Zine Review: An Urban Field Guide to the Plants in Your Path

Depending on where you live in the world, it’s probably not too difficult to find a field guide to the plants native to your region. In fact, there may be several of them. They may not cover all the plants you’ll encounter in natural areas near you, but they’ll be a good starting point. Yet, considering that most of us live in cities these days, field guides to the wild plants of urban areas are sorely lacking. Perhaps that’s no surprise, as plants growing wild in urban areas are generally considered weeds and are often the same species that frustrate us in our yards and gardens. Few (if any) of these maligned plants are considered native, so that doesn’t help their case any. Why would we need to know or pay attention to these nuisance plants anyway?

I argue that we should know them, and not just so that we know our enemy. Weeds are the wild flora of our cities – they grow on their own without direct human intervention. In doing so, they green up derelict and neglected sites, creating habitat for all kinds of other organisms and providing a number of ecosystem services along the way. Regardless of how we feel about them for invading our cultivated spaces and interfering with our picture-perfect vision of how we feel our cities should look, they deserve a bit more respect for the work they do. If we’re not willing to go that far, we at least ought to hand it to them for how crafty and tenacious they can be. These plants are amazing whether we want to admit it or not.

Luckily I’m not the only who feels this way. Enter An Urban Field Guide to the Plants in Your Path, a zine written and illustrated by Maggie Herskovits and published by Microcosm Publishing. This zine is just one example of the resources we need to better familiarize ourselves with our urban floras. While there are many weed identification books out there, a field guide like this differs because it doesn’t demonize the plants or suggest ways that they can be brought under control or eliminated. Instead, it treats them more like welcome guests and celebrates some of their finer qualities. That being said, this is probably not a zine for everyone, particularly those that despise these plants, but take a look anyway. If you keep an open mind, perhaps you can be swayed.

Illustration of Pennsylvania smartweed (Polygonum pensylvanicum) from An Urban Field Guide to the Plants in Your Path

After a brief introduction, Herskovits profiles fifteen common urban weeds. Each entry includes an illustration of the plant, a short list of its “Urban Survival Techniques,” a small drawing of the plant in its urban habitat, and a few other details. The text is all handwritten, and the illustrations are simple but accurate enough to be helpful when identifying plants in the wild. The descriptions of each plant include interesting facts and background information, and even if you are already familiar with all the plants in the guide, you may learn something new. For example, I wasn’t aware that spotted spurge (Euphorbia maculata) was native to North America.

some urban survival techniques of common mullein (Verbascum thapsus)

Capsella bursa-pastoris in its urban habitat

Urban weeds often go ignored. They may not be as attractive as some of the plants found in gardens and parks around the city, and since they are often seen growing right alongside garbage, they end up getting treated that way. But if you’re convinced that they may actually have value and you want to learn a bit more about them, this guide is a great place to start. Perhaps you’ll come to feel, as Herskovits does, that “there is hope in these city plants.”

See Also: 

Camel Crickets and the Dust Seeds of Parasitic Plants

A common way for plants to disperse their seeds is to entice animals to eat their seed-bearing fruits – a strategy known as endozoochory. Undigested seeds have the potential to travel long distances in the belly of an animal, and when they are finally deposited, a bit of fertilizer joins them. Discussions surrounding this method of seed dispersal usually have birds and mammals playing the starring roles – vertebrates, in other words. But what about invertebrates like insects? Do they have a role to play in transporting seeds within themselves?

Certain insects are absolutely important in the dispersal of seeds, particularly ants. But ants aren’t known to eat fruits and then poop out seeds. Instead they carry seeds to new locations, and some of these seeds go on to grow into new plants. In certain cases there is an elaisome attached to the seed, which is a nutritious treat that ants are particularly interested in eating. Elaisomes or arils have also been known to attract other insects like wasps and crickets, which may then become agents of seed dispersal. But endozoochory in insects, at first, seems unlikely. How would seeds survive not being crushed by an insect’s mandibles or otherwise destroyed in the digestion process?

camel crickets eating fruits of parasitic plants (via New Phytologist)

While observing parasitic plants in Japan, Kenji Suetsugu wanted to know how their seeds were dispersed. Many parasitic plants rely on wind dispersal, thus their seeds are minuscule, dust-like, and often winged. However, the seeds of the plants Suetsugu was observing, while tiny, were housed in fleshy fruits that don’t split open when ripe (i.e. indehiscent). This isn’t particularly unusual as other species of parasitic plants are known to have similar fruits, and Suetsugu was aware of studies that found rodents to be potential seed disperers for one species, birds to be dispersers of another, and even one instance of beetle endozoochory in a parasitic plant with fleshy, indehiscent fruit. With this in mind, he set out to identify the seed dispersers in his study.

Suetsugu observed three achlorophyllous, holoparisitic plants – Yoania amagiensis, Monotropastrum humile, and Phacellanthus tubiflorus. While their lifestyles are similar, they are not at all closely related and represent three different families (Orchidaceae,  Ericaceae, and Orobanchaceae respectively). All of these plants grow very low to the ground in deep shade below the canopy of trees. Air movement is at a minimum at their level, so seed dispersal by wind is not likely to be very effective. Using remote cameras, Suetsugu captured dozens of hours of footage and found camel crickets and ground beetles to be the main consumers of the fruits, with camel crickets being “the most voracious of the invertebrates.” This lead to the next question – did the feces of the fruit-eating camel crickets and ground beetles contain viable seeds?

Monotropastrum humile via wikimedia commons

After collecting a number of fecal pellets from the insects, Suetsugu determined that the seeds of all three species were “not robust enough to withstand mastication by the mandibles of the ground beetles.” On the other hand, the seeds passed through the camel crickets unscathed. A seed viability test confirmed that they were viable. Camel crickets were dispersing intact seeds of all three parasitic plants via their poop. The minuscule size of the seeds as well as their tough seed coat (compared to wind dispersed seeds of similar species) allowed for safe passage through the digestive system of this common ground insect.

In a later study, Suetsugu observed another mycoheterotrophic orchid, Yoania japonica, and also found camel crickets to be a common consumer of its fleshy, indehiscent fruits. Viable seeds were again found in the insect’s frass and were observed germinating in their natural habitat. Seutsugu noted that all of the fruits in his studies consumed by camel crickets are white or translucent, easily accessible to ground dwelling insects, and give off a fermented scent to which insects like camel crickets are known to be attracted. Camel crickets also spend their time foraging in areas suitable for the growth of these plants. All of this suggests co-evolutionary adaptations that have led to camel cricket-mediated seed dispersal.

Yoania japonica via wikimedia commons

Insect endozoochory may be an uncommon phenomenon, but perhaps it’s not as rare as we once presumed. As mentioned above, an instance of endozoochory by a beetle has been reported, as has one by a species of cockroach. Certainly the most well known example involves the wetas of New Zealand, which are large, flightless insects in the same order as grasshoppers and crickets and sometimes referred to as “invertebrate mice.” New Zealand lacks native ground-dwelling mammals, and wetas appear to have taken on the seed dispersal role that such mammals often play.

Where seeds are small enough and seed coats tough enough, insects have the potential to be agents of seed dispersal via ingestion. Further investigation will reveal additional instances where this is the case. Of course, effective seed dispersal means seeds must ultimately find themselves in locations suitable for germination in numbers that maintain healthy populations, which for the dust seeds of parasitic plants is quite specific since they require a host organism to root into. Thus, effective seed dispersal in these scenarios is also worth a more detailed look.

Further Reading:

———————

For more stories of seed dispersal check out the first issue of my new zine, Dispersal Stories.

Botany in Popular Culture: Close It Quietly by Frankie Cosmos

Frankie Cosmos – the stage name for Greta Kline and also the name of her band – is not a new thing but was new to me in 2019. Their music is classified broadly as indie rock or indie pop, and could easily be placed in a number of subgenres. I, however, consider it punk. The songs are short, emotionally raw, unconventionally structured, simply arranged, and independently produced. That’s punk enough for me. Their most recent album, Close It Quietly, is easily my top pick for best album of 2019. The reason I’m saying this here on a blog about plants is because plants are featured in some of the lyrics. But it’s more than that really.

Quite often plants find their way into the lyrics of songs. They are, after all, great subject matter for all kinds of art. The special thing to me about the lyrics of Close It Quietly isn’t so much that plants get mentioned, but the sentiments that surround the references and the lessons learned from them. It may just be personal bias, but to me the plant references are more than just cursory. They come from a place of connection and personal relationship. Plants have things to teach us, and when we are open to it – which is often during challenging times in our lives – we can hear their lessons.

Trees receive the bulk of the plant references on this album. Like the song “Trunk of a Tree,” for example, in which Greta sings, “You’re the trunk of a tree / silent, filled with clarity.” That’s no surprise though. As David George Haskell writes in his book, The Songs of Trees, “To listen to trees, nature’s great connectors, is therefore to learn how to inhabit the relationships that give life its source, substance, and beauty.” There is great wisdom in trees. Confiding in or consulting with them can help bring clarity to a moment or feeling. This doesn’t have to mean anything weird – just being among trees and observing them in a reflective way will do the trick.

What follows is a list of some of the songs on Close It Quietly along with their plant references and some thoughts about them.

“41st”

This song is pretty fitting for the start of a new year, with the first line asking, “Does anyone wanna hear the 40 songs I wrote this year?” Looking back, maybe it was a crummy year. Perhaps you weren’t treated well, or maybe someone in your life didn’t turn out to be who you thought they were. There may be some comfort in knowing that you’re not the only one going through such things. Glancing up at the trees, Greta sings, “I look at the branches and hold a mirror up / They’re looking at me and say, ‘You don’t have a comb, do ya?'” The tangled branches of trees speak of past difficulties. As it turns out, we all have challenges that we’re trying to move past.

“A Joke”

We often find ourselves under pressures to be or act a certain way – to conform to some standard that was decided by someone else. Timelines created by other people direct our lives and tell us how or where we should be at a certain age or point in life. But, as Greta notes, “Flowers don’t grow in an organized way. Why should I?” It’s okay to be yourself, and there is no rush to become someone or something else.

“Rings (on a Tree)”

Sometimes we have to walk away from relationships, particularly when those relationships are not good for us. It’s never easy, but perhaps you’ll come to the realization that “it was wrong, so wrong / to try to hold on to a fallen tree / one that wouldn’t even look at me” or one that wasn’t “holding arms out lovingly.” It doesn’t mean that person wasn’t or still isn’t meaningful to you in some way. It’s just that it’s time to move on.

“This Swirling”

In our worst moments we are “like a dandelion,” and “just a little bit of breath blows [us] apart.” Our lives feel as chaotic as the swirling of a dandelion fluff tumbling through the air. However, a closer look reveals that a dandelion seed in flight is actually more stable than we originally thought. Perhaps we can take some comfort in that.

More Botany in Popular Culture

2019: Year in Review

It’s the start of a new decade and the beginning of another year of Awkward Botany. As we’ve done in years prior, it’s time to look back at what we’ve been up to this past year and look forward to what’s coming in the year ahead. Thank you for sticking with us as we head into our eighth year exploring and celebrating the world of plants.

The most exciting news of 2019 (as far as Awkward Botany is concerned) is the release of the first issue of our new zine, Dispersal Stories. It’s a compilation of (updated) writing that originally appeared on Awkward Botany about seeds and seed dispersal and is the start of what I hope will be a larger project exploring the ways in which plants get around. Look forward to the second issue coming to a mailbox near you sometime in 2020.

Also new to our Etsy Shop is a sticker reminding us to always be botanizing, including while riding a bike. Stay safe out there, but also take a look at all the plants while you’re cruising around on your bike or some other human-powered, wheeled vehicle. Whether you’re in a natural area or out on the streets in an urban or rural setting, there are nearly always plants around worth getting to know.

This year we also started a Ko-fi page, which gives readers another avenue to follow us and support what we do. Check us out there if Ko-fi is your thing.

Buy Me a Coffee at ko-fi.com

We also still have our donorbox page for those who would like to support us monetarily. As always you can stay in touch with us by liking and following our various social media accounts (Facebook, Twitter, Tumblr, and our currently inactive, but that could change at any moment Instagram). Sharing is caring, so please be sure to tell your friends about Awkward Botany in whatever way you choose. We are always thrilled when you do.

Below are 2019 posts that are part of new and ongoing series. You can access all other posts via the Archives widget. 2019 saw a significant drop in guest posts, so if you’d like to submit a post for consideration, please visit our Contact page and let me know what you’d like to write about. Guest writers don’t receive much in return but my praise and adulation, but if that sounds like reward enough to you, then writing something for Awkward Botany might just be your thing. And while we’re on the topic of guest posts, check out this post I wrote recently for Wisconsin Fast Plants.

Happy Reading and Plant Hunting in 2020!

Inside of a Seed & Seed Oddities:

Podcast Review:

Poisonous Plants:

Tiny Plants:

Eating Weeds:

Using Weeds:

Drought Tolerant Plants:

Tea Time:

Field Trip:

Awkward Botanical Sketches:

Guest Posts:

Pine Cones and the Fibonacci Sequence

While we’re on the topic of pine cones, have you ever considered their scales and the spirals they form? Nature is replete with spirals, so perhaps it’s no surprise that they are found in pine cones. The more interesting thing is that the number of spirals found on pine cones are almost always Fibonacci numbers. But maybe that’s not that surprising either, as Fibonacci numbers are also pretty common in nature.

Add 1 plus 1 and you get 2. Add 2 plus 1 and you get 3. 3 + 2 = 5, 5 + 3 = 8, and 8 + 5 = 13. One, two, three, five, eight, and thirteen are Fibonacci numbers. Continue adding the sum to the number that came before it, and that’s the Fibonacci Sequence. The ratio of two neighboring Fibonacci numbers is an approximation of the golden ratio (e.g. 8/5 = 1.6). This is commonly represented by drawing a series of squares on graph paper and then drawing a spiral across the squares. Each square drawn is larger than the last in accordance with the Fibonacci sequence, and the spiral drawn through the squares is a logarithmic spiral.

So, what does this have to do with pine cones? Well if you count the number of spirals that are going to the right, then count the number of spirals going to the left, you usually end up with two adjacent numbers in the Fibonacci sequence. Most often it’s either 5 and 8 or 8 and 13. You can find this same pattern in lots of other plant parts, including the aggregate fruits of pineapples, the disc flowers of sunflowers (and other plants in the aster family), the bracts of artichoke flowers, florets on a cauliflower, and leaf arrangements of all sorts of other plants.

The arrangement of leaves is called phyllotaxis, and when the leaves on a stem form a spiral pattern it’s called a phyllotactic spiral. The benefit the plant receives from having its leaves grow in a spiral formation down the length of its stem is actually quite simple – it keeps them from shading each other out and thereby maximizes their exposure to the sun. If you measure the angle between each leaf, the angle should be the same between each adjacent leaf on the stem. In order for the number of spirals to be a Fibonacci number, the leaves have to be oriented at a specific angle from each other. But this isn’t always the case. Depending on the angle, the number of spirals could be part of some other number sequence, like Lucas numbers perhaps.

While the specifics of plant growth can be quite complex, the reason for the patterns that result is actually quite simple. As plants grow new parts, they are put in a spot where there is room for them to grow, which is at some angle from the part that grew before it. Once that angle is “chosen,” it generally doesn’t change, and as more plant parts grow, a spiral forms (or no spiral forms at all, depending on the pattern of growth). If plant parts are oriented at a specific angle (~ 137.5o), the numbers of spirals end up being Fibonacci numbers. For a more thorough and entertaining explanation of all this, check out this three part video series from Khan Academy. It’s well worth the watch.

And now an example:

Count the number of right-hand spirals on this ponderosa pine cone. There are 8. That’s a Fibonacci number!

Count the number of left-hand spirals on this ponderosa pine cone. To make it easier to count, you can start or end with the top left spiral that has alternating red and green scales. There are 13. That’s another Fibonacci number!

And now your mission, should you choose to accept, is to find a pine cone (or some other conifer cone) in which the number of right and left-hand spirals are not Fibonacci numbers. They’re definitely out there, so let me know what you find in the comment section below.

Further Reading:

Out Now! Dispersal Stories #1

Before I started this blog, I had spent 16 years publishing zines at a steady clip and sending them to all corners of the world through the mail. I had never really meant to abandon zines altogether, and in some ways, putting all my writing efforts into a blog felt a little like a betrayal. My intention had always been to one day put together another zine. Now, six and a half years later, I’m happy to report that day has come.

Rather than bring an old zine back from the grave, I decided to make a new zine. Thus, Dispersal Stories #1. It’s quite a bit different from zines I’ve made in the past, which were generally more personal and, I guess, ranty. In fact, Dispersal Stories is very much like this blog, largely because it is mostly made up of writing that originally appeared here, but also because its main focus (for now) is plants. What sets it apart is that, unlike this blog, it zeroes in on a specific aspect of plants. As the title suggests, it’s all about dispersal. For much of their life, plants are essentially sessile. Once they are rooted in place, they rarely go anywhere else. But as seeds, spores, or some other sort of propagule they are actually able to move around quite a bit. The world is their oyster. What’s happening during this period of their lives is the focus of Dispersal Stories.

But why do a zine about this? Apart from just wanting to do another zine after all these years, my hope is that Dispersal Stories will be the start of a much more ambitious project. A book perhaps. My interest in dispersal was born out of my interest in weeds, and there is so much that I would like to learn and share about both of these subjects – so much so that the blog just doesn’t really cut it. So, I’m expanding the Awkward Botany empire. First a zine, then a book, then … who knows? I’m an oyster! (Or something like that.)

Dispersal Stories #1 is available in our etsy shop, or you can contact me here and we can work something out. While you’re at it, check out our new sticker.

If you love looking at plants and learning their names, then you probably enjoy doing it any chance you get. Usually it’s an activity you do while walking, but who says you can’t botanize while riding a bike? This sticker is inspired by a friend who once said that while mountain biking you get to “see three times as many flowers in half the time!” Stick it on your bike or in some other prominent location to remind yourself and others that we can botanize anytime anywhere.

Your purchase of one or both of these items helps support what we do. You can also support us by buying us a ko-fi or putting money in our donorbox. Sharing these posts also helps us out. If you get a copy of the zine, let us know what you think by sending us an email, a message on twitter or facebook, or by leaving a comment below. As always, thanks for reading.

Related Posts:

Pine Cones Are Like Hangars for Pine Tree Seeds

Over the past year I’ve written about the making of pine tar and the drinking of pine needle tea. But why stop there? Pines are a fascinating group of plants, worthy of myriad more posts, and so my exploration into the genus continues with pine cones and the seeds they bear.

Pines are conifers and, more broadly, gymnosperms. They are distinct from angiosperms (i.e. flowering plants), with the most obvious distinction being that they don’t make flowers. Since they are flowerless, they are also fruitless, as fruits are seed-bearing structures formed from the ovary or ovaries of flowering plants. Pines do make seeds though, and, as in angiosperms, pollen is transported from a “male” organ to a “female” organ in order for seeds to form. Rather than being housed in a fruit, the seeds are essentially left out in the open, which is why the term “naked seeds” is frequently used in reference to gymnosperms.

seed cone of Scots pine (Pinus sylvestris ‘Glauca Nana’)

In the case of pines and other conifers, the seeds may be naked, but they’re not necessarily homeless. They have the protection of cones, which is where the female reproductive organs are located. Male, pollen cones are separate structures and are smaller and less persistent than the cones that house the seeds. A cone, also known as a strobilus, is a modified branch. A series of scales grow in a spiral formation along the length of the branch, giving the cone its shape. On the inside of these scales is where the seeds form, two per scale. First they are egg cells, and then, after pollination and a period of maturation, they become seeds. The scales protect them throughout the process and then release them when the time is right.

With more than 120 species in the genus Pinus, there is great diversity in the size, shape, and appearance of pine cones. While at first glance they don’t appear all that different from one another, the cones of each species have unique characteristics that can help one identify the pine they fell from without ever having to see the tree. Pine cones are also distinct from the cones of other conifers. For one, pine cones take at least two or, in some cases, three years to reach maturity, whereas the cones of other conifers develop viable seeds in a single year. Pine cones are also known to remain on the tree for several years even after the seeds are mature – in some species up to 10 years or more – and they don’t always part with their seeds easily. Lodgepole pines (Pinus contorta) require high temperatures to melt the resin that holds their scales closed, the cones of jack pine (P. banksiana) generally only open in the presence of fire, and the seeds of whitebark pine (P. albicaulis) are extracted with the aid of birds (like Clark’s nutcracker) and other animals.

immature seed cone of lodgepole pine (Pinus contorta)

Every pine cone is special in its own right, but some stand out in particular. The largest and heaviest pine cones are found on Coulter pine (P. coulteri), measuring up to 15 inches long and weighing as much as 11 pounds with scales that come to a sharp point. It’s understandable why the falling cones of this species are frequently referred to as widowmakers. Longer cones, but perhaps less dangerous, are found on sugar pine (P. lambertiana). The tallest trees in the genus, the cones of sugar pine consistently reach 10 to 20 inches long and sometimes longer.

Pine tree seeds are a food source for numerous animals, including humans. Most are so small they aren’t worth bothering with, however, several species have seeds that are quite large and worth harvesting. Most commercially grown pine nuts come from stone pine (P. pinea) and Korean pine (P. koraiensis). In North America, a wild source for pine nuts is found in the pinyon pines, which have a long history of being harvested and eaten by humans.

immature seed cone of ponderosa pine (Pinus ponderosa)

The seeds of many pines come equipped with little wings called samaras, which aid them in their dispersal. Upon maturity, pine cone scales open and release the seeds. Like little airplanes leaving the hangar, the seeds take flight. Wind dispersal is not an effective means of dispersal for all pines though. A study published in Oikos found that seeds weighing more than 90 milligrams are not dispersed as well by wind as lighter seeds are. When it comes to long distance dispersal, heavier seeds are more dependent on animals like birds and rodents, and some pines rely exclusively on their services. The author of the study, Craig Benkman, notes that “bird-dispersed pines have proportionately thinner seed coats than wind-dispersed pines,” which he points out in reference to Japanese stone pine (P. pumila) and limber pine (P. flexilis), whose seeds weigh around 90 milligrams yet rely mostly on birds for dispersal. Benkman suspects that the seeds of these two species “would probably weigh over 100 milligrams if they had seed coats of comparable thickness as wind-dispersed seeds.”

Whitebark pine, as mentioned above, holds tightly to its seeds. Hungry animals must pry them out, which they do. Pine seeds are highly nutritious and supplement the diets of a wide range of wildlife. Some of the animals that eat the seeds also cache them for later. Clark’s nutcrackers are particularly diligent hoarders, harvesting thousands more seeds than they can possibly consume and depositing them in small numbers in locations suitable for sprouting.

Even large seeds that naturally fall from their cones have a chance to be dispersed further. As the seeds become concentrated at the base of the tree, ground-foraging rodents gather them up and cache them in another location, which Benkman refers to as secondary seed dispersal.

Particularly in pine species with wind dispersed seeds, what the weather is like helps determine when the hangar door will open to release the flying seeds. When it is wet and rainy, the scales of pine cones close up. The seeds wouldn’t get very far in the rain anyway, so why bother? When warm, dry conditions return, the scales open back up and the seeds are free to fly again. You can even watch this in action in the comfort of your own home by following the instructions layed out in this “seasonal science project.”

immature seed cones of limber pine (Pinus flexilis)

mature seed cones of limber pine (Pinus flexilis)

Further Reading:

———————

Photos of pine cones were taken at Idaho Botanical Garden in Boise, Idaho