Grasshoppers – More Friend Than Foe?

Major outbreaks of grasshoppers can be devastating. A plague of locusts of biblical proportions can decimate crop fields and rangelands in short order. Clouds of grasshoppers moving in and devouring every plant in sight makes it easy to see why these insects are often seen as pests. Even small groups of them can do significant damage to a garden or farm. Yet, grasshoppers and their relatives have great ecological value and are important parts of healthy ecosystems. Love them or hate them, they are an essential piece of a bigger picture.

Grasshoppers are in the order Orthoptera, an order that includes katydids, crickets, wetas, and a few other familiar and not so familiar insects. Worldwide, there are more than 27,000 species of orthopterans. These insects mostly feed on plants; many are omnivorous while others are exclusively herbivorous. They are most commonly found in open, sunny, dry habitats like pastures, meadows, disturbed sites, open woods, prairies, and crop fields. Most insects in this order are fairly large, making them easy to identify; yet they don’t seem to receive the same level of human attention that charismatic insects like bees and butterflies do. In Field Guide to Grasshoppers, Katydids, and Crickets of the United States, the authors defend this diverse group of arthropods: “Grasshoppers often are thought of as modest-looking brown or green insects, but many species in this family are brightly colored, and some of the most dull-colored species rival butterflies in beauty when they spread their wings in flight.”

photo credit: wikimedia commons

photo credit: wikimedia commons

The voracious appetite of grasshoppers and their preference for plants can influence ecosystems in many ways. Certain plants may be favored over others, which affects the diversity and distribution of plant communities. Grasses are a particular favorite, despite being high in hard to digest compounds like lignin, cellulose, and silica. As grasshoppers consume vegetation – up to their body weight per day – digested materials return to the soil where soil dwelling organisms continue to break them down. In this way, grasshoppers and their relatives are major contributors to nutrient cycling. Returning nutrients to the soil results in increased nutrient availability for future plant growth. In fact, one grassland study found that despite short-term losses via grasshopper herbivory, plant growth was enhanced in the long-term due in part to accelerated nutrient cycling.

Because grasshoppers are such prolific consumers, their robust bodies are loaded with nutritious proteins and fats, making them a preferred food source for higher animals. Reptiles, raccoons, skunks, foxes, mice, and numerous species of birds regularly consume grasshoppers and related species. While many adult birds feed mostly on seeds and fruits, they seek out insects and worms to feed their young. Nutrient-packed grasshoppers are an excellent food source for developing birds. Humans in many parts of the world also find grasshoppers and crickets to be a tasty part of their diet.

Grasshoppers provide food for other invertebrates as well. The aforementioned field guide refers to the fate of grasshoppers and certain species of blister beetles as being “intimately linked,” because the larvae of these blister beetles feed exclusively on grasshopper eggs. Several species of flies and other insects, as well as spiders, also feed on grasshoppers and other orthopterans.

grasshopper on blade of grass

In short, grasshoppers play prominent roles in plant community composition, soil nutrient cycling, and the food chain. When grasshopper populations reach plague proportions, their impact is felt in other ways. From a human perspective, the damage is largely economic. However, their ability to thoroughly remove vegetation across large areas can be environmentally devastating as well, particularly when it comes to soil erosion and storm water runoff. The USDA’s Agricultural Research Service considers grasshoppers “among the most economically important pests” and cites research estimating that they are responsible for destroying as much as 23% of available range forage in the western United States annually. A paper published in the journal, Psyche, references a period between 2003-2005 in Africa where locusts were responsible for farmers losing as much as 80 to 100% of their crops.

This level of devastation is relatively rare. In Garden Insects of North America, Whitney Cranshaw states that of the more than 550 species of grasshoppers that occur in North America, “only a small number regularly damage gardens…almost all of these are in the genus Melanoplus.” Like most large, diverse groups of organisms, many grasshopper species are abundant and thriving while others are rare and threatened. Human activity has benefited certain species of grasshoppers while jeopardizing others. In general, grasshopper populations vary wildly from year to year depending on a slew of environmental factors.

Differential grasshopper (Melanoplus differentialis) - one of the four grasshoppers that Whitney Cranshaw lists as "particularly injurious" in his book Garden Insects of North America. (photo credit: www.eol.org)

Differential grasshopper (Melanoplus differentialis) – one of the four grasshoppers that Whitney Cranshaw lists as “particularly injurious” in his book Garden Insects of North America. (photo credit: www.eol.org)

A plague or outbreak of grasshoppers is a poorly understood phenomenon. It seems there are too many factors at play to pin such an occasion on any one thing. Warm, sunny, dry weather seems to favor grasshopper growth and reproduction, so drought conditions over a period of years can result in a dramatic increase in grasshopper populations. But drought can also limit plant growth, reducing the grasshoppers’ food supply. Natural enemies – which grasshoppers have many – also come into play. It seems that just the right conditions have to be met for an outbreak to occur – a seemingly unlikely scenario, but one that occurs frequently enough to cause concern.

Grasshoppers and fellow orthopterans are fascinating insects, and their place in the world is worth further consideration. For an example of just how compelling such insects can be, here is a story about crickets from Doug Tallamy’s book, Bringing Nature Home:

“Male tree crickets in the genus Oecanthus attempt to lure females to them by making chirping songs with their wings. The loudest male attracts the most females, so males often cheat a bit by positioning themselves within a cup-shaped leaf that amplifies the song beyond what the male can make without acoustical help. Each male chews a hole in the center of his cupped leaf that is just large enough to accommodate his raised wings during chirping. This ensures that the sound projects directly from the center of the parabolic leaf for maximum amplification.

Related Awkward Botany Posts:

Book Review: Bringing Nature Home

Since Bringing Nature Home by Douglas Tallamy was first published in 2007, it has quickly become somewhat of a “classic” to proponents of native plant gardening. As such a proponent, I figured I ought to put in my two cents. Full disclosure: this is less of a review and more of an outright endorsement. I’m fawning, really, and I’m not ashamed to admit it.

9780881929928l

The subtitle pretty much sums it up: “How You Can Sustain Wildlife with Native Plants.” Ninety three pages into the book, Tallamy elaborates further: “By favoring native plants over aliens in the suburban landscape, gardeners can do much to sustain the biodiversity that has been one of this country’s richest assets.” And one of every country’s richest assets, as far as I’m concerned. “But isn’t that why we have nature preserves?” one might ask. “We can no longer rely on natural areas alone to provide food and shelter for biodiversity,” Tallamy asserts in the Q & A portion of his book. Humans have altered every landscape – urban, suburban, rural, and beyond – leaving species of all kinds threatened everywhere. This means that efforts to protect biodiversity must occur everywhere. This is where the You comes in. Each one of us can play a part, no matter how small. In closing, Tallamy claims, “We can each make a difference almost immediately by planting a native nearby.”

A plant is considered native to an area if it shares a historical evolutionary relationship with the other organisms in that area. This evolutionary relationship is important because the interactions among organisms that developed over thousands, even millions, of years are what define a natural community. Thus, as Tallamy argues, “a plant can only function as a true ‘native’ while it is interacting with the community that historically helped shape it.” A garden designed to benefit wildlife and preserve biodiversity is most effective when it includes a high percentage of native plants because other species native to the area are already adapted to using them.

Plants (and algae) are at the base of every food chain – the first trophic level – because they produce their own food using the sun’s energy. Organisms that are primarily herbivores are at the second trophic level, organisms that primarily consume herbivores are at the third trophic level, and so on. As plants have evolved they have developed numerous defenses to keep from being eaten. Herbivores that evolved along with those plants have evolved the ability to overcome those defenses. This is important because if herbivores can’t eat the plants then they can’t survive, and if they don’t survive then there will be little food for organisms at higher trophic levels.

The most important herbivores are insects simply because they are so abundant and diverse and, thus, are a major food source for species at higher trophic levels. The problem is that, as Tallamy learned, “most insect herbivores can only eat plants with which they share an evolutionary history.” Insects are specialized as to which plants they can eat because they have adapted ways to overcome the defenses that said plants have developed to keep things from eating them. Healthy, abundant, and diverse insect populations support biodiversity at higher trophic levels, but such insect populations won’t exist without a diverse community of native plants with which the insects share an evolutionary history.

That is essentially the thesis of Tallamy’s book. In a chapter entitled “Why Can’t Insects Eat Alien Plants?” Tallamy expounds on the specialized relationships between plants and insects that have developed over millennia. Plants introduced from other areas have not formed such relationships and are thus used to a much lesser degree than their native counterparts. Research concerning this topic was scarce at the time this book was published, but among other studies, Tallamy cites preliminary data from a study he carried out on his property. The study compared the insect herbivore biomass and diversity found on four common native plants vs. five common invasive plants. The native plants produced 4 times more herbivore biomass and supported 3.2 times as many herbivore species compared to the invasive plants. He also determined that the insects using the alien plants were generalists, and when he eliminated specialists from the study he still found that natives supported twice as much generalist biomass.

Apart from native plants and insects, Tallamy frames much of his argument around birds. Birds have been greatly impacted by humans. Their populations are shrinking at an alarming rate, and many species are threatened with extinction. Tallamy asserts, “We know most about the effects of habitat loss from studies of birds.” We have destroyed their homes and taken away their food and “filled their world with dangerous obstacles.” Efforts to improve habitat for birds will simultaneously improve habitat for other organisms. Most bird species rely on insects during reproduction in order to feed themselves and their young. Reducing insect populations by filling our landscapes largely with alien plant species threatens the survival of many bird species.

In the chapters “What Should I Plant?” and “What Does Bird Food Look Like?,” Tallamy first profiles 20 groups of native trees and shrubs that excel at supporting populations of native arthropods and then describes a whole host of arthropods and arthropod predators that birds love to eat. Tallamy’s fascinating descriptions of the insects, their life cycles, and their behaviors alone make this book worth reading. Other chapters that are well worth a look are “Who Cares about Biodiversity?” in which Tallamy explains why biodiversity is so essential for life on Earth, and “The Cost of Using Alien Ornamentals” in which Tallamy outlines a number of ways that our obsession with exotic plants has caused problems for us and for natural areas.

Pupa of ladybird beetle on white oak leaf (photo credit: wikimedia commons)

Pupa of a ladybird beetle on a white oak leaf. “The value of oaks for supporting both vertebrate and invertebrate wildlife cannot be overstated.” – Doug Tallamy (photo credit: wikimedia commons)

Convincing people to switch to using native plants isn’t always easy, especially if your argument involves providing habitat for larger and more diverse populations of insects. For those who are not fans of insects, Tallamy explains that “a mere 1%” of the 4 million insect species on Earth “interact with humans in negative ways.” The majority are not pests. It is also important to understand that even humans “need healthy insect populations to ensure our own survival.” Tallamy also offers some suggestions on how to design and manage an appealing garden using native plants. A more recent book Tallamy co-authored with fellow native plant gardening advocate Rick Darke called The Living Landscape expands on this theme, although neither book claims to be a how to guide.

———————

Interested in writing a book review for Awkward Botany? Or helping out in another way? Find out how.