Moving Your Ecosystem Forward – An Arborist’s Application of Ecological Principles in the Urban Landscape

This is a guest post by Jeremiah Sandler.


Ecosystems are everywhere – interconnected and interdependent systems of biology, climate, ecology, and geography. The inside of your house is an ecosystem with its own micro-climate, life (including but not limited to you), and topography. Everywhere you go, you’re in some kind of ecosystem.

The same is more obviously true about your landscape. In my area of the U.S. (southeast Michigan), forests and wetlands are often removed to build suburbs. Both the appropriate soil and ecologically relevant plants are removed from the site. After construction, these areas are re-planted with genetically inadequate plants in poor soil. The ecosystem is modified at a rate faster than most organisms can adapt. Landscape designs common in the suburbs are inadequate in maintaining biodiversity and healthy, natural ecosystems.

In some lucky areas, there are communities doing their best to maintain a strong and natural forest canopy. Leaving secondary forests relatively untouched during construction should be the standard when developing areas for humans.

Ecosystems evolve and change, and one can argue that human-caused mass deforestation is simply another driver of ecosystem evolution. While this may be true, it is a driver that influences the ecosystem at a much greater magnitude than other factors. It just so happens to be mitigable or avoidable altogether.

What can cause an ecosystem to change?

Let’s use the trees in a natural forest ecosystem as an example. Disturbances in any ecosystem drive biological adaptation and behavioral changes in the organisms within it. Disturbances such as fire, wind events, floods, drought, and pathogens alter the forest canopy. Fire may kill smaller trees and wind events can blow trees over. Such disturbances open the canopy and allow dormant seeds to germinate in the new sunlight, which gives additional genetic material a shot in the world.

Ecological disturbance is vital to plants, animals, and microbes because it keeps their genetic material up-to-date with evolving pathogens and changing environments. Up-to-date trees need less work. They are more prepared for their environment and its diseases, as evidenced by their parents successfully reproducing.

We can’t control all ecological disturbances, but in the urban environment we do our best to avoid major ones. Understandably, right? We aren’t fond of wildfire, nor do we want flooding anywhere near our homes.

Applied ecosystem principles on the job

Oftentimes in large, human constructed landscapes, only upper and middle canopies exist; sub-canopy layers are missing. This is surprisingly common in forest ecosystems, especially in suburban areas. Forests like this are considered to have a closed canopy.

Closed-canopy forests are naturally occurring and are not necessarily bad. The thick shade cast by the upper canopy is very dense and prevents most understory growth. Over time closed-canopy forests will evolve and change – large trees or limbs come down in the wind, flooding occurs, lightning strikes, or diseases are introduced. Whatever the disturbance, the newly opened canopy once again helps move the ecosystem forward.

Disturbance by pruning

A client of ours lives on a beautiful property in a dry-mesic southern forest (a closed-canopy forest). Due to all the trees on the property, this client sought advice from arborists. The client’s smart choice lead us to an important solution.

Various large species of both white and red oaks dominate the overstory and upper emergent layers of the canopy. The trunks of these towering trees are far apart. Below these titan trees are some slightly shorter oaks, an american beech, and a few hickory species residing in the midstory. About 40 feet below are various types of moss, some stunted sedges, violets, forest grasses – a sparse herbaceous understory. Beyond that there were several patient serviceberries here and there, and a single red maple, about 1.5 inches in diameter and 15 feet tall at most.

Allegheny serviceberry (Amelanchier laevis) – via wikimedia commons

The area has been undisturbed for a long time (it doesn’t even get mowed), and with the presence of oak wilt in southeast Michigan, we steered away from planting anywhere in the root zone, as it poses a risk for oak wilt infection. Sure, we could plant an over-designed landscape to be manicured, but we had other ideas in mind.

Direct application with two solutions

We asked the client how long ago the red maple and serviceberries volunteered themselves into their landscape. Together we traced the germination back to a wind event that knocked a large limb down years ago. The red maple and serviceberries popped up as a result of new sunlight, yet according to the client, these plants hadn’t grown much in height during the last decade or so. Why might this be? A mature plant can close holes in the canopy faster than lower story plants can, so they no longer receive as much light as they once had.

The next time a limb falls, the maple and serviceberries will have another explosive growth spurt. There are also other dormant seeds to germinate every time a disturbance like that occurs. This is an example of another natural phenomenon called forest succession. It is another way forest ecosystems change.

Planting foreign species in place of the native ones takes away important food sources and habitat for surrounding wildlife. So rather than planting cultivar clones and ecologically useless plants – plants that don’t support other lifeforms – into the existing ecosystem, we proposed we could either do strategic crown thinning or just wait for mother nature to do it for them.

Course of action

My associates and I operate on a “less is more” approach. Not touching this ecosystem is our alternative to modifying the canopy. Like a human patient undergoing surgery, cutting open any organism exposes it to infection. In time, either a natural disturbance will come through to modify the canopy, or the trees will naturally shed lower limbs on their own – a process called cladoptosis.

Strategic branch removal will open up the canopy, allowing more sunlight to the ground below, while keeping the trees looking true to their natural form. The climbing team would be using a type of pruning called refracturing. The openings will simulate a wind event disturbance. As a result, the plants that germinate will be the most competitive, hardy, resistant, and genetically up-to-date plants. This truly is “right plant, right place,” provided no invasive buckthorns pop up.

If the customer does want to go forward with disturbance-by-pruning, the proposal is to open the canopy during winter, as most of the canopy are oak trees. The risk of infecting these trees is reduced significantly by pruning in the winter when the vectors for oak wilt are dormant.

The canopy holes would be placed where the homeowner wants more trees. One benefit of pruning the trees is that disturbance is controlled, rather than a wind disturbance causing a chaotic breakage into the house, for example.

Observation would begin early the following spring. We will watch for germination; it’s expected that the plants that do germinate won’t survive the competition.

What’s important about any of this?

The arborist-homeowner relationship highlighted above is an exemplar of proper arboriculture. We offered expertise along with our services. The exchange saved the homeowner hundreds of upfront costs from the installation of a landscape, as well as future maintenance costs.

Assuming it isn’t under human-induced stress, no forest needs human intervention. In this project, we would want to see natural phenomena form the landscape in this client’s yard. It is our preference to leave the current closed-canopy forest alone.

The benefits of using naturally occurring trees are plentiful. In general, up-to-date trees are more prepared for your ecosystem and support the wildlife that co-evolved with them. An ever-increasingly displaced wildlife population will happily occupy new habitat; they’re here too, after all.


Jeremiah Sandler lives in southeast Michigan, has a degree in horticultural sciences, and is an ISA certified arborist. Follow him on Instagram: @jeremiahsandler


When Alien Plants Invade – The Four Stages of Invasion, part two

In a review published in New Phytologist (2007), Kathleen Theoharides and Jeffrey Dukes examine four stages of invasion as they relate to alien (i.e. introduced or non-indigenous) plant species. In part one we discussed transport and colonization, in which species must survive being transported long distances and then take root and reach maturity in an unfamiliar location. Alien plant species don’t become invasive until they have reached the last two stages: establishment and landscape spread. Removal of the species upon reaching these stages is no easy task. Luckily, introduced species have a few barriers to overcome before this point.

An established population is one that is self-sustaining and expanding. Environmental conditions may be a limiting factor, as they were during colonization, but the main constraints at this stage are “biotic filters.” Theoharides and Dukes define these as “barriers to invasion created by the actions or presence of living organisms.” Through competition for various resources, as well as herbivory and disease, neighboring organisms affect the survival, growth, and reproduction of introduced plant species. Thus, “traits that enhance competitive performance, reduce niche overlap between [introduced species] and natives, or increase enemy resistance may be most important during establishment… Other advantageous traits include secondary chemical compounds that deter herbivores, ‘novel weapons’ such as root exudates that negatively impact other plants, fast growth, and high fecundity.”

Plants compete for light, moisture, and soil nutrients, as well as for pollinators and seed dispersers. Competition inhibits the establishment of invaders when neighboring plants consume available resources more efficiently. Introduced plants risk being outcompeted by plants that are of the same functional type (plants that are “morphologically, phenologically, and physiologically similar”). They also risk competition by a single dominant species (or group of similar species) or by “an assemblage of species with different traits.” As a general rule, plant communities with greater diversity are more resistant to invasion.

“In forests of the northeastern USA, Alliaria petiolata, an herbaceous mustard species, contains a type of phytotoxic glucosinolate that appears to disrupt the mutualism between arbuscular mycorrhizal fungi and hardwood canopy trees.” – – Theoharides and Dukes (2007) [photo credit:]

Two hypotheses postulate the success of some plant invaders in establishing themselves: the enemy release hypothesis and the evolution of increased competitive ability hypothesis. In the first hypothesis, plant species – having been removed from their native habitat – are freed from their natural enemies and are thus able to allocate more resources to growth and reproduction. The second hypothesis states that, in light of “reduced enemy pressure,” introduced species quickly evolve to allocate resources “from enemy defense to faster growth.” Escape from herbivory and diseases, however, is likely not the only factor in the success of invaders, and much still depends on the competitiveness of the plant and the availability of key resources.

After introduced plants become established, a lag phase generally occurs before landscape spread. This can be a result of a lack of genetic variation, a dearth of suitable habitat, unfavorable environmental conditions, or some combination of the three. New introductions may occur, and the population may continue to adapt and expand. Suitable habitat may be made available, and environmental conditions may shift. In time, landscape spread becomes a possibility.

Landscape spread occurs when multiple populations of a species are connected via long-distance dispersal. At this “metacommunity scale,” populations of an introduced plant species interact across a large area, with each population in a different stage of colonization and establishment. This means that transport, colonization, and establishment are all at play during the landscape spread stage.

Abutilon theophrasti (velvetleaf) was originally introduced before 1700 in the USA. This species has only recently become an aggressive invader as a result of the evolution of different life-history strategies based on the nature of competition in its new environment.” — Theoharides and Dukes (2007) [photo credit: wikimedia commons]

Dispersal ability and habitat connectivity are key factors in determining the success of an introduced plant species during landscape spread. Long-distance dispersal can occur via wind, water, or animals. Species that depend on animals to spread their seeds rely on specific animals to be present. The seeds of Prunus serotina (black cherry), for example, are dispersed by birds. So, landscape spread is reliant on birds and “roosting trees” where the birds can perch and defacate the seeds. In many cases, “humans also play a large role in intraregional dispersal.”

Habitats vary across the landscape due to a combination of numerous geological and biological processes. The disturbance regime – “the frequency, spatial extent, severity, and intensity of killing events over time” – also helps determine landscape patterns. Natural disturbances, such as fire, weather, and natural disasters, are differentiated from disturbances caused by human activity. Large scale development and disturbance of natural areas by humans disrupts the natural disturbance regime and alters historical landscape patterns. As the authors write, “alterations of the disturbance regime that increase resource availability or change landscape patterns can promote non-indigenous plant species spread by creating favorable patches for colonization and establishment.”

Fragmented landscapes consisting of small patches of natural areas dispersed among large areas of human development are particularly prone to invasion by introduced plant species for many reasons, including increased influx of propagules and a high degree of edge effects (habitat edges have environmental conditions that are generally more prone to invasion than habitat interiors).

Habitat patches can be connected via corridors. It is through these corridors that dispersal can occur between populations in a metacommunity. Corridors connect populations of both introduced and native plant species. However, “native plants often require wide undisturbed corridors of intact habitat, while [introduced plant species] may disperse best through strips of human-disturbed habitat or ‘disturbance corridors.'” The environmental conditions in disturbance corridors and the presence of dispersal agents (including humans and domesticated animals) help facilitate the connectivity of populations of introduced plant species and promote the colonization and establishment of new populations.

In their abstract, Theoharides and Dukes write, “both research and management programs may benefit from employing multiscale and stage approaches to studying and controlling invasion.” With their conclusion they provide a list of potential management strategies for each stage, and they advise employing “natural filters in order to prevent invasion succees.” Examples include reducing habitat fragmentation and edge effects, promoting intact native communities, reducing human disturbances, promoting natural disturbance regimes, and minimizing disturbance corridors.

More Posts about Invasive Species: