Drought Tolerant Plants: Prickly Pears

In the introduction to this series about drought tolerant plants, I defended water efficient gardens by claiming they don’t have to be the “cacti-centric” gardens that many visualize upon hearing terms like “xeriscape,” “water-wise,” and “drought tolerant.” And this is absolutely true. However, that won’t stop me from suggesting that such landscapes include a cactus or two. Despite their menacing and potentially dangerous spines, they are actually quite beautiful, and a cactus in bloom is really a sight to behold. Together with a variety of grasses, herbaceous flowering plants, and shrubs, cactus can add unique forms, textures, and focal points that will enhance the look and function of a water-wise garden. This is why I recommend considering cactus, particularly (as far as this post is concerned) one of the many varieties of prickly pears.

The cactus family (Cactaceae) has a native range that is limited to the Americas. Within that range it is expansive, and cactus species can be found in diverse regions from Canada down to Patagonia. The genus Opuntia (the prickly pears) is the most widespread of any genus in the cactus family consisting of at least 300 species found throughout the Americas. Even a brief investigation into Opuntia will reveal that there is considerable controversy as to how many species there actually are and what to call them. This is partly due to the large ranges that species in this genus can have and the diverse habitats they can be found in within those ranges, resulting in a single species having many forms, varieties, and/or subspecies. Hybridization is also common in this genus where ranges overlap, augmenting the challenge of identification.

Generally, prickly pears have flattened stems with spines and glochids emerging from small bumps called areoles. Their flowers are large, showy and a shade of either yellow, orange, or pink and sometimes white. They form fruits that are either fleshy and juicy with a red or purple hue or hard, dry and a shade of brown or tan. The flattened stems are called pads or cladodes and can be quite large in some species, while diminutive and sometimes rounded in others. Some species are without spines, but all have glochids – tiny, barbed, hair-like structures found in clusters on the stems and fruits. While the spines can be painful when they penetrate skin, the glochids are far more irritating as they easily detach themselves from the plant and work their way into the skin of their victims. The fleshy fruits, called tunas, can be eaten after first taking care to remove the glochid-infested outer layer. The young stems of many species can also be eaten – they are referred to as nopales and are common in Mexican cuisine.

Flowers of Opuntia sp. with bee inside flower on the left

Flowers of Opuntia sp. with bee inside flower on the left

Again speaking generally, prickly pears are very easy to propagate and cultivate. Their two main preferences are full sun and well-drained soil. If you are worried that the soil you are planting them in is going to stay too wet for too long, amend it with some gravel. This is especially important if you live in a climate that receives lots of precipitation or that has cold, wet winters. Once established, prickly pears will move around the garden. If that becomes a problem, expanding plants are easily pruned and traveling plants are easily removed.

I live in a climate that requires the selection of cold hardy prickly pears, so I am taking my specific recommendations from two books: Cacti and Succulents for Cold Climates by Leo J. Chance and Hardy Succulents by Gwen Moore Kelaidis. If you live in a warmer climate, your options will be greater. Still, the options for cold regions are pretty numerous, so for the sake of space I am narrowing my list down to a handful that stand out to me at this particular moment.

Three eastern United States species of prickly pears (O. compressa, O. macrorhiza, and O. humifusa) are, according to Chance, “more capable of dealing with wet and cold conditions than almost any other members of the cactus family.” They still require well-drained soil though. An appealing trait is their large, juicy, red fruits that can add garden interest in late summer and fall. Opuntia engelmannii is another species with the potential to tolerate cold, wet conditions. Its size is appealing to me, with pads that reach a foot wide and plants that grow several feet tall. Chance advises finding “a clone that is known to be cold tolerant” and making some space for it, “as it becomes huge in time.” The most cold tolerant prickly pear may be Opuntia fragilis. It is a diminutive plant with a large native range and a variety of forms, some with rounded pads “shaped like marbles.”

Fruits ("tunas") of Opuntia engelmannii - photo credit: www.eol.org

Fruits (“tunas”) of Opuntia engelmannii – photo credit: www.eol.org

Opuntia fragilis 'Frankfurt' - photo credit: wikimedia commons

Opuntia fragilis ‘Frankfurt’ – photo credit: wikimedia commons

Opuntia polyacantha is a prickly pear native to my home state, Idaho. It is found at high elevations throughout the Intermountain West and is also found on the Great Plains. It has many forms and varieties, and its flowers are various shades of pink or yellow. It is a fast growing species and spreads around easily. Other cold hardy species include Opuntia macrocentra (which has a very attractive yellow flower with a red-orange center), Opuntia erinacea (commonly known as hedgehog prickly pear for its abundant, long spines that can obscure the pads), and Opuntia microdisca (a tiny Argentinian prickly pear with pads that barely reach an inch across but, as Chance says, “works very well in a dry rock garden with other miniatures”).

Pads of Opuntia polyacantha

Pads and spines of Opuntia polyacantha

A post about Opuntia could go on indefinitely due to the sheer number of species and their diverse forms and attributes. This is meant merely to pique your interest. The flowers, if nothing else, should certainly interest you. In her book, Kelaidis calls them “improbably beautiful,” and goes on to say that they are “often papery, always glistening and showy.” Chance likens them to “any fancy rose” because they are “extraordinarily large, brightly colored, [and] eye catching.” Next week, as part of Awkward Botany’s Year of Pollination, I will present another reason to be fascinated with the flowers of Opuntia. For now, I will leave you to ponder this word, “thigmonasty.”

Want to learn more about prickly pears? Check out Opuntia Web.

Advertisement

Drought Tolerant Plants: Blue Sage

If you are considering installing a drought tolerant garden on your property or including more drought tolerant plants in your landscape, one plant that should come standard is blue sage. Its silvery-green foliage, large, abundant, purple-blue flower stalks, and attractive mounded shape, make it an excellent feature in any water-efficient garden bed.

salvia pachyphylla_edit 1

Salvia pachyphylla is in the mint family (Lamiaceae). It has several common names which it shares with several other plants: blue sage, Mojave sage, rose sage, mountain desert sage, giant-flower sage. For this post we will refer to it as blue sage; however, if you’re looking to purchase it, make sure to verify the botanical name. Blue sage is a subshrub that can grow up to 3 feet tall and 3 feet wide. It tends to remain smaller – around 1-2 feet tall – in its native habitat. It is found in the southwestern states of the United Sates on dry, rocky slopes and flats at elevations between 5,000 – 10,000 feet. The leaves are oppositely arranged and covered with fine hairs that lay tightly against the leaf surface giving the foliage its silvery appearance. Like all other sages, the leaves of blue sage are highly aromatic.

salvia pachyphylla foliage_edit

The flowers appear in compact clusters on spikes that extend upward from the branches. The inflorescences can be several inches long. They have numerous large, purple bracts that appear in a whorled pattern along the spike. The violet-blue flowers are small but prolific and appear between the bracts surrounding the stalk. Flowering occurs throughout the summer (July-September in its native range). The flowers attract droves of pollinators including bees, butterflies, and hummingbirds. Blue sage is especially beneficial to native pollinators. In fact, while taking photos for this post, I noted that the flowers were being visited by several bumblebees. Its benefit to pollinators is another great reason to include this plant in your landscape.

salvia pachyphylla_edit 2

Blue sage is a very drought tolerant plant. Once it is established it requires only occasional watering throughout the summer in order to keep it looking good. It performs well in a variety of soil types, but like most drought tolerant plants it is best placed in well drained soil. Heavy soils can be amended by mixing in things like sand, lava rock fines, and compost at planting time. It prefers full sun and is winter hardy to USDA hardiness zone 5, especially if planted in an area where the soil is relatively dry throughout the winter. Blue sage is a long lived plant and can be kept in shape by cutting back the spent flowers in the fall. The folks at Plant Select recommend planting blue sage with, among other things, penstemon, coreopsis, and creeping veronica.

Photos were taken at Idaho Botanical Garden in Boise, Idaho.

Drought Tolerant Plants: Fernbush

The first of many plants to be profiled in this series on drought tolerant plants is Chamaebatiaria millefolium, known commonly as fernbush or desert sweet. Fernbush is a shrub that is found in most western U.S. states, generally in locations that are dry and rocky with sandy or gravelly soils.  However, it also occurs in sights with loam or clay loam soils, making it a plant that is not too finicky about soil types. It is found at a wide range of elevations (from 3,000 feet up to 11,000 feet) and in a wide variety of plant communities, including lodgepole pine subalpine forests, juniper-pinyon pine woodlands, mountain mahogany-oak scrublands, and sagebrush steppes. It is occasionally browsed by certain animals, but not enough to be considered an important food source. Instead, its major wildlife value is providing cover for birds, small mammals, and antelope.

Fernbush is by far one of my favorite shrubs. Its the leaves that make it so interesting. As the common name suggests, the leaves look just like little fern fronds, and considering that ferns tend to be associated with shady, moist environments, it seems strange to see a fern-like bush growing in full sun in a dry, rocky site. Alas, fernbush is not a fern, but instead a shrub with very cool leaves.

IMG_0838

IMG_0837

Fernbush grows to about as wide as it does high (between 1-3 meters), and depending on where it is growing it is evergreen or semi-evergreen, dropping the older leaves from the lower portions of its branches during the winter. Its bark is smooth and russet or cinnamon-colored. Flowers appear in clusters at the tips of branches in mid to late summer and are small, white or cream colored, and rose-like with five petals.

SAMSUNG

The fruit of fernbush is called a follicle and contains very small seeds, mere millimeters in size. The spent flower stalks are attractive in their own right and provide great winter interest. They can be pruned off in the spring in preparation for new flower stalks and to keep the plants looking good.

IMG_0834

Fernbush is very drought tolerant. Once its established, it needs very little (if any) supplemental water. It is likely that the leaves of fernbush give it this trait. They are small and finely divided, as well as being hairy and resinous. Physical adaptations such as these reduce water loss through transpiration, which helps the plant use available water more efficiently. Though not very commercially available, fernbush, with its unique appearance and late summer blooms, is a great addition to waterwise gardens and landscapes.

Fun Fact: Chamaebatiaria is a monotypic genus, meaning that it is a genus consisting of only one species. In this regard, Chamaebatiaria millefolium is a true rarity.

Drought Tolerant Plants: An Introduction

Water is a precious natural resource and an essential element for life on earth. Demand for water increases dramatically as human population grows and fresh water sources become polluted. Awareness of our reliance on water is especially heightened during times of drought, like the one that California residents are currently experiencing. Some regions of the planet are inherently dry. The region where I live (Boise, Idaho) receives on average about 12 inches of precipitation annually. Compare that to a place like Pensacola, Florida which receives around 65 inches annually, or El Paso, Texas which is lucky to get around 8 inches of rain a year. So whether it is out of necessity (enduring a drought or living in a dry climate) or simply the desire to be a responsible citizen of planet earth, many people are choosing to incorporate more drought tolerant plants in their landscapes in an effort to conserve water.

In the early 1980’s, landscaping with drought tolerant plants was given the name xeriscaping by the Denver, Colorado water department. These days terms like water-wise gardening and water efficient landscaping seem to be more popular. The initial vision that many people may have of a landscape planted with water efficient plants is one filled with desert plants like cacti, yuccas, and other succulents along with drab shrubs like sagebrush. While landscapes like these can actually be quite attractive (see Plantasia Cactus Gardens), modern water-wise gardens do not have to be so cacti-centric. As interest in water efficient plants has grown in recent years, the horticulture industry has been busy introducing a wide variety of plants that are not only drought tolerant but are lush, green, and full of color.

Plantasia Cactus Gardens -Twin Falls, Idaho

Plantasia Cactus Gardens – Twin Falls, Idaho

Plants that live in regions with frequent or extended droughts are called xerophytes. They have developed a variety of mechanisms that allow them to survive and even thrive in these regions. Ecologists call these mechanisms strategies, or sets of coordinated adaptive traits. In future posts I intend to profile specific drought tolerant plants so that we can get to know them on a more individual basis. For now I will provide a brief overview of the strategies plants use to cope with low water environments.

-Alternate Photosynthetic Pathways: Conventional photosynthesis is inherently inefficient when temperatures are high and water availability is low. Plants that evolved in hot and/or dry environments have developed alternate photosynthetic pathways in order to overcome these inefficiencies. These alternate pathways involve utilizing a different protein to fix carbon, splitting the photosynthetic process into two separate cells, and collecting carbon dioxide at night then converting it to sugars during the day. Learn more about the different photosynthetic pathways here.

-Drought Avoidance: Many desert plants live most of their lives as seeds hanging out on the desert floor waiting for rain. These are seeds of short-lived annual plants that sprout and grow when the rainy season comes around. They flower and set seed and are gone by the time the dry season returns. Birdcage evening primrose (Oenothera deltoides) and desert sand verbena (Abronia villosa) are examples of these desert ephemerals.

-Drought Dormancy: Some desert trees and shrubs shed their leaves during dry periods, and then put out new leaves when rains return. This is called drought deciduous. Other desert plants live out the dry season as fleshy roots or underground stems, putting out foliage only when conditions are favorable. Arrowleaf balsamroot (Balsamorhiza sagitatta) is a good example of this; it spends much of the year as a taproot with little or no sign of its existence above ground.

Arrowleaf Balsamroot - Balsamorhiza sagittata

Arrowleaf Balsamroot – Balsamorhiza sagittata

-Physical Adaptations: Desert plants have many physical adaptations that allow them to survive in hot, dry climates. The thick, fleshy leaves of cacti and other succulents store water for future use. The roots of some desert plants are shallow but horizontally extensive in order to capture water more effectively when rains come. The roots of other desert plants extend deep into the ground, some (like the roots of mesquite, Prosopis spp.) even reach as deep as the water table. Palo verdes (Parkinsonia spp.) are drought deciduous trees or shrubs that have photosynthetic bark that can keep photosynthesizing even when leaves are not present. Other adaptations include small leaves, hairy leaves, dull colored leaves, and waxy leaves all of which help to reduce water loss and improve the efficiency of photosynthesis.

Drought tolerant sedums (Sedum spp.) with their shallow roots and succulent leaves are ideal for use on green roofs where temperatures are often high and water is limited.

Drought tolerant sedums (Sedum spp.) with their shallow roots and succulent leaves are ideal for use on green roofs where temperatures are often high and water is limited.

Learn more about how plants cope in low water environments from Arizona-Sonora Desert Museum.

 

A Plant Community’s Response to Climate Change

The threat of ensuing climate change has led many to consider what the future might look like for life on earth. Plant life will undoubtedly be affected, and numerous observations have already been made indicating that plants and plant communities are responding to changing climates.

A recent study, published in Ecology and Evolution, documented changes in the lower elevation boundaries and elevation ranges of common plants found on the Santa Catalina Mountains (near Tucson, Arizona). A study of this caliber is rare because there is relatively little data available to observe such changes over a long period of time. The scientists that carried out this study were able to use survey data collected by Robert Whittaker (the father of modern plant ecology) and William Niering in 1963. Whittaker and Niering conducted an extensive survey of plants along the Catalina Highway, which still exists today and runs along the southern slopes of the Santa Catalinas. Following similar data collection methods, researchers from the University of Arizona surveyed plants along the Catalina Highway nearly 50 years after the original survey. What they found confirmed predictions: montane plants in the southwest are responding to a warmer and drier climate by shifting their lower elevation limits upward.

The average annual air temperature in this region has increased an average of 0.25 degrees Celsius per decade since 1949. Also, rainfall has decreased significantly since Whittaker and Niering’s original plant survey. Twenty seven of the most common plant species were selected from the new survey and compared to the original survey data. Fifteen of the twenty seven species (56%) have significantly shifted their lower elevation boundaries, moving further up the slopes of the mountains to escape higher temperatures and reduced rainfall. Some of the plant species have also shifted their upper elevation boundaries, with four of them moving further upslope and eight of them moving further downslope.

The authors of this study state that “even a casual observer could recognize changes in plant elevation boundaries.” Alligator juniper, bracken fern, beargrass, and sotol are examples of plants in the Catalinas that have noticeably migrated upslope and are no longer found at lower elevations where they were once common. Alligator Juniper (Juniperus deppeana), for one, was once documented growing at least as low as 3500 feet, but now does not occur until after the 5000 feet mark.

This rare opportunity to compare current plant survey data with old data paints a stark picture regarding the effects of climate change. As plants and animals are forced upslope to escape warmer and drier climates, they may eventually find themselves with nowhere to go and ultimately end up extinct, reducing overall biodiversity on the planet. The authors of this study conclude their findings with this statement: “The shifts in plant ranges we observed in the Santa Catalina Mountains indicate that the area occupied by montane woodland and conifer forests in the Desert Southwest is likely to decrease even more with predicted increases in temperature, and that regional plant community composition has and will continue to change with further warming as plant species respond individualistically to changing climates.”

Read more about this study at the University of Arizona news site.

alligator juniper_juniperus deppeana

Alligator Juniper (Juniperus deppeana)

photo credit: wikimedia commons

Plantasia Cactus Gardens

If you ever find yourself in southern Idaho, there is a secret garden that I highly recommend checking out. I say “secret” because it is a private garden, but if you make an appointment ahead of time, the owners will gladly let you see it. It’s called Plantasia Cactus Gardens, and it is 5 acres filled with a very impressive collection of cacti and other desert plants. Most of the plants are native to the western United States, but there are a few plants from other parts of the world as well. The gardens are beautifully designed and very well-kept. The owners are very friendly and incredibly knowledgable and could probably spend hours with you talking about each plant in their collection. Along with maintaining the garden, the owners also propagate cacti and other drought tolerant plants and sell them during an annual plant sale and through mail order. Check out their website (which is updated regularly) for more information.

SAMSUNG

SAMSUNG

SAMSUNG