Inside of a Seed: Gymnosperms

“Every tree has to stay where it put down roots as a seedling. However, it can reproduce, and in that brief moment when tree embryos are still packed into seeds, they are free. The moment they fall from the tree, the journey can begin.” — The Hidden Life of Trees by Peter Wohlleben

———————

Seed plants – also known as spermatophytes – make up the largest group of plants on earth. Seed plants consist of five divisions, and among them the angiosperm division (a.k.a. flowering plants) dominates in its number of species. The four remaining divisions are referred to collectively as gymnosperms. This incudes the cycads (Cycadophyta), Ginkgo biloba (the only living species in the division Ginkgophyta), gnetophytes (Gnetophyta), and the conifers (Coniferophyta). Conifers are by far the largest and most widespread gymnosperm division.

Angiosperms and gymnosperms have different evolutionary histories, resulting in their distinct genetic and morphological differences. That being said, an overly-simplistic way of differentiating the two groups is to say that, while both groups produce seeds, angiosperms produce flowers and fruits while gymnosperms produce pollen cones and seed cones. There are always exceptions (Ginkgo biloba, for example, doesn’t produce cones), but for the most part, this is the case.

Pollen cones (top) and seed cones (bottom) of mugo pine (Pinus mugo) via wikimedia commons

Sexual reproduction in gymnosperms follows a familiar pattern. Pollen, which contains the male sex cells, is produced in pollen cones, which are essentially miniature branches with modified leaves called scales that house the male reproductive organs. Mature pollen is shed and carried away by the wind. Lucky pollen grains make their way to the female cones, which are also modified branchlets, but are a bit more complex. Scales sit atop bracts, and on top of the scales are ovules – the female reproductive structures. During fertilization, the bracts open to collect pollen and then close as the seed develops.

When pollen lands on an ovule it forms pollen tubes that help direct the male sex cells to the egg cells inside. The process is similar to pollen tubes extending down the style of a flower. In flowering plants, additional pollen cells combine with cells in the ovule to produce endosperm, a storage tissue that feeds the growing embryo. This doesn’t happen in gymnosperms. Instead, haploid cells within the ovule develop into storage tissue and go on to serve the same role.

The ovule eventually matures into a seed, and the cone opens to release it. The seed sits atop the scale rather than enclosed within a fruit, as it would be in an angiosperm. For this reason gymnosperms are said to have naked seeds. The development of seeds can also be much slower in gymnosperms compared to angiosperms. In some species, seeds don’t reach maturity for as long as two years.

Seed cones and winged seeds of mugo pine (Pinus mugo) via wikimedia commons

Seeds in the genus Pinus are excellent representations of typical gymnosperm seeds. Their basic components are essentially identical to the seeds of angiosperms. The seed coat is also referred to as an integument. It was once the outer covering of the ovule and has developed into the seed covering. A micropyle is sometimes visible on the seed and is the location where the pollen cells entered the ovule. The storage tissue, as mentioned above, is composed of female haploid cells that matured into storage tissue in the ovule. Like angiosperms, the embryo is composed of the radicle (embryonic root), the hypocotyl (embryonic shoot), and cotyledons (embryonic leaves).

Angiosperms can be divided into monocotyledons and dicotyledons according to the number of cotyledons their embryos have (monocots have one, dicots have two). Gymnosperms are considered multi-cotyledonous because, depending on the species, they can have a few to many cotyledons.

Seedling of Swiss pine (Pinus cembra) showing multiple cotyledons via wikimedia commons

For the sake of this introduction to gymnosperm seeds, I have offered a simple overview of the production of seeds in the conifer division. Sexual reproduction and seed formation in the other three gymnosperm divisions is a similar story but varies according to species. Even within the conifers there are differences. For example, the “seed cones” of several gymnosperm species can actually be quite fruit-like, which serves to attract animals to aid in seed dispersal. Also, the pollen of gymnosperms is often thought of as being wind dispersed (and occasionally water dispersed in the case of Ginkgo biloba and some cycads); however, researchers are continuing to discover the pivotal role that insects play in the transfer of pollen for many cycad species, just as they do for so many species of angiosperms.

All of this to say that Botany 101 is simply a window into what is undoubtedly an incredibly diverse and endlessly fascinating group of organisms, and that, as with all branches of science, there is still so much to discover.

Advertisements

Inside of a Seed: Two Monocots

“Seeds are travelers in space and time – small packages of DNA, protein, and starch that can move over long distances and remain viable for hundreds of years. These packages have everything they need not only to survive, but also to grow into a plant when they encounter the right conditions.”      The Book of Seeds by Paul Smith

———————

As illustrated in last week’s post, the mature seeds of dicots – depending on the species – can be either with or without endosperm (a starchy food packet that feeds a growing seedling upon germination). Seeds without endosperm store these essential sugars in their cotyledons. Monocotyledons (or monocots, for short) are a group of flowering plants (i.e. angiosperms) whose seedlings are composed of a single cotyledon. With the exception of orchids, the seeds of monocots always contain endosperm.

The first of two examples of monocot seeds is the common onion (Allium cepa). The embryo in this seed sits curled up, surrounded by endosperm inside of a durable seed coat.

If you have ever sown onion seeds, you have watched as the single, grass-like cotyledon emerges from the soil. The seed coat often remains attached to the tip of the cotyledon like a little helmet as it stretches out towards the sky. Soon the first true leaf appears, pushing out from the base of the cotyledon. The source of this first leaf is the plumule hidden within the cotyledon.

The fruit of plants in the grass family – including cereal grains like wheat, oats, barley, rice, and corn – is called a caryopsis. In this type of fruit, the fruit wall (or pericarp) is fused to the seed coat, making the fruit indistinguishable from the seed. The embryos in these seeds are highly developed, with a few more discernible parts. A simplified diagram of a corn seed (Zea mays) is shown below. Each kernel of corn on a cob is a caryopsis. These relatively large seeds are great for demonstrating the anatomy of seeds in the grass family.

In these seeds there is an additional layer of endosperm called aleurone, which is rich in protein and composed of living cells. The cells of the adjacent endosperm are not alive and are composed of starch. The embryo consists of several parts, including the cotyledon (which, in the grass family, is also called a scuttelum), coleoptile, plumule, radicle, and coleorhiza. The coleoptile is a sheath that protects the emerging shoot as it pushes up through the soil. The plumule is the growing point for the first shoots and leaves, and the radicle is the beginning of the root system. The emerging root is protected by a root cap called a calyptra and a sheath called a coleorhiza.

Germination begins with the coleorhiza pushing through the pericarp. It is quickly followed by the radicle growing through the coleorhiza. As the embryo emerges, a signal is sent to the endosperm to start feeding the growing baby corn plant, giving it a head start until it can make its own food via photosynthesis.

corn seeds (Zea mays)

Up Next: We’ll take an inside look at the seeds of gymnosperms.

———————

Do you find these posts valuable? Consider giving us a high five in the form of money to help us continue to tell the story of plants.

Donate