Book Review: The Gyroscope of Life

Gyroscopes are entertaining toys and incredibly useful tools. They retain their balance and resist changes to their orientation as long as their flywheel is spinning. As the flywheel slows or stops, the gyroscope wobbles out of control and ultimately quits. Considering their design and function, it’s easy to find parallels between gyroscopes and living systems. Consistent energy inputs keep living things alive. Changes can bring imbalance; major disruptions can lead to death. There is a reason we often describe the natural world as a sort of balancing act. It is the work of an ecologist to make sense of this balancing act. The better we understand it, the more equipped we are to protect it and operate responsibly within it.

It is through this lens that David Parrish writes about the biological world in The Gyroscope of Life, a book that Parrish refers to as “a love song to the field of biology.” Parrish has spent much of his life observing and studying the natural world and, as professor emeritus of Crop and Soil Environmental Sciences at Virginia Tech, undoubtedly shared much of what he presents in his book with countless students over the years. The Gyroscope of Life reads like part memoir and part last lecture, and is the work of someone who has an obvious passion for science and nature.

Parrish spends the first few chapters of his book writing mostly about his life and how he came to be a biologist. He acknowledges his privelege – “born male, white, and American in an era where each of those attributes provided me major advantages” –  having essentially been placed on third base from the start, “well down the third base line.” An aspiring zoologist turned botanist, he spent his early years in graduate school studying seeds and seed dormancy. It’s a topic that obviously interests him, as several pages of the book are spent considering what’s going on inside of a seed. “Seeds provide the widest-spread examples of suspended life,”  Parrish says. Are they alive or dead or neither?

Two additional, major life events play a prominent role in the arc of Parrish’s book. One being his break from organized religion and the other his battle with advanced prostate cancer. He grew up in an orthodox Christian home with a very literal understanding of the Bible. His education put him at odds with what he was taught growing up about (among other things) the age of the earth and its creation. Eventually he came to understand that science and religion “exist in separate non-overlapping spheres – the physical and the metaphysical.” He doesn’t necessarily see science and religion as being inherently at odds with each other, but his understanding of science makes it difficult to “find resonance in religion” due to the “cacophony of dissonance” it offers.

In addressing his prostate cancer, Parrish underwent an operation that gave him a newfound perspective on gender. Freed from “testosterone poisoning,” he was able to more fully consider sex and gender from a biological perspective, which he says he had been doing for decades prior to the operation. He spends a good portion of the book “demystifying sex and gender.” One compelling example he offers involves avocado flowers, which actually change gender over time, a phenomenon known as synchronous dichogamy.

avocado flowers (Persea americana) via wikimedia commons

Over the course of its pages, The Gyroscope of Life covers a significant number of topics in the fields of biology and ecology. It’s a relatively short book, but as it careens through such wide-ranging material, it does so in an approachable and suprisingly succint manner. Parrish’s sense of humor, which doesn’t waver despite how bleak the discussion sometimes gets, helps carry the story along and keeps things interesting. Parrish covers evolution (“[Biologists] argue that, if evolution didn’t happen, it should.”), taxonomy (“the name for naming things”) and sytematics, ecological niches (“[humans] are essentially living niche-free and ecosystemless”), domestication, and so much more. The last chapter is spent discussing agroecosystems (“the organisms and abiotic environment that interact in a human-managed agricultural setting”), a topic he spent much of his career studying.

The underlying message of this book, as I see it, is a simultaneous celebration for life on earth and a concern for the direction things are going considering how humans have managed things. Parrish has some admonition for humans in light of how we’ve treated our home planet, but he isn’t too heavy-handed about it. Overall, reading the book felt like sitting in on a lecture given by a friendly and dynamic professor who has obviously given a lot of thought to what he has to say.

Check out the following video to see David Parrish describe the book in his own words.

More Book Reviews on Awkward Botany:

Advertisement

Dethroning Industrial Argiculture: The Rise of Agroecology

This is the third in a series of posts reviewing the 17 articles found in the October 2014 Special Issue of American Journal of Botany, Speaking of Food: Connecting Basic and Applied Science.

Think Globally, Research Locally: Paradigms and Place in Agroecological Research by Heather L. Reynolds, Alex A. Smith, and James R. Farmer

Before I get into the review, I have to say that it is too bad this article was not selected as one of the open access articles. For me, it really sums up the reasons why this special issue exists at all, and it reads like a clarion call for more research, promotion, and implementation of science-based sustainable agriculture. If I could reprint the whole thing here I would, because my poor excuse for a review will not suffice. Unfortunately, in order to read this article (and most of the other articles I am reviewing here), you will have to pay, unless you otherwise have access through a personal or institutional subscription.  The open access debate is a can of worms that I won’t open here…just saying I wish more people could read this.

In their introduction, the authors discuss the “basic to applied science continuum.” Scientists who choose to do research that is more on the applied side of the spectrum may find it easier to secure funding (due to “convincing social benefits”), but will also find themselves directly confronted with social issues and values. There can be some discomfort involved in this, and so scientists must carefully determine their level of engagement. However, “neither social nor ecological systems can be understood in isolation,” and instead “must be studied as an integrated social ecological system.” Applied science must be carried out in order to address pressing socio-ecological issues, and so scientists interested in this type of research should know what they’re getting into and must “consider what societal values and paradigms they are supporting with their research.”

Applied science research involving agriculture finds itself intertwined with an economic paradigm that is focused on growth – “increased production and consumption of goods and services as indicated by increasing gross domestic product.” The authors argue that this is not sustainable and that agricultural research should be guided in directions that are more place-based and that keep the finite nature of the planet in mind.

“Since the 1940’s, agriculture has evolved toward an increasingly industrial, corporate, and globalized model, involving large-scale, centralized monoculture production requiring inputs of highly concentrated (fossil) fuel, machinery, water, and synthetic pesticides and fertilizers.” The Green Revolution brought new crop varieties and inputs that helped increase yields significantly, but also had the result of increasing irrigated land by 97%, “the use of nitrogen by 638%, phosphorous fertilizer by 203%, and pesticides by 845% during the latter half of the 20th century.” Industrial agriculture, while highly productive, is a juggernaut that requires incredible amounts of energy, petrochemicals, and water, and despite it’s best efforts, still doesn’t feed the world. Social and political issues are to blame for the food distribution problem; however, in the meantime, industrial agriculture is having profound effects on the environment, “including soil erosion and degradation, biodiversity loss, and water and air pollution on local and global scales.” Coupled with all of the environmnental costs of industrial agriculture are the social costs: “local agroecological knowledge has…been displaced by the  knowledge embodied in industrial inputs and sophisticated farming equipment and techniques,” and widespread industrial agriculture has been linked to increases in cancer, obesity and other human health issues.

photo credit: wikimedia commons

photo credit: wikimedia commons

The expansion of industrial agriculture has largely been driven by the economic paradigm of the United States and other industrialized nations that is focused on growth above all else. This paradigm neglects to acknowledge the “biophysical limits” of planet Earth – “an inescapably finite place, with a constant rate of net solar income and zero inputs of matter beyond the occasional asteroid.” Growth has its limits, and unless those limits are respected, we will find ourselves in dire straits. A warming climate and an increasing level of extinctions are major signs that we have approached the limit. It is time to rethink things.

The question of how to address this dilemma is incredibly complex. The authors of this study offer two broad solutions: reform our economic system and rethink our scientific research efforts. First, the economic problem. A finite planet cannot abide a growth above all else economic approach. The authors propose evolving towards a steady-state economy, in which “the product of population and per capita consumption mildly fluctuates at a scale for which energy and material throughput at current technological capabilities does not strain or exceed the regenerative and assimilative capacity of Earth’s natural capital.” In this economic system, “overdeveloped” countries like the United States will need to find ways to “strategically degrow.”

Strategic degrowth will require dismantling the behemoth that is industrial agriculture. Rethinking applied scientific research will assist in this. Rather than a “one-size-fits-all” approach (an approach that has fueled industrial agriculture for decades), research must evolve towards a “custom-fit” approach in order to address the environmental and social conditions of each individual area. Scientists will have to “go local,” collaborating with farmers, land-owners, and other local experts in order to do “place-based” research that will result in “location-specific expertise.”

Urban Farm in Chicago, Illinois (photo credit: wikimedia commons)

 An urban farm in Chicago, Illinois (photo credit: wikimedia commons)

The authors argue for “community-based participatory research,” which relies on scientists and other professionals collaborating to develop research projects, collect data, and arrive at solutions that will address problems particular to local areas. They offer an example of working with farmers in Indiana to research the use of wild bees for agricultural pollination. The data they collected, while helpful for farmers in other areas, was specific to their area of study and “lent credibility to [their] conclusions” when presented to local audiences.

This is a short but dense article that should be read in its entirety if you have access to it. I will end by offering the authors’ description of sustainable agriculture: “the application of ecological and cultural knowledge to local, decentralized, biodiversity-promoting, closed loop food production for a steady-state economy…the farm system is viewed as an agroecological system….wherein traditional and scientific knowledge of ecological interactions are employed to build system fertility, productivity, and resilience from within, thus promoting food sovereignty and autonomy.”