plants

A common way for plants to disperse their seeds is to entice animals to eat their seed-bearing fruits – a strategy known as endozoochory. Undigested seeds have the potential to travel long distances in the belly of an animal, and when they are finally deposited, a bit of fertilizer joins them. Discussions surrounding this method of seed dispersal usually have birds and mammals playing the starring roles – vertebrates, in other words. But what about invertebrates like insects? Do they have a role to play in transporting seeds within themselves?

Certain insects are absolutely important in the dispersal of seeds, particularly ants. But ants aren’t known to eat fruits and then poop out seeds. Instead they carry seeds to new locations, and some of these seeds go on to grow into new plants. In certain cases there is an elaisome attached to the seed, which is a nutritious treat that ants are particularly interested in eating. Elaisomes or arils have also been known to attract other insects like wasps and crickets, which may then become agents of seed dispersal. But endozoochory in insects, at first, seems unlikely. How would seeds survive not being crushed by an insect’s mandibles or otherwise destroyed in the digestion process?

camel crickets eating fruits of parasitic plants (via New Phytologist)

While observing parasitic plants in Japan, Kenji Suetsugu wanted to know how their seeds were dispersed. Many parasitic plants rely on wind dispersal, thus their seeds are minuscule, dust-like, and often winged. However, the seeds of the plants Suetsugu was observing, while tiny, were housed in fleshy fruits that don’t split open when ripe (i.e. indehiscent). This isn’t particularly unusual as other species of parasitic plants are known to have similar fruits, and Suetsugu was aware of studies that found rodents to be potential seed disperers for one species, birds to be dispersers of another, and even one instance of beetle endozoochory in a parasitic plant with fleshy, indehiscent fruit. With this in mind, he set out to identify the seed dispersers in his study.

Suetsugu observed three achlorophyllous, holoparisitic plants – Yoania amagiensis, Monotropastrum humile, and Phacellanthus tubiflorus. While their lifestyles are similar, they are not at all closely related and represent three different families (Orchidaceae,  Ericaceae, and Orobanchaceae respectively). All of these plants grow very low to the ground in deep shade below the canopy of trees. Air movement is at a minimum at their level, so seed dispersal by wind is not likely to be very effective. Using remote cameras, Suetsugu captured dozens of hours of footage and found camel crickets and ground beetles to be the main consumers of the fruits, with camel crickets being “the most voracious of the invertebrates.” This lead to the next question – did the feces of the fruit-eating camel crickets and ground beetles contain viable seeds?

Monotropastrum humile via wikimedia commons

After collecting a number of fecal pellets from the insects, Suetsugu determined that the seeds of all three species were “not robust enough to withstand mastication by the mandibles of the ground beetles.” On the other hand, the seeds passed through the camel crickets unscathed. A seed viability test confirmed that they were viable. Camel crickets were dispersing intact seeds of all three parasitic plants via their poop. The minuscule size of the seeds as well as their tough seed coat (compared to wind dispersed seeds of similar species) allowed for safe passage through the digestive system of this common ground insect.

In a later study, Suetsugu observed another mycoheterotrophic orchid, Yoania japonica, and also found camel crickets to be a common consumer of its fleshy, indehiscent fruits. Viable seeds were again found in the insect’s frass and were observed germinating in their natural habitat. Seutsugu noted that all of the fruits in his studies consumed by camel crickets are white or translucent, easily accessible to ground dwelling insects, and give off a fermented scent to which insects like camel crickets are known to be attracted. Camel crickets also spend their time foraging in areas suitable for the growth of these plants. All of this suggests co-evolutionary adaptations that have led to camel cricket-mediated seed dispersal.

Yoania japonica via wikimedia commons

Insect endozoochory may be an uncommon phenomenon, but perhaps it’s not as rare as we once presumed. As mentioned above, an instance of endozoochory by a beetle has been reported, as has one by a species of cockroach. Certainly the most well known example involves the wetas of New Zealand, which are large, flightless insects in the same order as grasshoppers and crickets and sometimes referred to as “invertebrate mice.” New Zealand lacks native ground-dwelling mammals, and wetas appear to have taken on the seed dispersal role that such mammals often play.

Where seeds are small enough and seed coats tough enough, insects have the potential to be agents of seed dispersal via ingestion. Further investigation will reveal additional instances where this is the case. Of course, effective seed dispersal means seeds must ultimately find themselves in locations suitable for germination in numbers that maintain healthy populations, which for the dust seeds of parasitic plants is quite specific since they require a host organism to root into. Thus, effective seed dispersal in these scenarios is also worth a more detailed look.

Further Reading:


For more stories of seed dispersal check out the first issue of my new zine, Dispersal Stories.

Dr. Beal’s Seed Viability Experiment

In 1879, Dr. William J. Beal buried 20 jars full of sand and seeds on the grounds of Michigan State University. He was hoping to answer questions about seed dormancy and long-term seed viability. Farmers and gardeners have often wondered: “How many years would one have to spend weeding until there are no more weeds left to pull?” Seeds only remain viable for so long, so if weeds were removed before having a chance to make more seeds, the seed bank could, theoretically, be depleted over time. This ignores, of course, the consistent and persistent introduction of weed seeds from elsewhere, but that’s beside the point. The question is still worth asking, and the study still worth doing.

When Dr. Beal set up the experiment, he expected it would last about 100 years, as one jar would be tested every 5 years. However, things changed, and Dr. Beal’s study is now in its 140th year, making it the longest-running scientific experiment to date. If things go as planned, the study will continue until at least 2100. That’s because 40 years into the study, a jar had to be extracted in the spring instead of the fall, as had been done previously, and at that point it was decided to test the remaining jars at 10 year intervals. In 1990, things changed again when the period was extended to 20 years between jars. The 15th jar was tested in 2000, which means the next test will occur in the spring of next year.

In preparing the study, Dr. Beal filled each of the 20 narrow-necked pint jars with a mixture of moist sand and 50 seeds each of 21 plant species. All but one of the species (Thuja occidentalis) were common weeds. He buried the jars upside down – “so that water would not accumulate about the seeds” – about 20 inches below ground. Near each bottle he also buried seeds of red oak and black walnut, but they all rotted away early in the study.

After the retrieval of each bottle, the sand and seed mixture is dumped into trays and exposed to conditions suitable for germination. The number of germinates are then counted and recorded. Over the years, the majority of the seeds have lost their viability. In 2000, only three species germinated  – Verbascum blattaria, a Verbascum hybrid, and Malva rotundifolia. There were only two individuals of the Verbascum hybrid, and only one Malva rotundifolia. The seeds of Verbascum blattaria, however, produced 23 individuals, suggesting that even after 120 years, the seeds of this species could potentially remain viable long into the future.

moth mullein (Verbascum blattaria)

In the 2000 test, the single seedling of Malva rotundifolia germinated after a cold treatment. Had the cold treatment not been tried, germination may not have occurred, which begs the question, how many seeds in previous studies would have germinated if subjected to additional treatments? Dr. Beal himself had wondered this, expressing that the results he had seen were “indefinite and far from satisfactory.” He admitted that he had “never felt certain that [he] had induced all sound seeds to germinate.”

There are also some questions about the seeds themselves. For example, the authors of the 2000 report speculate that poor germination seen in Malva rotundifolia over most of the study period could be “the result of poor seed set rather than loss of long-term viability.” The presence of a Verbascum hybrid also calls into question the original source of those particular seeds. A report published in 1922 questions whether or not the seeds of Thuja occidentalis were ever actually added to the jars, and also expresses uncertainty about the identify of a couple other species in the study.

Despite these minor issues, Dr. Beal’s study has shed a great deal of light on questions of seed dormancy and long-term seed viability and has inspired numerous related studies. While questions about weeds were the inspiration for the study, the things we have been able to learn about seed banks has implications beyond agriculture. Seed bank dynamics are particularly important in conservation and restoration. If plants that have disappeared due to human activity have maintained a seed bank in the soil, there is potential for the original population to be restored.

In future posts we will dive deeper into seed banks, seed dormancy, and germination. In the meantime, you can read more about Dr. Beal’s seed viability study by visiting the following links: