Your Food Is a Polyploid

This is the seventh in a series of posts reviewing the 17 articles found in the October 2014 Special Issue of American Journal of Botany, Speaking of Food: Connecting Basic and Applied Science.

Doubling Down on Genomes: Polyploidy and Crop Plants by Simon Renny-Byfield and Jonathan F. Wendel

This is another fascinating but dense article about genetics. The major theme, as the title suggests, is polyploidy and its role in crop domestication and future crop improvements – a sub-theme being that by studying polyploidy in crop plants, we can gain insights into polyploidy generally as it relates to non-crop plants. Polyploidy – or whole genome duplication – is “where an organism possesses more than a diploid complement of chromosomes.” Typically, chromosomes come in sets of two, one set from each parent. Organisms with this type of an arrangement are called diploids. Polyploids are organisms with more than two sets of chromosomes. In general terms, this can occur as a result of two species hybridizing (interspecific hybridization), which is called allopolyploidy, or it can occur as a result of spontaneous genome doubling in a single species, which is called autopolyploidy. This article deals mainly with allopolyploid as polyploidy in crop plants is largely a result of hybridization.

Much of what we know about polyploidy has been discovered relatively recently during what is referred to as the “genomics era.” Traditionally, identifying polyploids was done by examining the number of chromosomes in a cell. Today, technological advances such as next generation sequencing have brought new insights into polyploidy and allowed us to identify evidence of it in organisms that cannot be observed simply by counting chromosomes. Plants that are now considered diploids went through periods of whole genome duplication in the distant past; however, due to genome downsizing and other events, they present themselves as diploids. This historical polyploidy is called paleopolyploidy. Evidence now suggests that all seed plants and flowering plants (angiosperms) are “rightly considered to have a paleopolyploidy ancestry.”

As I did with past articles that were very genetics heavy, I will use the bullet point method to list some of the main things that I learned from the article rather than offering a full review. As with any article that I review, my goal is to present the information in a digestible manner for as wide of an audience as possible without misrepresenting or oversimplifying the science and the research. This seems to be one of the main struggles faced by all who write about science for a general audience – a topic to be explored another time, perhaps.

  • The recent discovery that the genomes of all seed plants and angiosperms have “experienced multiple rounds of whole genome duplication” is “one of the most significant realizations to emerge from the genomics era.” In the past decade, “the ubiquity and scope of whole genome duplication has truly come to light,” and we no longer need to ask, “Is this species a polyploid?,” but rather “how many rounds of whole genome duplication occurred in the ancestral lineage of this taxon, and when was the most recent polyploidy?”
  • Recently formed polyploids are not stable and experience a period of “genomic shock.” They must “overcome an initial fitness cost associated with genomic [deviations].” These “large-scale perturbations [events that alter the function of a biological system] have the potential to add novel genetic material to the genome, potentially useful in the context of domestication and selection.”
  • Plants that appear to be diploids are actually paleopolyploids that have undergone a process called diploidization “in which the genome of a polyploidy is pruned, often by poorly understood mechanisms, such that it returns to a diploid-like condition.” Over time, duplicated genes are removed, DNA is eliminated, chromosome numbers decrease, etc. The organism then presents itself as a diploid, however traces of its polyploidy past remain detectable.
  • It has long been understood that hybrids can exhibit what is known as hybrid vigor (or heterosis) wherein they express traits that are superior to their parents, such as faster growth and higher yields. This is the reason plant breeders make such crosses. Debate continues concerning the “precise causes of heterosis.” Current research is focused on the epigenetic variability that is “induced by hybridization and polyploidy.” Epigenetics, which concerns variation that is not a result of alterations to DNA, is an emerging field that can be advanced through the study of polyploidy. Additionally, “the utilization of epigenetic diversity within crop species will provide a novel avenue for crop improvement in the coming years.”
  • While polyploids have great potential to increase our understanding of genomics and greatly improve “targeted breeding efforts,” they are historically difficult to study mainly due to the large size of their genomes compared to diploids. “Larger genomes are more expensive to sequence and require greater computational finesse.” To date, “only a single example of a ‘complete’ polyploidy genome exists, that of autotetraploid potato.” The authors “anticipate that these methodological challenges will soon be overcome by advances in genome sequencing technologies,” and along with “other powerful approaches,” continued insights into polyploidy will be attained.
Upland cotton (Gossypium hirsutum) is the most widely cultivated species of cotton in the United States. It is an allopolyploid that produces fibers that are "considerably longer, stronger, and whiter than are possible to obtain from any diploid." (photo credit: www.eol.org)

Upland cotton (Gossypium hirsutum) is the most widely cultivated species of cotton in the United States. It is an allopolyploid, and it produces fibers that are “considerably longer, stronger, and whiter than are possible to obtain from any diploid.” (photo credit: www.eol.org)

Advertisement

Exploring Pollination Biology in Southwestern China

This is the sixth in a series of posts reviewing the 17 articles found in the October 2014 Special Issue of American Journal of Botany, Speaking of Food: Connecting Basic and Applied Science.

Insect Pollination and Self-Incompatibility in Edible and/or Medicinal Crops in Southwestern China, a Global Hotspot of Diversity by Zong-Xin Ren, Hong Wang, Peter Bernhardt, and De-Zhu Li

We rely on pollinators to pollinate at least 75% of our food crops, which is why any talk of pollinator decline tends to make us nervous. It is also why research involving pollinators and pollination is so important. Despite all we know, there is still so much to learn. The authors of this study, recognizing that “there are large gaps in the study of the pollination of economically important and traditionally grown species in China,” set out to help close these gaps. Their research not only has the potential to benefit agricultural communities in China, but also adds to our growing understanding of pollination biology – a science that has become increasingly important in an age of human population growth and shifting climates.

The incredibly diverse Chinese flora includes at least 31,000 plant species. Three hundred of the 1500 species of worldwide cultivated crop plants “originated and/or were domesticated and/or underwent differentiation in China.” Southwestern China has a particularly large amount of botanical diversity and is considered a biodiversity hotspot. In this study concerning agricultural pollination, researchers chose to focus on Yunnan, a province in southwestern China. They chose this region due to its high level of current and historical agriculture and because it is “one of the last refuges of the eastern Asian honeybee, Apis cerana, in China.” They narrowed their research down to 11 species that are important for their culinary and/or medicinal use, some of them having widespread use and others having more local, cultural use. Depending on the species, conclusions were drawn either from available literature, from field studies, or both.

Eastern Asian Honeybee (Apis cerana) on Citrus limonia flowers (photo credit: www.eol.org)

Eastern Asian Honeybee (Apis cerana) on Citrus limonia flowers (photo credit: www.eol.org)

A review of the literature revealed information about each plant’s breeding system, the pollinators involved, ethnobotanical details, and other things. No information was available on the breeding system or pollinators of Panax notoginseng, “one of the most highly valued Chinese medicinal herbs.” Five species were found to be self-compatible (Angelica sinensis, Amomum tsao-ko, Brassica napus, B. campestris, and Gastrodia elata) and four were found to be self-incompatible (Camellia oleifera, Dendrobium catenatum, Fagopyrum esculentum, and Paris plyphylla var. yunnanensis). Codonopsis subglobosa was somewhere in the middle. The authors were intrigued by the persistent self-incompatibility in these domesticated plants (some more recently domesticated than others), noting that “both traditional and modern agricultural practices in China could not always overcome ancestral self-incompatibility mechanisms.” A running theme seemed to be that, if able to produce fruit or seed when hand-pollinated or without the aid of pollinators, the plants consistently performed better when insect pollinated. One of the most interesting findings was that Gastrodia elata, Dendrobium catenatum, and Paris plyphylla var. yunnanensis “persist in cultivation only through hand-pollination.”

Camellia oleifera, tea-oil plant, is pollinated by two native solitary bee species. It is avoided by native and introduced honeybees because its nectar contains substances that are toxic to worker bees, including caffeine, raffinose, stachyose, and galactose. Fagopyrum esculentum, common buchwheat, is native to southern China and was likely first domesticated there. It is pollinated by a variety of insects; however, its main pollinator in worldwide cultivation is the European honeybee, Apis mellifera. In China, evidence suggests that when pollinated by native pollinators, buckwheat produces higher yields and larger fruits. Codonopsis subglobosa is an undomesticated but cultivated perennial vine endemic to southwestern China, the roots of which are used as a substitute for ginseng. It can self-pollinate without a vector, but cross-pollination by wasps yields more seeds. Pollination by “hunting wasps” is rare, and C. subglobosa is not the only plant in the area pollinated by them. If the “evolution of hunting wasp pollination systems has evolved repeatedly in unrelated species native to southwestern China,” this region may be a “center for the convergent evolution of hunting wasp pollination.”

Common Buckwheat, Fagopyrum esculentum (photo credit: Wikimedia commons)

Common Buckwheat, Fagopyrum esculentum (photo credit: wikimedia commons)

Beekeeping has been a major part of agriculture in China for centuries. However, the introduction of the European honeybee has caused a significant decline in both wild and managed populations of native honeybees, despite native honeybees being “better adapted to more diffuse nectar resources” than the introduced honeybee. The decline in keeping and managing native honeybees is complicated and involves much more than just the introduction of the European honeybee. Along with the debate about what is best for agriculture in China, is the concern about what introducing non-native pollinators could mean for native flora and fauna. The authors conclude that there is “urgent need for new pollination management policies in China.”

This article ends with suggestions about how to improve and expand pollination biology research in China in order to fill gaps in knowledge, improve agricultural production, and protect and conserve native biodiversity. China is an ideal candidate for such research for several reasons: it has areas like southwestern China that are very species rich, it has a long history of agriculture, and it has numerous unique crops that are specific to Chinese culture. China also has a large and growing population, so improvements that can lead to more sustainable agricultural production will be greatly beneficial in the long run.

Carrots and Strawberries, Genetics and Phylogenetics

This is the fifth in a series of posts reviewing the 17 articles found in the October 2014 Special Issue of American Journal of Botany, Speaking of Food: Connecting Basic and Applied Science.

As expected, some of the articles in this issue get into pretty deep discussions about genetics and phylogenetics. Advancements in sequencing and analyzing DNA have not only led to better understanding of genes and their functions but have also given us greater insight into how species are related and their proper place on the phylogenetic tree.  While I have some background in these things and can follow along at a basic level, I certainly don’t feel confident in authoritatively summarizing such findings . I also question whether or not a high level discussion of phylogenetics makes for an interesting and engaging blog post. Plant systematics geeks are aggressively nodding “yes”; other readers’ eyes have glazed over by this point.

I am certainly not arguing that this is not important stuff. When a species we have become familiar with is suddenly given a new scientific name, it is not too annoy those of us who are trying to learn the names of things, rather it is because something novel has been discovered about the way living things are organized, about their life history – the way they came to be.  We should be celebrating advancements that allow us to look back over the millions of years of life on earth and see how various species emerged, evolved, disappeared, were replaced, and ultimately arrived at what we view today. And we should be humbled to know that these present forms are not the climax, that we are simply getting a glimpse in the evolutionary trajectory of the organisms around us. Perhaps it will prompt us to protect them, understanding that every scrap of biodiversity is important and worth conserving. After all, who are we to decide how the story goes?

The sixth and seventh articles in “Speaking of Food” are about carrots and strawberries respectively. Discussion about the genetics and phylogenetics of these plants dominates the articles, with the application being that we can improve these crops by better understanding their genetics, and we can gain insights into plant evolution by better understanding their phylogenetics.  Rather than give you a thorough overview of each of these articles (for reasons stated above), I am offering you bullet points of a few of the things that I learned while reading them.

Phylogenomics of the Carrot Genus (Daucus, Apiaceae) by Carlos Arbizu, Holly Ruess, Douglas Senalik, Philipp W. Simon, and David M. Spooner

  • The domesticated carrot (Daucus carota subsp. sativus) is “the most notable cultivated member of Apiaceae [a family consisting of 455 genera and over 3,500 species] in terms of economic importance and nutrition.”
  • Carrots are our primary source of vitamin A (due to high levels of alpha and beta carotenes), “accounting for about half of dietary intake.”
  • Wild carrot species can be used to improve the domesticated carrot by providing genes that will help with pest and disease resistance, yield increases, better nutrient value, etc.
  • “The taxonomy of D. carota is particularly problematical. It undergoes widespread hybridization experimentally and spontaneously with commercial varieties and other named subspecies.”
  • The researchers, upon examining more than half of the known Daucus species and 9 species that are very closely related, identified several Daucus spp. that “may be easily incorporated in carrot breeding programs.”
  • This study determined “misidentifications in germplasm collections” and highlighted “the difficulty of defining subspecies of D. carota.”
Flowers of Daucus carota (photo credit: www.eol.org)

Flowers of Daucus carota (photo credit: www.eol.org)

Fragaria: A Genus with Deep Historical Roots and Ripe for Evolutionary and Ecological Insights by Aaron Liston, Richard Cronn, and Tia-Lynn Ashman

  •  Fresh strawberries are fifth on the list of fresh fruit consumption in the United States.
  • “Resistance to a Fragaria-specific powdery mildew has been demonstrated in F. x ananassa [domesticated strawberry] transformed with a peach locus, and the cultivation of such transgenic plants could reduce pesticide usage in strawberry.” Commercial production awaits, though, “due to public resistance, a lack of industry support, and concerns over gene flow to the wild species of Fragaria.”
  • “The modern cultivated strawberry, Fragaria x ananassa, originated in the 18th century in Europe from hybridization between two species imported from North and South America. The parental species, F. virginiana and F. chiloensis, also hybridize naturally in northwestern North America, but there is no evidence that they were ever cultivated by the native Americans in this area.”
  • The stolons of strawberry plants can be used as dental floss!? So said Antoine Nicolas Duchesne in his 1766 book about strawberries. I guess I’ll have to read his account to get more insight into this interesting detail.
  • F. x ananassa has flowers that are self-compatible, but it is “derived from the hybridization of two wild species that show gender dimorphism,” which is common in the genus. For this reason, Fragaria, is “proving to be an exceptional model system for understanding the sexual system and sex chromosome evolution.”
  • Fragaria species occur across a broad range of temperate habitats and elevations from sea level sand dunes to moist, productive meadows to high, dry, mountain summits.” They are adapted to a wide variety of environmental conditions. “This variation represents a potential source of genetic variation for climatic tolerance, disease/pest resistance, and yield-associated traits.”
  • The Fragaria genus, like virtually all genera of flowering plants, includes polyploid species. Researchers conclude that Fragaria is an “ideal system for exploring relationships between ploidy formation, ploidy level, and the coordination of transcriptomic control.” They also believe that continued studies of “ecological and evolutionary genomics in Fragaria has the potential to provide further insights into hybridization.”
  • Finally, the researchers advise that the “familiarity of strawberries provides an opportunity to engage and educate the public about botanical research.”
Broadpetal Strawberry, Fragaria virginiana supsp. platypetala (photo credit: wikimedia commons)

Broadpetal Strawberry, Fragaria virginiana supsp. platypetala (photo credit: wikimedia commons)

Speaking of Food: A Special Issue of American Journal of Botany

“At the center of discussions about agriculture and the future of food in a changing climate are the plants that we grow for food, fiber, and fuels and the science that is required to understand, improve, and conserve them.”

That is a line from the opening paragraph of the introduction to the October 2014 issue of American Journal of Botany, Speaking of Food: Connecting Basic and Applied Plant Science. In this Special Issue, the American Journal of Botany – inspired by Elizabeth Kellogg’s 2012 presidential address to the Botanical Society of America – endeavors to demonstrate ways in which basic plant biology research can benefit the applied science of agriculture, and how this “use-inspired” research can help address the challenges of feeding a growing population in a changing climate.

speaking of food_ajb

In its 100 year history, the American Journal of Botany, has published hundreds of papers that serve to advance agricultural and horticultural sciences. However, this connection has not always been made explicit. With this special issue, they are hoping to change that by “illustrat[ing] that ‘basic’ and ‘applied’ are not two discrete categories, nor are they even extremes of a linear continuum.” “Basic” research can be used to answer questions and solve “human-centered problems,” and “applied” research can “illuminate general biological principles.” When both approaches to scientific inquiry come together, everyone benefits.

I originally chose to study horticulture because I was interested in growing food in a sustainable and responsible manner. During my studies, I gained a greater interest in the broader field of horticulture as well as an interest in botany. After receiving a degree in horticultural and crop sciences, I decided to pursue a Master’s Degree. I wanted to study green roof technology, an applied science that incorporated my interests in both horticulture and sustainability. The school that I ended up going to did not have a horticulture program, so I enrolled in a biological sciences program. It was there, while doing applied science research on green roofs and taking mostly botany related science courses, that I deepened my love for science and began to see how basic science had applications, not just in horticulture and agriculture, but in all aspects of life.

That explains my great interest in this recent issue of American Journal of Botany, and why I was so excited when I heard about it. Using science to understand and address the challenges that we face today (challenges that, many of which, are a result of human activity) is intriguing to me. Based on my interest in horticulture, food production, and sustainability, establishing and advancing science-based sustainable agriculture is incredibly important to me. And so I have decided that, over the next several posts, I will provide reviews of each of the 17 articles in AJB’s Special Issue. Each post will offer a brief overview of one or more articles, outlining the basic premises and findings of each study. If your interest is peaked, and I hope it will be, you can go on to read more about each of the studies. The Introduction to this issue gives an excellent overview of the articles, so I won’t include that here. I’ll just dive right in. If you feel inclined, read ahead, otherwise stay tuned and I will preview you it all for you over the next several weeks.