Apriums and Plumcots and Pluots, Oh My!

I was once a teenage paper carrier in small town Idaho. One of my stops was an apartment complex, and for much of the year, this was an uneventful stop. But for a few weeks in the summer, the purple-leaved plum trees out front had ripe fruit on them, and each time I was there, I would stop and take a few. In general, I don’t get that excited about fruit, but I enjoyed eating these plums. This variety of plum is typically planted for its looks rather than its fruit, and it may even be the tree that recently received a pitifully low score on an episode of Completely Arbortrary. Ornamental plum or not – and low cone score or not – I thought the fruit was good.

Many of the things we eat are a result of crosses between two related species, and plums are a great example of this. Species are species because they are reproductively isolated. A species does not typically mate with a member of another species and create viable offspring, except this happens all the time both naturally and artificially. In many cases, the offspring isn’t actually viable, but there is offspring nonetheless, and in the case of plants, that offspring can then reproduce asexually – by leaf, stem, or root cuttings or by some other means – and the resulting hybrid can exist indefinitely. One species mating with another species (specifically two species that are members of the same genus) is called interspecific hybridization, and there is a good chance that you’ve eaten something recently that is a result of this.

One of the most widely grown species of plum, Prunus domestica (commonly known as European plum), is a result of interspecific hybridization that occurred many centuries ago. A paper published in Horticulture Research (2019) confirmed that P. domestica originated as a cross between Prunus cerasifera and Prunus spinosa, the latter of which may have also been a result of interspecific hybridization. There are over 400 species in the genus Prunus that are distributed across temperate regions in the northern hemisphere. Within this genus is the subgenus Prunus (or Prunophora), a group that includes dozens of familiar species such as the plums, apricots, peaches, and almonds. Due to their close relationship, both natural and artificial hybridization among members of this subgenus is common, which explains the origin of Prunus domestica, as well as the majority of the plums we grow today.

Current commercial production of plums in North America is largely thanks to work done by Luther Burbank in the late 19th to early 20th centuries. Burbank was obsessed with plant breeding and released hundreds of new varieties of all kinds of different plants during his decades long career. He seemed particularly interested in plums, developing 113 different cultivars, which account for more than half of all his fruit releases. Probably his most well known plum variety is ‘Santa Rosa,’ which thanks to modern day genetics has been determined to be a cross between at least four different species of plum.

apriums

Early colonizers to the American continent were mainly growing varieties of the European plum they had brought over from Europe. North America is also home to several species of plums, which are used by indigenous populations. Shortly before Burbank began working with plums on his farm in California in 1881, Asian plum species were imported to the U.S., and breeders began using them in crosses with both European and North American plum species. Burbank became particularly engulfed in these efforts. In an article published in HortScience (2015), David Karp writes, “In the history of horticulture it is rare to find an individual who almost single-handedly created a new commercial industry based on a novel fruit type as Luther Burbank did for Asian-type plums in the United States.” Most Asian-type plums sold in stores today are hybrids of several different plum species due to the numerous complex crosses that Burbank made.

Burbank is also said to be the first to cross plums and apricots, creating the first of many cultivars of the plumcot. Plum and apricot crosses didn’t really catch on for a few more decades, and when they did, it was thanks to the work of Floyd Zaiger of Zaiger Genetics who developed and released numerous varieties. Apriums and Pluots are Zaiger Genetics trademarks, along with a few other unlikely crosses with plums and their related counterparts.

plumcots

A plumcot is the simplest cross. It is said to be 50% Asian plum (Prunus salicina) and 50% apricot (Prunus armeniaca). However, due to all the breeding of Asian plums carried out by Burbank and others, the Asian plum involved in the cross is typically a hybrid with other plum species, as discussed in a recent paper published in Plants (2022). An aprium is the result of a cross between a plumcot and an apricot, making it 75% apricot and 25% plum, while a pluot is a cross between a plumcot and a plum, making it 75% plum and 25% apricot. There is typically much more that goes into making these crosses, but that’s the general idea. If you’re lucky, you can find all three of these intraspecific crosses in a produce section near you, but it may not be clear what cultivar you’re purchasing. Myriad cultivars have been released of each of these hybrids – each one varying in color, size, flavor, disease resistance, etc. – and unfortunately most grocery stores don’t include cultivar names on their products, so it’s difficult to know what you’re getting.

At Awkward Botany Headquarters, there is a plum tree growing in our front yard. We didn’t plant it, so at this point I have no idea what species or cultivar it is. The plums are delicious though, and the leaves aren’t purple like the plums I used to eat on my paper route. Considering all of the intraspecific crossing that has gone on with plums, it’s quite likely that it is a combination of different species, which isn’t going to make it easy to figure out. But I’ll do my best.


Check out the linktree for various ways to follow and support Awkward Botany.

Book Review: Fruit from the Sands

“By dispensing plants and animals all around the world, humans have shaped global cuisines and agricultural practices. One of the most fascinating and least-discussed episodes in this process took place along the Silk Road.” — Fruit from the Sands by Robert N. Spengler III

———————

My understanding of the origins of agriculture and the early years of crop domestication are cursory at best. The education I received was mostly concerned with the Fertile Crescent, as well as crops domesticated by early Americans. The Silk Road, as I understood it, was the route or routes used to move goods across Asia and into eastern Europe well after the domestication of many of the crops we know today. Other than the fact that several important crops originate there, little was ever taught to me about Central Asia and its deep connection to agriculture and crop domestication. I suppose that’s why when I picked up Fruit from the Sands by Robert N. Spengler III, published last year by University of California Press, I wasn’t entirely prepared for what I was about to read.

It wasn’t until I read a few academic reviews of Fruit from the Sands that I really started to understand. Spengler’s book is groundbreaking, and much of the research he presents is relatively new. The people of Central Asia played a monumental role in discovering and developing much of the food we grow today and some of the techniques we use to grow them, and a more complete story is finally coming to light thanks to the work of archaeologists like Spengler, as well as advances in technology that help us make sense of their findings.

This long history with agricultural development can still be seen today in the markets of Central Asia, which are loaded with countless varieties of fruits, grains, and nuts, many of which are unique to the area. Yet this abundance is also at risk. Crop varieties are being lost at an alarming rate with the expansion of industrial agriculture and the reliance on a small selection of cultivars. With that comes the loss of local agricultural knowledge. Yet, with climate change looming, diversity in agriculture is increasingly important and one of the tools necessary for maintaining an abundant and reliable food supply. Unveiling a thorough history of our species’ agricultural roots will not only give us an understanding as to how we got here, but will also help us learn from past successes and failures. Hence, the work that Spengler and others in the field of archaeobotany are doing is crucial.

To set the stage for a discussion of “the Silk Road origins of the foods we eat,” Spengler offers his definition of the Silk Road. The term is misleading because there isn’t (and never was) a single road, and the goods, which were transported in all directions across Asia, included much more than silk. In fact, some of what was transported wasn’t a good at all, but knowledge, culture, and religion. In Spengler’s words, “The Silk Road … is better thought of as a dynamic cultural phenomenon, marked by increased mobility and interconnectivity in Eurasia, which linked far-flung cultures….This network of exchange, which placed Central Asia at the center of the ancient world, looked more like the spokes of a wheel than a straight road.” Spengler also sees the origins of the Silk Road going back at least five thousand years, much earlier than many might expect.

Most of Spengler’s book is organized into chapters discussing a single crop or group of crops, beginning with grains (millet, rice, barley, wheat) then moving on to fruits, nuts, and vegetables before ending with spices, oils, and teas. Each chapter compiles massive amounts of research that can be a bit overwhelming to take in all at once. Luckily each section includes a short summary, which nicely distills the information down into something more digestible.

Spengler’s chapter on broomcorn millet (Panicum miliaceum) is particularly powerful. While in today’s world millet has largely “been reduced to a children’s breakfast food in Russia and bird food in Western Europe and America,” it was “arguably the most influential crop of the ancient world.” Originally domesticated in East Asia, “it passed along the mountain foothills of Central Asia and into Europe by the second millennium BC.” It is a high-yielding crop adapted to hot, dry conditions that, with the development of summer irrigation, could be grown year-round. These and other appealing qualities have led to an increase in the popularity of millet, so much so that 2023 will be the International Year of Millets.

The “poster child” for Spengler’s book may very well be the apple. Popular the world over, the modern apple began its journey in Central Asia. As Spengler writes, “the true ancestor of the modern apple is Malus sieversii,” and “remnant populations of wild apple trees survive in southeastern Kazakhstan today.” As the trees were brought westward, they hybridized with other wild apple species, bringing rise to the incredible diversity of apple cultivars we know today. Sadly though, most of us are only familiar with the small handful of common varieties found at our local supermarkets.

Of course, as Spengler says, “No discussion of plants on the Silk Road would be complete without the inclusion of tea (Camellia sinensis),” a topic that could produce volumes on its own. Despite the brevity of the section on tea, Spengler has some interesting things to say. One in particular involves the transport of tea to Tibet in the seventh century, where “an unquenchable thirst for tea” had developed. But the journey there was long and difficult. Fermented and oxidized tea leaves traveled best. Along the way, “the leaves were exposed to extreme cold as well as hot and humid temperatures in the lowlands, and all the time they were jostled on the backs of sweaty horses and mules.” This, however, only improved the tea, as teas exposed to such conditions “became a highly sought-after commodity among the elites.”

“In Central Asia, Mongolia, and Tibet, tea leaves were oxidized, dried, and compressed into hard bricks from which chunks could be broken off and immersed in water.” – Robert N. Spengler III in Fruit from the Sands (photo via wikimedia commons)

As dense as this book is, it’s also quite approachable. The information presented in each of the chapters is thorough enough to be textbook material, but Spengler does such a nice job summing up the main points, that there are plenty of great takeaways for the casual reader. For those wanting a deeper dive into the history of our food (which in many ways is the history of us), Spengler’s book is an excellent starting point.

More Reviews of Fruit from the Sands:

———————

Our Instagram has been revived!!! After nearly a year of silence, we are posting again. Follow us @awkwardbotany.

22 + Botanical Terms for Fruits

First off, let’s get one thing straight – tomatoes are fruits. Now that that is settled, guess what is also a fruit? This:

(photo credit: wikimedia commons)

(photo credit: wikimedia commons)

Yep. It’s a dandelion fluff. More accurately, it is a dandelion fruit with a pappus attached to it. Botanically speaking, a fruit is the seed-bearing, ripened ovary of a flowering plant. Other parts of the plant may be incorporated into the fruit, but the important distinction between fruits and other parts of a plant is that a seed or seeds are present. In fact, the purpose of fruits is to protect and distribute seeds. Which explains why tomatoes are fruits, right? (And, for that matter, the dandelion fluff as well.) So why the tired argument over whether or not a tomato is a fruit or a vegetable? This article may help explain that.

Before going into types of fruits, it may be important to understand some basic fruit anatomy. Pericarp is a term used to describe the tissues of a fruit surrounding the seed(s). It mainly refers to the wall of a ripened ovary, but it has also been used in reference to fruit tissues that are derived from other parts of the flower. Pericarps consist of three layers (although not all fruits have all layers): endocarp, mesocarp, and exocarp (also known as epicarp). The pericarps of true fruits consist of only ovarian tissue, while the pericarps of accessory fruits consist of other flower parts such as sepals, petals, receptacles, etc.

Fruits can be either fleshy or dry. Tomatoes are fleshy fruits, and dandelion fluffs are dry fruits. Dry fruits can be further broken down into dehiscent fruits and indehiscent fruits. Dehiscent fruits – like milkweeds and poppies – break open as they reach maturity, releasing the seeds. Indehiscent fruits – like sunflowers and maples – remain closed at maturity, and seeds remain contained until the outer tissues rot or are removed by some other agent.

Most fruits are simple fruits, fruits formed from a single ovary or fused ovaries. Compound fruits are formed in one of two ways. Separate carpels in a single flower can fuse to form a fruit, which is called an aggregate fruit; or all fruits in an inflorescence can fuse to form a single fruit, which is called a multiple fruit. A raspberry is an example of an aggregate fruit, and a pineapple is an example of a multiple fruit.

Additional terms used to describe fruit types:

Berry – A familiar term, berries are fleshy fruits with soft pericarp layers. Grapes, tomatoes, blueberries, and cranberries are examples of berries.

Pome – Pomes are similar to berries but have a leathery endocarp. Apples, pears, and quinces are examples of pomes. When you are eating an apple and you reach the “core,” you have reached the endocarp. Most – if not all – pomes are accessory fruits because they consist of parts of flowers in addition to the ovarian wall, such as – in the case of apples and pears – the receptacle.

Drupe – Drupes are also similar to berries but have hardened endocarps. Peaches, plums, cherries, and apricots are examples of drupes. A “pit” consists of a hardened endocarp and its enclosed seed.

Pepo – Pepos are also berry-like but have tough exocarps referred to as rinds. Pumpkins, melons, and cucumbers are examples of pepos.

Pumpkins are pepos.

Pumpkins are pepos.

Hesperidium – Another berry-like fruit but with a leathery exocarp. Oranges, lemons, and tangerines are examples of this type of fruit.

Caryopsis – An indehiscent fruit in which the seed coat fuses with the fruit wall and becomes nearly indistinguishable. Corn, oats, and wheat are examples of this type of fruit.

Achene – An indehiscent fruit in which the seed and the fruit wall do not fuse and remain distinguishable. Sunflowers and dandelions are examples of achenes.

Samara – An achene with wings attached. Maples, elms, and ashes all produce samaras. Remember as a kid finding maple fruits on the ground, throwing them into the air, and calling them “helicopters.” Those were samaras.

The fruits of red maple, Acer rubrum (photo credit: eol.org)

The fruits of red maple, Acer rubrum (photo credit: eol.org)

Nut – An indehiscent fruit in which the pericarp becomes hard at maturity. Hazelnuts, chestnuts, and acorns are examples of nuts.

Follicle – Dehiscent fruits that break apart on a single side. Milkweeds, peonies, and columbines are examples of follicles.

Legume – Dehiscent fruits that break apart on multiple sides. Beans and peas are examples of legumes.

Capsule – This term describes a number of dehiscent fruits. It differs from follicle and legume in that it is derived from multiple carpels. Capsules open in several ways, including along lines of fusion, between lines of fusion, into top and bottom halves, etc. The fruits of iris, poppy, and primrose are examples of capsules.

Poppy flower and fruit. Poppy fruits are called capsules.

Poppy flower and fruit. Poppy fruits are called capsules.

Flowers and fruits are key to identifying plants. Learning to recognize these structures will help you immensely when you want to know what you are looking at. And now that it is harvest season, you can impress your friends by calling fruits by their proper names. Pepo pie, anyone?