Pine Cones Are Like Hangars for Pine Tree Seeds

Over the past year I’ve written about the making of pine tar and the drinking of pine needle tea. But why stop there? Pines are a fascinating group of plants, worthy of myriad more posts, and so my exploration into the genus continues with pine cones and the seeds they bear.

Pines are conifers and, more broadly, gymnosperms. They are distinct from angiosperms (i.e. flowering plants), with the most obvious distinction being that they don’t make flowers. Since they are flowerless, they are also fruitless, as fruits are seed-bearing structures formed from the ovary or ovaries of flowering plants. Pines do make seeds though, and, as in angiosperms, pollen is transported from a “male” organ to a “female” organ in order for seeds to form. Rather than being housed in a fruit, the seeds are essentially left out in the open, which is why the term “naked seeds” is frequently used in reference to gymnosperms.

seed cone of Scots pine (Pinus sylvestris ‘Glauca Nana’)

In the case of pines and other conifers, the seeds may be naked, but they’re not necessarily homeless. They have the protection of cones, which is where the female reproductive organs are located. Male, pollen cones are separate structures and are smaller and less persistent than the cones that house the seeds. A cone, also known as a strobilus, is a modified branch. A series of scales grow in a spiral formation along the length of the branch, giving the cone its shape. On the inside of these scales is where the seeds form, two per scale. First they are egg cells, and then, after pollination and a period of maturation, they become seeds. The scales protect them throughout the process and then release them when the time is right.

With more than 120 species in the genus Pinus, there is great diversity in the size, shape, and appearance of pine cones. While at first glance they don’t appear all that different from one another, the cones of each species have unique characteristics that can help one identify the pine they fell from without ever having to see the tree. Pine cones are also distinct from the cones of other conifers. For one, pine cones take at least two or, in some cases, three years to reach maturity, whereas the cones of other conifers develop viable seeds in a single year. Pine cones are also known to remain on the tree for several years even after the seeds are mature – in some species up to 10 years or more – and they don’t always part with their seeds easily. Lodgepole pines (Pinus contorta) require high temperatures to melt the resin that holds their scales closed, the cones of jack pine (P. banksiana) generally only open in the presence of fire, and the seeds of whitebark pine (P. albicaulis) are extracted with the aid of birds (like Clark’s nutcracker) and other animals.

immature seed cone of lodgepole pine (Pinus contorta)

Every pine cone is special in its own right, but some stand out in particular. The largest and heaviest pine cones are found on Coulter pine (P. coulteri), measuring up to 15 inches long and weighing as much as 11 pounds with scales that come to a sharp point. It’s understandable why the falling cones of this species are frequently referred to as widowmakers. Longer cones, but perhaps less dangerous, are found on sugar pine (P. lambertiana). The tallest trees in the genus, the cones of sugar pine consistently reach 10 to 20 inches long and sometimes longer.

Pine tree seeds are a food source for numerous animals, including humans. Most are so small they aren’t worth bothering with, however, several species have seeds that are quite large and worth harvesting. Most commercially grown pine nuts come from stone pine (P. pinea) and Korean pine (P. koraiensis). In North America, a wild source for pine nuts is found in the pinyon pines, which have a long history of being harvested and eaten by humans.

immature seed cone of ponderosa pine (Pinus ponderosa)

The seeds of many pines come equipped with little wings called samaras, which aid them in their dispersal. Upon maturity, pine cone scales open and release the seeds. Like little airplanes leaving the hangar, the seeds take flight. Wind dispersal is not an effective means of dispersal for all pines though. A study published in Oikos found that seeds weighing more than 90 milligrams are not dispersed as well by wind as lighter seeds are. When it comes to long distance dispersal, heavier seeds are more dependent on animals like birds and rodents, and some pines rely exclusively on their services. The author of the study, Craig Benkman, notes that “bird-dispersed pines have proportionately thinner seed coats than wind-dispersed pines,” which he points out in reference to Japanese stone pine (P. pumila) and limber pine (P. flexilis), whose seeds weigh around 90 milligrams yet rely mostly on birds for dispersal. Benkman suspects that the seeds of these two species “would probably weigh over 100 milligrams if they had seed coats of comparable thickness as wind-dispersed seeds.”

Whitebark pine, as mentioned above, holds tightly to its seeds. Hungry animals must pry them out, which they do. Pine seeds are highly nutritious and supplement the diets of a wide range of wildlife. Some of the animals that eat the seeds also cache them for later. Clark’s nutcrackers are particularly diligent hoarders, harvesting thousands more seeds than they can possibly consume and depositing them in small numbers in locations suitable for sprouting.

Even large seeds that naturally fall from their cones have a chance to be dispersed further. As the seeds become concentrated at the base of the tree, ground-foraging rodents gather them up and cache them in another location, which Benkman refers to as secondary seed dispersal.

Particularly in pine species with wind dispersed seeds, what the weather is like helps determine when the hangar door will open to release the flying seeds. When it is wet and rainy, the scales of pine cones close up. The seeds wouldn’t get very far in the rain anyway, so why bother? When warm, dry conditions return, the scales open back up and the seeds are free to fly again. You can even watch this in action in the comfort of your own home by following the instructions layed out in this “seasonal science project.”

immature seed cones of limber pine (Pinus flexilis)

mature seed cones of limber pine (Pinus flexilis)

Further Reading:

———————

Photos of pine cones were taken at Idaho Botanical Garden in Boise, Idaho

From Pine Tree to Pine Tar (and a bit about baseball)

Scots pine (Pinus sylvestris) is a Eurasian native, distributed across Europe into Eastern Siberia. It is the national tree of Scotland, and the only native pine in northern Europe. Human activity has pushed native populations to extinction; while, at the same time, appreciation for this tree has led to widespread introduction in other parts of the world. Like other pines, humans and Scots pine have a long relationship going back millennia. Pines are incredibly useful trees, which explains both the overexploitation and mass planting of Scots pine.

Scots pine (Pinus sylvestris) via wikimedia commons

In Sweden and other Scandinavian countries, Scots pine not only has a long history of being used as a building material, but also for producing pine tar. As the name suggests, pine tar is a dark, sticky substance extracted from pine wood. Wood tar production dates back centuries and has been made from a number of tree species, including pines and other conifers as well as deciduous trees like birch and beech. Wood tar has myriad uses – as an ingredient in soaps, shampoos, and cosmetics; as medicine; as a food additive; as waterproofing for ships, roofs, and ropes; in hoof care products for horses. It’s no wonder that as demand for pine tar increased in Scandinavia, it became a cash crop for peasants, earning it the nickname “peasant tar.”

Pine tar soap – a decent soap if you can tolerate the intense smell. Regarding the smell of pine tar, Theodore Kaye writes, “The aroma produces reactions that are as strong as the scent; few people are ambivalent about its distinctive smell.”

A study published in the Journal of Archaeological Science examines small and large funnel-shaped pits in Sweden determined to be used for making pine tar. The smaller pits date back to between 240 – 540 AD, the Late Roman Iron Age. They would have been used by Swedes living in small scale settlements. The larger pits date back to 680 – 1160 AD and signify a shift towards large scale production during the Viking Age. As the centuries proceeded, Sweden became a major exporter of pine tar. Their product set the standard. Even today “Stockholm Tar” refers to pine tar of the highest quality.

As Europeans colonized North America, they were introduced to several new pine tree species from which to extract pine tar, including longleaf pine (Pinus palustris), a southeastern native with exceptionally long needles. Pine tar production was especially prolific in the southeastern states, thanks in part to the abundance of longleaf pine and others. North and South Carolina were dominating production by the 1800’s, which helps explain North Carolina’s nickname, The Tar Heel State.

Extracting pine tar from pine wood is fairly simple. The process is called destructive distillation. Pine wood is placed in a contained, oxygen-free environment and subjected to high heat. As the pine tar is released from the wood, the wood turns to charcoal. This is what was happening in the small and large funnel-shaped pits discussed earlier. Root pieces and stumps of Scots pine were placed into the pits. Brush wood was piled on top and then set on fire. As the brush burned, the pine wood below carbonized, and pine tar collected at the bottom of the pit. In larger pits, the pine tar was piped out and deposited into a barrel – a set up known as a pine tar dale.

pine tar dale illustration

Modern production of pine tar is done in kilns (or in laboratories). The concept is the same – wood is enclosed in the kiln, heat is applied, and pine tar drips from the bottom of the kiln. Heartwood, also known as fatwood, is the best part of the pine tree for making pine tar, particularly the heartwood of old stumps. Making pine tar is such a simple process that anyone can do it, and there are numerous tutorials available online.

My familiarity with pine tar comes from being a baseball fan. Pine tar is a useful, albeit controversial, substance in this sport. Batters have a variety of means to help them get a better grip on the bat in order to improve their hitting. Rubbing pine tar on the bat handle is one of them. However, according to Major League Baseball rules, anything applied to, adhered to, or wrapped around the bat to help with grip is not allowed past the bottom 18 inches of the bat. Pine tar is allowed on the bat handle, but if applied past that 18 inches mark, the bat becomes illegal.

pine tar stick for baseball bat handles

This rule goes mostly ignored; unless, of course, someone on the other team rats you out. Which is exactly what happened in 1983 to the Kansas City Royals in a game against the New York Yankees. Royals batter, George Brett, had just hit a home run, which put the Royals in the lead. It had been suspected for a while that Brett had been tarring his bat beyond the legal limit, and this home run was the last straw for Yankees manager, Billy Martin. He brought the suspected illegal bat to the attention of the umpires, and after measuring the bat’s pine tar stain they found it to be well beyond 18 inches. The home run was recalled, and the Yankees went on to win the game.

It doesn’t end there though. After a repeal, it was decided that the dismissal of the home run was the wrong call. If an illegal bat is in play, it should be removed. That’s all. The home run still stands. The Royals and Yankees were ordered to replay the game, starting at the point where Brett had hit his home run. This time the Royals won.

This saga is well known in baseball. There is even a book all about it, as well as a country song and t-shirts. But that’s only part of baseball’s pine tar controversy. While batters are allowed to use it on their bats, pitchers are not allowed to use it to better grip the ball while pitching (however, they can use rosin, which curiously enough, is also made from pine trees). Of course, that doesn’t stop them from trying to get away with it. Sometimes they get caught, like Michael Pineda infamously did in 2014. There are arguments for allowing its use – and perhaps in the future the rules will change – but for now pine tar use by pitchers remains prohibited.

Further Reading – Medicinal Uses for Pine Tar: