When Acorn Masts, Rodents, and Lyme Disease Collide

“‘Mast years’ is an old term used to describe years when beeches and oaks set seed. In these years of plenty, wild boar can triple their birth rate because they find enough to eat in the forestes over the winter… The year following a mast year, wild boar numbers usually crash because the beeches and oaks are taking a time-out and the forest floor is bare once again.” — The Hidden Life of Trees by Peter Wohlleben

———————

When a plant population’s annual production of seeds is highly variable and synchronous, it is considered a masting or mast seeding species. Why and how masting happens is a bit of a mystery, and efforts are underway to better understand this phenomenon. One thing is clear, boom and bust cycles can have dramatic effects on animals that use the fruits and seeds of these plants for food. Acorn production in oaks provides a stark example. As Koenig, et al. describe in Ecology (2015), a “variable acorn crop initiates a ‘chain reaction’ of responses that cascades through the ecosystem, affecting densities of deer, mice, ground-nesting birds, gypsy moths, and the tick vectors of Lyme disease.” The connection between mast seeding oaks and the prevalence of tick-borne pathogens is of particular interest considering the risks posed to humans.

Lyme disease is an infectious diesease caused by a bacterium vectored by ticks in the genus Ixodes. The life-cycle of a tick is generally 2 to 3 years, beginning after a larva hatches from an egg. From there the larva develops into a nymph and later an egg-laying adult, taking a blood meal each step of the way. Tick larvae feed on the blood of small rodents and birds, which is where they can pick up the bacterium that causes Lyme disease. After feeding, they develop into nymphs and go in search of another blood meal, perhaps another rodent or maybe something larger like a deer or a human. It is in their nymphal and adult stages that ticks transmit Lyme disease to humans. Nymphs tend to transmit the disease more frequently, partly because they go undetected more easily.

The risk to humans of being infected with Lyme disease varies year to year and is dependent largely on how many infected ticks are present. For this reason, it is important to understand the factors affecting the density of infected nymphs. In a study published in PLoS Biology (2006), Ostfeld, et al. collected data over a 13 year period in plots located in deciduous forests in the state of New York, a hotspot for Lyme disease. The predictors they considered included temperature, precipitation, acorn crop, and deer, white-footed mouse, and chipmunk abundances. Deer abundance and weather conditions had long been considered important in predicting the prevalence of ticks, but little attention had been paid to small mammals – the larval hosts for ticks – and the variability of acorn crops – an important food source for rodents.

deer tick (Ixodes scapularis) — via PhyloPic; user Mathilde Cordellier

The results of their study revealed a clear pathway – more acorns leads to more rodents which leads to more Lyme disease carrying nymphs. The process takes a couple of years. First, oak trees experience a mast year, flooding rodent populations with food. In the following year, the numbers of mice and chipmunks is unusually high. The year after that, there are lots and lots of nymphal ticks infected with Lyme-disease. The relationship is so direct that Richard Ostfeld claims, based on his research, that he can predict the incidence of Lyme disease among residents of New York and Connecticut based on when a mast year occurs. In a summer when there is an abundance of 2 -year-old oak seedlings in the surrounding forests, expect the infection rate of Lyme disease to be high.

Lyme disease also occurs in regions where oak trees are not present or are uncommon, so variability in acorn crops isn’t always the best predictor. The researchers acknowledge that acorn abundance is not going to be “a universal predictor of risk;” instead, anything that leads to an increase in rodent populations, whether it is some other food source or a lack of predators, may be a key indicator since rodents are reservoir hosts of Lyme disease.

A study published in Parasites and Vectors (2020) looked at the effects of rodent density on a number of tick-borne pathogens. They confirmed that an “increase in rodent density positively affects populations of nymphal ticks in the following year;” yet, they could not confirm that rodent density is the sole predictor of disease risk. Other factors come into play depending on the disease in question, and further research is needed to improve models that predict tick-borne diseases. They did, however, confirm that, by flooding the food supply with acorns, mast years can boost populations of a variety of rodents.

white-footed mouse (Peromyscus leucopus) — via wikimedia commons; USGS

A fear of ticks is justified. They suck your blood after all, and besides that, they can transmit some pretty serious diseases. Arm yourself by educating yourself. One place to do that is with The Field Guides podcast. Their tick two-parter is well worth the listen (part one and part two). Not only will it give you valuable information in protecting yourself against ticks, it may also give you an appreciation for their prowess. Just maybe. See also their You Tube video demonstrating how to sample for ticks.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.