The Seed Salting Experiments of Charles Darwin

In the second chapter of his book, The Diversity of Life, Edward O. Wilson describes the massive volcano that sunk a large portion of the island Krakatau in the summer of 1883. Rakata, the remnant that remained, was now “a sterile island” covered in ash. But it didn’t remain sterile for long. This natural disaster offered biologists the opportunity to watch as a fragment of earth, suddenly stripped of life, turned green again.

Life returned pretty quickly, too. In less than 50 years, nearly 300 species of plants had recolonized the charred landscape. Much of this rebirth was thanks to “aeolian plankton” – tiny wind-borne lifeforms that Wilson describes as “a rain of planktonic bacteria, fungus spores, small seeds, insects, spiders, and other small creatures” that fall “continuously on most parts of the earth’s land surface.” The seeds of some plants likely floated or “rafted” over, and still others may have arrived in the stomachs of birds “to be deposited later in their feces.”

Wind, water, and wing. It is well-accepted today that these are natural means by which the seeds of plants make their way to remote islands. However, in Charles Darwin’s day, things were not so settled. Decades before we understood things like plate tectonics and continental drift, there was ongoing debate about how the flora and fauna residing on islands got there. Were there multiple creation events or were there a series of land bridges and continental extensions now sunken in the sea? Unconvinced of one and skeptical of the other, Darwin embarked on a series of experiments to determine the possibility of an alternate hypothesis: long-distance dispersal.

Darwin wasn’t completely opposed to the idea that some species may have reached remote islands by land bridges of some sort; however, as James T. Costa writes in Darwin’s Backyard, his “imagination [ran] wild with scenarios for long-distance transport by floods and currents, whirlwinds and hurricanes, dispersal by birds, rafting quadrupeds carrying seeds in their stomachs or adhering to their fur, floating trees with seeds wedged in root masses, insects with seeds or eggs stuck to their legs, icebergs, and more.” He was convinced, “improbable as it was that, aided by wing or wave, propagules from a mainland could make it to distant islands.” After all, the vastness of geological time allows for chance events despite how improbable they may be. Even more, such events are “testable.”

So test them, he did. Among a series of experiments regarding long-distance dispersal were Darwin’s extensive seed salting trials. He began by using common vegetable seeds: broccoli, cabbage, oats, radish, lettuce, flax, and many others. He placed seeds in small bottles containing 2-3 ounces of salt water. Some bottles were placed outside in the shade where the air temperature varied throughout the day; other bottles were kept in his cellar where the temperature was more stable. He also placed seeds in a tank of salt water made with melted snow. The water in some of the jars, particularly those with brassica and onion seeds, turned foul, and as Darwin writes, “smelt offensive to a quite surprising degree;” however, “neither the putridity of the water nor the changing temperature had any marked effect on their vitality.”

In fact, while a few did quite poorly, the majority of the seeds that Darwin tested germinated just fine after soaking in salt water. At least for a short period anyway. Germination rates tended to decrease dramatically the longer seeds were soaked. For example, “fresh seed of the wild cabbage from Tenby germinated excellently after 50 days, very well after 110 days, and two seeds out of some hundreds germinated after 133 days immersion.” Darwin found that capsicum (i.e. peppers) “endured the trial best, for 30 out of 56 seeds germinated well after 137 days immersion.”

The seeds and dried fruit of Capsicum annuum (via wikimidia commons)

Darwin’s seed salting experiments seemed to be going well until his friend and colleague, Joseph Hooker, pointed out that seeds often sink when placed in water. Darwin wondered if he had been “taking all this trouble in salting the ungrateful rascals for nothing.” Despite the setback, he began another series of tests to determine which seeds sink, which float, and how long they float before they ultimately sink. The results weren’t as bad as expected. A number of species floated for several days, including the seeds of asparagus which were found to float for about 23 days if the seeds were fresh and up to 86 days if they were dried. By his calculations then, ocean currents could carry asparagus seeds over 2800 miles.

While soaking seeds in salt water, Darwin was engaged in a number of other seed dispersal studies, some quite bizarre. In one, he attempted to get goldfish to take mouthfuls of seeds, the idea being that if a fish having recently swallowed seeds was eaten by a seabird which then deposited the undigested seeds on a distant island, those seeds could germinate and establish themselves in a new environment. Unfortunately, Darwin’s subjects wouldn’t oblige: “the fish ejected vehemently, and with disgust equal to my own, all the seeds from their mouths.”

Despite a few botched experiments, Darwin turned out to be correct – long-distance dispersal explains much of the geographical distribution of species. Those who favored ideas of sunken land-bridges and continental extensions weren’t altogether wrong either. Costa writes: “Ironically, there is a kernel of truth behind the old idea of continental extensionism: rearranged and sometime contiguous continents…explain the distribution of some groups. But chance long-distance dispersal has never gone away. Improbable and rare as such events are, they are far from mysterious, and certainly not miraculous.”

Want to carry out your own seed salting experiments?

Darwin’s Backyard by James T. Costa includes detailed instructions, along with instructions for Darwin’s duck feet experiment [Do ducks transport snails, seeds, or other things that get attached to their feet?] and many others. Darwin Correspondence Project is a great resource as well.

Advertisement