What Is a Plant, and Why Should I Care? part three

“If it wasn’t for the plants, and if it wasn’t for the invertebrates, our ancestors’ invasion of land could never have happened. There would have been no food on land. There would have been no ecosystems for them to populate. So really the whole ecosystem that Tiktaalik and its cousins were moving into back in the Devonian was a new ecosystem. … This didn’t exist a hundred million years before – shallow fresh water streams with soils that are stabilized by roots. Why? Because it took plants to do that – to make the [habitats] in the first place. So really plants, and the invertebrates that followed them, made the habitats that allowed our distant relatives to make the transition from life on water to life on land.” – Neil Shubin, author of Your Inner Fish, in an interview with Cara Santa Maria on episode 107 of her podcast, Talk Nerdy To Me

Plants were not the first living beings to colonize land – microorganisms have been terrestrial for what could be as long as 3.5 billion years, and lichens first formed on rocks somewhere between 550 and 635 million years ago – however, following in the footsteps of these other organisms, land plants paved the way for all other forms of terrestrial life as they migrated out of the waters and onto dry land.

The botanical invasion of land was a few billion years in the making and is worth a post of its own. What’s important to note at this point, is that the world was a much different place back then. For one, there was very little free oxygen. Today’s atmosphere is 21% oxygen; the first land plants emerged around 470 million years ago to an atmosphere that was composed of a mere 4% oxygen. Comparatively, the atmosphere back then was very carbon rich. Early plants radiated into numerous forms and spread across the land and, through processes like photosynthesis and carbon sequestration, helped to dramatically increase oxygen levels. A recent study found that early bryophytes played a major role in this process. The authors of this study state, “the progressive oxygenation of the Earth’s atmosphere was pivotal to the evolution of life.”

A recreation of a Cooksonia species - one of many early land plants. (photo credit: wikimedia commons)

A recreation of a Cooksonia species – one of many early land plants (photo credit: wikimedia commons)

The first land plants looked very different compared to the plants we are used to seeing today. Over the next few hundred million years plants developed new features as they adapted to life on land and to ever-changing conditions. Roots provided stability and access to water and nutrients. Vascular tissues helped transport water and nutrients to various plant parts. Woody stems helped plants reach new heights. Seeds offered an alternative means of preserving and disseminating progeny. Flowers – by partnering with animal life – provided a means of producing seeds without having to rely on wind, water, or gravity. And that’s just scratching the surface. Rooted in place and barely moving, if at all, plants appear inanimate and inactive, but it turns out they have a lot going on.

But what is a plant again? In part one and two, we listed three major features all plants have in common – multicellularity, cell walls composed of cellulose, and the ability to photosynthesize – and we discussed how being an autotroph (self-feeder/producer) sets plants apart from heterotrophs (consumers). Joseph Armstrong writes in his book, How the Earth Turned Green, “photosynthetic producers occupy the bottom rung of communities.” In other words, “all modern ecosystems rely upon autotrophic producers to capture energy and form the first step of a food chain because heterotrophs require pre-made organic molecules for energy and raw materials.”

So, why should we care about plants? Because if it wasn’t for them, there wouldn’t be much life on this planet to speak of, including ourselves.

Plants don’t just provide food though. They provide habitat as well. Plus they play major roles in the cycling of many different “nutrients,” including nitrogen, phosphorous, carbon, sulfur, etc. They are also a major feature in the water cycle. It is nearly impossible to list the countless, specific ways in which plants help support life on this planet, and so I offer two examples: moss and dead trees.

The diminutive stature of mosses may give one the impression that they are inconsequential and of little use. Not so. In her book, Gathering Moss, Robin Wall Kimmerer describes how mosses support diverse life forms:

There is a positive feedback loop created between mosses and humidity. The more mosses there are, the greater the humidity. More humidity leads inexorably to more mosses. The continual exhalation of mosses gives the temperate rain forest much of its essential character, from bird song to banana slugs. … Without mosses, there would be fewer insects and stepwise up the food chain, a deficit of thrushes.

Mosses are home to numerous invertebrate species. For many insects, mosses are a place to deposit their eggs and, consequentially, a place for their larvae to mature into adults. Banana slugs traverse the moss feeding on “the many inhabitants of a moss turf, and on the moss itself.” In the process they help to disperse the moss.

Moss is used as a nesting material by various species of birds, as well as squirrels, chipmunks, voles, bears, and other animals. Patches of moss can also function as “nurseries for infant trees.” In some instances, mosses inhibit seed germination, but they can also help protect seeds from drying out or being eaten. Kimmerer writes, “a seed falling on a bed of moss finds itself safely nestled among leafy shoots which can hold water longer than the bare soil and give it a head start on life.”

moss as nurse plant

Virtually all plants, from the tiniest tufts of grass to the tallest, towering trees have similar stories to tell about their interactions with other living things. Some have many more interactions than others, but all are “used” in some way. And even after they die, plants continue to interact with other organisms, as is the case with standing dead trees (a.k.a. snags).

In his book, Welcome to Subirdia, John Marzluff explains that when “hole creators” use dead and dying trees, they benefit a host of “hole users:”

Woodpeckers are natural engineers whose abandoned nest and roost cavities facilitate a great diversity of life, including birds, mammals, invertebrates, and many fungi, moss, and lichens. Without woodpeckers, birds such as chickadees and tits, swallows and martins, bluebirds, some flycatchers, nuthatches, wood ducks, hooded mergansers, and small owls would be homeless.

As plants die, they continue to provide food and habitat to a variety of other organisms. Eventually they are broken down to their most rudimentary components, and their nutrients are taken up and used by “new life.” Marzluff elaborates on this process:

Much of the ecological web exists out of sight – underground and in rotting wood. There, molds, bacteria, fungi, and a world of invertebrates convert the last molecules of sun-derived plant sugar to new life. These organisms are technically ‘decomposers,’ but functionally they are among the greatest of creators. Their bodies and chemical waste products provide us with an essential ecological service: soil, the foundation of terrestrial life.

Around 470 million years ago, plants found their way to land. Since then life of all kinds have made land their home. Plants helped lead the way. Today, plants continue their long tradition of supporting the living, both in life and in death.

Advertisements

Documentary: The Sagebrush Sea

Last month I posted a few photos of some of the weeds and wildflowers of the Boise Foothills. In that post I touched briefly on the ecology of the foothills, and a few readers expressed interest in more posts about this topic. It is definitely a topic I would like to explore further, but it is not one that I know a ton about. In fact, despite spending the majority of my life residing in this high desert, sagebrush-dominated ecosystem, it has only been in the past few years that I have really gained an appreciation for it. Perhaps that’s understandable. This landscape, which initially appears drab, lifeless, and boring, is not easy to love at first…until you do a little exploring, at which point you find it teeming with life, loaded with diversity, and worthy of admiration.

That is one of the themes of a new PBS Nature documentary, The Sagebrush Sea, which debuted on PBS in May 2015. The film is an intimate view of what’s really going on in this vast, seemingly empty landscape that many of us simply ignore, passing through on our way to somewhere else. It is an introduction to a fascinating ecosystem, shaped and formed by extreme events and inhabited by plants and animals that have unique adaptations that allow them to survive the harsh conditions of the high desert. Some of these plants and animals can be found nowhere else on earth. For anyone looking to learn more about the ecology of the Boise foothills and/or the larger ecosystem of which they are a part, this is an excellent place to start.

The-Sagebrush-Sea

The sagebrush steppe is a plant community dominated by sagebrush (Artemisia tridentata and its various subspecies) and bunchgrasses. At one point it covered as many as 500,000 square miles of western North America – hence “the sagebrush sea” – but human activities have reduced it to half that size. The plants and animals in this ecosystem have been coevolving together for at least 2 million years. Sagebrush is, as the narrator of the film says, “the anchor of the high desert,” living up to 140 years old and helping to ensure that the desert doesn’t become a dust bowl. Sagebrush also provides food and shelter for a great number of species.

The Sagebrush Sea was produced by the The Cornell Lab of Ornithology, so while lots of other plant and animal life get adequate screen time, the birds of the sagebrush steppe dominate the film. One species in particular, the greater sage-grouse, is the star character, driving the film’s narrative and speaking for the protection of this threatened and underappreciated ecosystem.

A view from behind a male greater sage-grouse (Centrocercus urophasianus ) - photo credit: wikimedia commons

A view from behind a male greater sage-grouse (Centrocercus urophasianus ) – photo credit: wikimedia commons

Sage-grouse are endemic to the sagebrush steppes of the intermountain west. They are sensitive to disturbances and are “tied to unbroken expanses of sage.” Their breeding grounds (leks) are large patches of open ground, but when they aren’t breeding (which is the majority of the year) they are taking refuge in the sagebrush and grasses. The females make nests below sagebrush, where they blend right in, camouflaged from predators. Sage-grouse consume various plants and insects throughout the year, but their diet consists mainly of the evergreen leaves of sagebrush. Just 200 years ago there were up to 16 million sage-grouse in the sagebrush sea, today that number has been reduced to around 200,000. Due to such a steep decline, they may soon be added to the endangered species list.

Because sage-grouse are so reliant on healthy, intact, widespread sections of sagebrush-steppe, they are considered an umbrella species. Taking measures to protect them will simultaneously spare and even improve the lives of numerous other species with similar requirements. To begin with, there are a handful of other bird species that nest nowhere else except in sagebrush, specificallly the sagebrush sparrow, the sage thrasher, and the brewer’s sparrow. Other animals feed on sagebrush and rely on it to make it through the winter, such as pronghorn and mule deer. Sagebrush is also considered a nurse plant, providing shade and moisture for grass and forb seedlings growing below it.

The sagebrush steppe is threatened by the usual cast of characters: habitat fragmentation, urban and agricultural development, invasive species, climate change, etc.  Some specific activities like cattle ranching and oil and gas drilling also come into play. While The Sagebrush Sea briefly introduces some of the major threats to this ecosystem, it does not dwell on any single issue or point fingers in any one particular direction. For one, it is hard to place blame when there are so many factors involved; but more importantly, the filmmakers wanted the film to be accessible to everyone in order to foster a greater appreciation for the sagebrush sea and a consequent desire to protect it. The debates regarding this part of the world are heated enough, and those directly involved are already well aware of the issues.

This is a beautiful film. The images it captures are captivating and at times breathtaking. Apart from the sage-grouse, various animal families are introduced throughout, each one stealing your heart. My only complaint is that, at only 53 minutes, the film is too short. Luckily, the world they depicted is right outside my door, and I am now even more inspired to explore it.

To learn more about sage-grouse conservation, visit Sage Grouse Initiative.

Cushion Plants and Species Richness

Cushion plants are in the news. A study published in the journal, Ecology Letters, has demonstrated that cushion plants can help increase species richness (the number of unique species in an ecological community) by modifying their micro-environment, which in turn allows certain species to exist in the community that would otherwise be unable to survive the harsh conditions. Other studies have had similar conclusions, but what is unique about this study is how extensive it was, involving 77 alpine plant communities on 5 continents.

The term “cushion plant” refers to a specific growth form. It describes a plant that grows low to the ground, has numerous small leaves and a closed, tightly-packed canopy with dense non-photosynthetic living and dead plant tissues below the canopy. Above ground it appears as a lush, thick, spreading, green mat; below ground it has a long taproot and an extensive root system. There are around 338 species of cushion plants, spanning 78 genera and 34 plant families, which can be found around the world mainly in alpine (high-altitude, tree-less) environments. Around half of the cushion plant species are native to the Andes in South America.

So, how are cushion plants able to increase species richness in their communities? There are a few unique characteristics of cushion plants that lead to this result:

– The tightly-packed, low to the ground growth form of cushion plants helps to modify the temperature of the underlying soil, working as a living mulch to keep the ground warmer in the winter and cooler in the summer. Plants that otherwise could not abide in extremely cold soil conditions, can thrive inside of a cushion plant due to this modification.

– The shading and covering of the ground also helps to maintain a higher level of soil moisture below cushion plants, resulting in more available water throughout the growing season, which is especially important during warm months of the year when water becomes scarce elsewhere.

– Cushion plants may also increase nutrient availability in the surrounding soil. This could be due to their long taproots and extensive root systems allowing them to “mine” the soil and pull up nutrients (and water) that would otherwise be unavailable to shallow-rooted plants. It could also be due to the high degree of dead plant material found within cushion plants that leads to an increase in the amount of organic material in the soil below. The warm, moist conditions of a cushion plant’s underbelly could speed up the rate of decomposition and nutrient cycling, making essential nutrients available to plants growing within them.

Because of these features, cushion plants act as “nurse plants” to species that grow within their mats, providing them with more accommodating soil temperatures, greater access to water, and a higher level of nutrients compared to the surrounding open ground. Some of these plant species would have little or no chance of survival in the harsh environment outside of the cushion plant. Cushion plants are also considered foundation species or keystone species because they play such a strong role in structuring their ecological community, affecting the diversity of species found in the landscape and the abundances of those species.

Silene acualis

A common and popular cushion plant: Silene acaulis. Common name: moss campion. Plant family: Caryophyllaceae. Occurs in high mountains of North America and Eurasia. Photo credit: wikimedia commons.

cushion plant as nurse plant

An example of a cushion plant with another plant species growing within it. Photo credit: wikimedia commons.