Dispersal by Bulbils – A Bulbous Bluegrass Story

The main way that a plant gets from place to place is in the form of a seed. As seeds, plants have the ability to travel miles from home, especially with the assistance of outside forces like wind, water, and animals. They could also simply drop to the ground at the base of their parent plant and stay there. The possibilities are endless, really.

But what about plants that don’t even bother making seeds? How do they get around? In the case of bulbous bluegrass, miniature bulbs produced in place of flowers function exactly like seeds. They are formed in the same location as seeds, reach maturity and drop from the plant just like seed-bearing fruits, and are then dispersed in the same ways that seeds are. They even experience a period of dormancy similar to seeds, in that they lie in wait for months or years until the right environmental conditions “tell” them to sprout. And so, bulbils are basically seeds, but different.

bulbous bluegrass (Poa bulbosa)

Bulbous bluegrass (Poa bulbosa) is a Eurasian native but is widely distributed outside of its native range having been repeatedly spread around by humans both intentionally and accidentally. It’s a short-lived, perennial grass that can reach up to 2 feet tall but is often considerably shorter. Its leaves are similar to other bluegrasses – narrow, flat or slightly rolled, with boat-shaped tips and membranous ligules – yet the plants are easy to distinguish thanks to their bulbous bases and the bulbils that form in their flower heads. Their bulbous bases are actually true bulbs, and bulbous bluegrass is said to be the only grass species that has this trait. Just like other bulb-producing plants, the production of these basal bulbs is one way that bulbous bluegrass propagates itself.

basal bulbs of bulbous bluegrass

Bulbous bluegrass is also propagated by seeds and bulbils. Seeds form, like any other plant species, in the ovary of a pollinated flower. But sometimes bulbous bluegrass doesn’t make flowers, and instead modifies its flower parts to form bulbils in their place. Bulbils are essentially tiny, immature plants that, once separated from their parent plant, can form roots and grow into a full size plant. The drawback is that, unlike with most seeds, no sexual recombination has occurred, and so bulbils are essentially clones of a single parent.

The bulbils of bulbous bluegrass sit atop the glumes (bracts) of a spikelet, which would otherwise consist of multiple florets. They have dark purple bases and long, slender, grass-like tips. Bulbils are a type of pseudovivipary, in that they are little plantlets attached to a parent plant. True vivipary occurs when a seed germinates inside of a fruit while still attached to its parent.

Like seeds, bulbils are small packets of starch and fat, and so they are sought ought by small mammals and birds as a source of food. Ants and small rodents are said to collect and cache the bulbils, which is one way they get dispersed. Otherwise, the bulbils rely mostly on wind to get around. They then lie dormant for as long as 2 or 3 years, awaiting the ideal time to take root.

bulbils of bulbous bluegrass

Bulbous bluegrass was accidentally brought to North America as a contaminant in alfalfa and clover seed. It was also intentionally planted as early as 1907 and has been evaluated repeatedly by the USDA and other organizations for use as a forage crop or turfgrass. It has been used in restoration to stabilize soils and reduce erosion. Despite numerous trials, it has consistently underperformed mainly due to its short growth cycle and long dormancy period. It is one of the first grasses to green up in the spring, but by the start of summer it has often gone completely dormant, limiting its value as forage and making for a pretty pathetic turfgrass. Otherwise, it’s pretty good at propagating itself and persisting in locations where it hasn’t been invited and is now mostly considered a weed – a noxious one at that according to some states. Due to its preference for dry climates, it is found most commonly in western North America.

In its native range, bulbous bluegrass frequently reproduces sexually. In North America, however, sexual reproduction is rare, and bulbils are the most common method of reproduction. Prolific asexual reproduction suggests that bulbous bluegress populations in North America should have low genetic diversity. Researchers set out to examine this by comparing populations found in Washington, Oregon, and Idaho. Their results, published in Northwest Science (1997), showed a surprising amount of genetic variation within and among populations. They concluded that multiple introductions, some sexual reproduction, and the autopolyploidy nature of the species help explain this high level of diversity.

———————

Interested in learning more about how plants get around? Check out the first issue of our new zine Dispersal Stories.

Weeds of Boise: Ridenbaugh Canal between Vista Avenue and Federal Way

Like so many urban areas that had their start as agricultural communities, Boise is home to a vast network of canals. Major canals, such as the New York Canal, stretch across the valley and divert water through an extensive series of laterals. This water once irrigated numerous farms and orchards found within Boise and beyond. While large farms still exist outside of Boise – as well as a few small farms within city limits – much of this water now goes to irrigating lawns and gardens of city residents who are lucky enough to have access to it.

Because of the way these canals weave their way throughout Boise and into the surrounding area, there is interest in transforming them into transportation corridors for bicyclists and pedestrians. This would be in addition to the Boise River Greenbelt, a 30 mile trail system that already exists along the Boise River, and would vastly increase access to alternative and sustainable transportation for people living in the area.

Accessibility to these canals is limited, but where trails are available, they are a great place to observe wild urban flora and urban wildlife. This month, I explored a section of the Ridenbaugh Canal that extends about a thousand feet between Vista Avenue and Federal Way. There is a wide, dirt trail on the north side of the canal, easily accessible from Vista Avenue, that ends at the railroad tracks which run alongside Federal Way. The bank of the canal is steep, but there is one spot at the end of the trail that leads down to the water’s edge. Weeds are abundant along both sides of the trail, so it’s a great place to become familiar with common members of our wild urban flora.

blue mustard (Chorispora tenella)

henbit (Lamium amplexicaule)

flixweed (Descurainia sophia)

A long strip of white top (Lepidium sp.) flanks a fence alongside the trail.

A pair of Canada geese and four goslings have made this stretch of the canal their home.

redstem filaree (Erodium cicutarium)

bulbous bluegrass (Poa bulbosa)

Japanese knotweed (Reynoutria japonica)

Weeds found at Ridenbaugh Canal between Vista Avenue and Federal Way:

  • Bromus tectorum (cheatgrass)
  • Ceratocephala testiculata (bur buttercup)
  • Chondrilla juncea (rush skeletonweed)
  • Chorispora tenella (blue mustard)
  • Descurainia sophia (flixweed)
  • Draba verna (spring draba)
  • Epilobium sp. (willowherb)
  • Erodium cicutarium (redstem filaree)
  • Galium aparine (cleavers)
  • Hordeum murinum ssp. glaucum (smooth barley)
  • Lactuca serriola (prickly lettuce)
  • Lamium amplexicaule (henbit)
  • Lepidium sp. (white top)
  • Malva neglecta (common mallow)
  • Medicago lupulina (black medic)
  • Medicago sativa (alfalfa)
  • Poa bulbosa (bulbous bluegrass)
  • Reynoutria japonica (Japanese knowtweed)
  • Rumex crispus (curly dock)
  • Secale cereale (cereal rye)
  • Taeniatherum caput-medusae (medusahead)
  • Taraxacum officinale (dandelion)
  • Tragopogon dubius (salsify)

Like all posts in the Weeds of Boise series, this will be updated as I identify and photograph more of the weeds found in this location. If there is a canal near you, get outside and take a look at what’s growing along the banks. Let me know what you find in the comment section below.

Tea Time: Violet Leaf Tea

The genus Viola is large and widespread. Its flowers are easily recognizable and obviously popular. A significant number of Viola species, hybrids, and cultivars are commercially available and commonly planted in flower beds and container gardens. Certain species have even become weeds – vicious lawn invaders in some people’s opinion. Violets (or pansies in some cases) are also edible. Their leaves and/or flowers can be used in salads, drinks, and desserts. One way to use the leaves is to make tea, so that’s what I did.

I imagine you can make tea from any Viola species, but after some searching I found that two species frequently mentioned are Viola odorata and Viola sororia – two very similar looking plants, one from the Old World and the other from the New World.

sweet violet (Viola odorata)

Viola odorata – commonly known as sweet violet, wood violet, or English violet – is distributed across Europe and into Asia and has been widely introduced outside of its natural range. It has round, oval, or heart-shaped leaves with toothed margins that grow from the base of the plant, giving it a groundcover-type habit. Its flowers range from dark purple to white and are borne atop a single stem that curves downward at the top like a shepherd’s crook. It has no leafy, upright stems, and it spreads horizontally via stolons and rhizomes. The flowers are distinctly fragrant and have a long history of being used in perfumes.

One way to get a good whiff of these flowers is to try a trick described in the book The Reason for Flowers by Stephen Buchmann:

Go into a garden or any natural area and select one or more flowers you want to investigate…. Select a small, thoroughly washed and dried glass jar with a tight-fitting lid. Place just one type of flower in the jar. Set your jar in a warm, sunny place such as a windowsill and come back in an hour or two. Carefully open the lid and sniff…. If you’ve selected a blossom with even the faintest scent, you should be able to smell it now, since the fragrance molecules have concentrated inside the jar.

sweet violet flowers inside glass jar

Viola sororia – native to eastern North America –  is also commonly planted outside of its native range. It’s clearly a favorite, having earned the distinction of state flower in four U.S. states. Known as the common blue violet (or myriad other commons names), it looks and acts a lot like sweet violet. I distinguish them by their flowers, which are wider and rounder (chunkier, perhaps) than sweet violet flowers, and their leaves, which are generally more heart-shaped. Feel free to correct me. If, like me, you’re having trouble identifying violets, keep in mind that Viola species are highly variable and notorious hybridizers, so don’t beat yourself up over it. It’s their fault, not yours.

common blue violet (Viola sororia)

Violets bloom when the air is cool and the days are short. They are among the earliest plants to flower after the new year and among the latest plants flowering as the year comes to a close. In his entry on violets in The Book of Forest and Thicket, John Eastman refers to these early bloomers as “this low, blue flame in the woods.” They are like “a pilot light that ignites the entire burst of resurrection we call spring.” I can’t really picture spring without them. I find their unique flowers so intriguing that I fixate on them whenever I see them. And once I learned that I could make a tea out of their leaves, I had to try it.

I used the leaves of Viola odorata (or what I, with my amateur skills, identified as V. odorata). I picked several of what looked to be young leaves and left them to dry in the sun for several days. Later, I chopped them up and brewed a tea according to the instructions found on this website, which suggests using one tablespoon of dried leaves in sixteen ounces of water. Apparently, a little goes a long way, and I probably could have used fewer leaves than I did.

dried, chopped up leaves of sweet violet (Viola odorata) for making tea

The tea has a nice green color and smells a bit like grass to me. It may even taste like grass. I found it fairly bitter. Sierra didn’t like it and called it musty. I enjoyed it, but would likely enjoy it more if I hadn’t made it quite so strong. The aforementioned website also recommends combining violet leaf with other things like mint, dandelion, clover, and/or chamomile. I imagine a combination of ingredients could be better than just violet leaf on its own. Another site warns that “some of the wild violets have an unpleasant soapy flavor,” so that’s something to keep in mind when selecting your leaves for tea and other things. Either way, violet leaf tea is an experience worth having.

See Also: Pine Needle Teas

Weeds of Boise: Abandoned Pizza Hut on Ann Morrison Park Drive

There is an old Pizza Hut on the corner of Ann Morrison Park Drive and Lusk Street. I’m not sure how long it’s been closed (if someone knows for sure, please let me know), but it has to be well over a year – probably several years. It’s clear that the landscaping has not been maintained for a while. The turf grass in the hellstrips is now mostly weeds, the Callery pears and crabapples are in need of some serious pruning, and the mugo pines and horizontal junipers are slowly dying off. On the other hand, the Oregon grapes and barberries look just fine. They never really needed our help anyway.

I like checking out lots with recently abandoned buildings because you can see in real time just how quickly weeds take over once humans stop their meddling. As the months and years pass, and as the plants that humans intentionally placed there decline, it becomes increasingly obvious that weeds truly are the wild flora of our cities.

My first few visits to this site were on March 21st, 25th and 28th of 2020. During those visits, I made a list of all the weeds that I could easily identify and noted a few individuals that I will need to come back to. What follows are photos of a few of the weeds I came across, along with a list of the weeds I was able to identify.

Every lot needs a dandelion (Taraxacum officinale).

Common mallow (Malva neglecta) in mulch.

The turf grass in the hellstrips has been replaced by several different weeds including tiny, early spring favorites like bur buttercup (Ceratocephala testiculata) pictured here and spring draba (Draba verna).

Common groundsel (Senecio vulgaris) is prolific in a bed on the north side of the building. On the east side, this plant had already flowered and gone to seed by mid-March.

The tough taproot of alfalfa (Medicago sativa) easily works its way into cracks in pavement and concrete.

A bull thistle rosette (Cirsium vulgaris) perhaps?

Cheatgrass (Bromus tectorum) was common on the site, including (perhaps not surprisingly) in this parking block.

horseweed seedling (Conyza canadensis)

Weeds found at the abandoned Pizza Hut on Ann Morrison Park Drive:

  • Bromus tectorum (cheatgrass)
  • Ceratocephala testiculata (bur buttercup)
  • Cirsium vulgare (bull thistle)
  • Conyza canadensis (horseweed)
  • Draba verna (spring draba)
  • Hordeum murinum ssp. glaucum (smooth barley)
  • Lactuca serriola (prickly lettuce)
  • Malva neglecta (common mallow)
  • Medicago sativa (alfalfa)
  • Poa bulbosa (bulbous bluegrass)
  • Rumex crispus (curly dock)
  • Senecio vulgaris (common groundsel)
  • Taraxacum officinale (dandelion)
  • Ulmus pumila (Siberian elm)

This post will be updated as I identify more of the weeds and capture more photos. I also anticipate that this lot will not be abandoned for that much longer. It’s located near Boise State University in an area that has seen a lot of development in the past few years. I can’t imagine prime real estate like this will stay feral indefinitely. Until something is done with it, I’ll keep checking in.

Introducing Weeds of Boise

Weeds are the wild flora of our cities. Their occurrence and continued existence is not directly reliant on humans in the same way that the plants in our yards, parks, gardens, and other green spaces are. They may take advantage of the disturbance that we cause when we stir up the soil or cease maintenance in a particular spot, and they certainly appreciate the runoff from our sprinklers and the free rides their seeds get on our pets and ourselves, but they don’t need us looking after them to survive. They get by on their own whether we approve of them or not. Most may not be native to the area, but their presence is natural – undirected and involuntary – and for this reason I consider them to be a valid component of our urban flora.

If you visit a natural area outside of our cities, you are likely to find a field guide associated with that region that will help you identify many of the plants found there. However, such a field guide is not likely to exist for the plants found in a vacant lot or an urban roadside near you. Sure, there are plenty of general weed identification guides, some of which may be specific to where you live, but they are often focused on agricultural/horticultural weeds or weeds found in natural areas outside of the built environment. Few show weeds in an unmaintained urban setting the way that Peter Del Tredici’s book or Maggie Herskovits’ zine do. Clearly we need more resources that identify and document our urban floras.

Weeds of Boise is an attempt to begin that process for my corner of the world. After coming across websites like The Weedalouge (cataloging the wild plants of Philadelphia), Weeds of Melbourne (“a visual glossary of the weedy heritage of Melbourne, Australia”), and Spontaneous Urban Plants (an attempt to map weeds in urban areas around globe), I decided to start the process here in Boise, Idaho. My goal is to select locations across the city and inventory the weeds found there at different times of the year. I will keep a running list of what I find and photograph as many plants as I can. I will make a separate blog post for each location and maintain a link for each post in the Weeds of Boise page. The blog posts will be updated as I collect more data for each site. Over time I hope to have a more clear picture of what weeds are found here and how they are distributed.

Because many of these plants are cosmopolitan, the weeds found in my area are likely similar to the ones found in yours, but there may be some unique differences. If more projects like this are undertaken, we will have a better idea of the similarities and differences among our urban floras. Upon closer observation, we are likely to make some interesting discoveries. Who knows what we might find once we really start looking at these obnoxiously ubiquitous but otherwise completely ignored plants?

Weeds of Boise is also a reminder that you can botanize anytime anywhere. You don’t have to jet off to some remote location to see plants. It’s likely that there are wild plants growing right outside your front door – each one with a unique name and story and just as worth getting to know as any other.

The Dispersal of Ancient and Modern Apples by Humans and Other Megafauna

Crop domestication often involves selection for larger fruits. In some crops, humans took plant species with relatively small fruits and, over many generations of artificial selection, developed a plant with much larger fruits. Consider giant pumpkins as an extreme example. Yet in the case of apples, relatively large fruits already existed in the wild. Producing larger apples happened quickly and, perhaps even, unconsciously. Apples were practically primed for domestication, and as Robert Spengler explains in a paper published last year in Frontiers in Plant Science, looking back in time at the origins of the apple genus, Malus, can help us understand how the apple we know and love today came to be.

Apples are members of the rose family (Rosaceae), a plant family that today consists of nearly 5000 species. According to the fossil record, plants in the rose family were found in large numbers across North America as early as the Eocene (56 – 33.9 million years ago). They were present in Eurasia at this time as well, but Spengler notes, “there is a much clearer fossil record for Rosaceae fruits and seeds in Europe and Asia during the Miocene and Pliocene (20 – 2.6 million years ago).” Around 14 million years ago, larger fruits and tree-form growth habits evolved in Rosaceae subfamilies, giving rise to the genera Malus and Pyrus (apples and pears). Small, Rosaceae fruits were typically dispersed by birds, but as Sprengler writes, “it seems likely that the large fruits [in Malus and Pyrus] were a response to faunal dispersers of the late Miocene through the Pliocene of Eurasia.” Larger animals were being recruited for seed dispersal in a changing landscape.

Glacial advances and retreats during the Pleistocene (2.6 million – 11,700 years ago) brought even more changes. Plants with effective, long distance seed dispersal were favored because they were able to move into glacial refugium during glacial advances. Even today, these glacial refugium are considered genetic hot spots for Malus, and could be useful for future apple breeding. As the Pleistocene came to a close, many megafauna were going extinct. This continued into the Holocene. Large-fruited apple species lost their primary seed dispersers, and their ranges became even more contracted.

Humans have had an extensive relationship with apples, which began long before domestication. Foraging for apples was common, and seeds were certainly spread that way (perhaps even intentionally). Favorable growing conditions were also created when forests were cleared and old fields were left fallow. Apple trees are early successional species that easily colonize open landscapes, gaps in forests, and forest edges, so human activity that would have created such conditions “could have greatly promoted the spread and success of wild Malus spp. trees during the Holocene.”

The earliest evidence we have of apple domestication (in which “people were intentionally breeding and directing reproduction”) occurred around 3000 years ago in the Tian Shan Mountains of Kazakhstan, where Malus sieversii – a species that is now facing extinction – was being cultivated. This species was later brought into contact with other apple species, a few of which were also being cultivated, including M. orientalis, M. sylvestris, and M. baccata. These species easily hybridized, giving us the modern, domesticated apple, M. domestica. As Spengler writes, “the driving force of apple domestication appears to have been the trans-Eurasian crop exchange, or the movement of plants along the Silk Road.” Continued cultivation and further hybridization among M. domestica cultivars over the past 2000 years has resulted in thousands of different apple varieties.

The unique thing about domesticated apples is that their traits are not fixed in the same way that traits of other domesticated crops are. Growing an apple from seed will result in a very different apple than the apple from which the seed came. Apple traits instead have to be maintained through cloning, which is accomplished mainly through cuttings and grafting. Apples hybridize with other apple species so readily that most apple trees found in the wild are hybrids between wild and cultivated populations.

Spengler considers the study of apple domestication to be “an important critique of plant domestication studies broadly, illustrating that there is not a one-size fits-all model for plant domestication.” The “key” for understanding apple domestication “rests in figuring out the evolutionary driver for large fruits in the wild – seed dispersal through megafaunal mammals – and the process of evolution for these large fruits – hybridization.” He notes that “domestication studies often ignore evolutionary processes leading up to human cultivation,” which, in the case of apples, involves “hybridization events in the wild” that led to the evolution of large fruits “selected for through the success in recruiting large megafaunal mammals as seed disperses.” Many of those mammals went extinct, but humans eventually assumed the role, selecting and propagating “large-fruiting hybrids through cloning and grafting – creating our modern apple.”

Excerpt from Fruit from the Sands by Robert N. Spengler:

Indeed, the relationship between apples and people is close and complex, spanning at least five millennia. The story of the apple begins along the Silk Road… In recent years genetic studies have resolved much of the debate over these origins. Nevertheless, the ancestry of the apple is highly complex. Cloning, inbreeding, and reproduction between species have created a genealogy that looks more like a spider’s web than a family tree. To growers, the beauty of the apple lies not in its rosy skin but in its genetic variability and plasticity, its ability to cross with other species of Malus and other distant lines of M. domestica, and the ease with which it can be grafted onto different rootstocks and cloned.

See Also: Science Daily – Exploring the Origins of the Apple

———————

Interested in learning more about how plants get around? Check out the first issue of our new zine Dispersal Stories.

Book Review: Fruit from the Sands

“By dispensing plants and animals all around the world, humans have shaped global cuisines and agricultural practices. One of the most fascinating and least-discussed episodes in this process took place along the Silk Road.” — Fruit from the Sands by Robert N. Spengler III

———————

My understanding of the origins of agriculture and the early years of crop domestication are cursory at best. The education I received was mostly concerned with the Fertile Crescent, as well as crops domesticated by early Americans. The Silk Road, as I understood it, was the route or routes used to move goods across Asia and into eastern Europe well after the domestication of many of the crops we know today. Other than the fact that several important crops originate there, little was ever taught to me about Central Asia and its deep connection to agriculture and crop domestication. I suppose that’s why when I picked up Fruit from the Sands by Robert N. Spengler III, published last year by University of California Press, I wasn’t entirely prepared for what I was about to read.

It wasn’t until I read a few academic reviews of Fruit from the Sands that I really started to understand. Spengler’s book is groundbreaking, and much of the research he presents is relatively new. The people of Central Asia played a monumental role in discovering and developing much of the food we grow today and some of the techniques we use to grow them, and a more complete story is finally coming to light thanks to the work of archaeologists like Spengler, as well as advances in technology that help us make sense of their findings.

This long history with agricultural development can still be seen today in the markets of Central Asia, which are loaded with countless varieties of fruits, grains, and nuts, many of which are unique to the area. Yet this abundance is also at risk. Crop varieties are being lost at an alarming rate with the expansion of industrial agriculture and the reliance on a small selection of cultivars. With that comes the loss of local agricultural knowledge. Yet, with climate change looming, diversity in agriculture is increasingly important and one of the tools necessary for maintaining an abundant and reliable food supply. Unveiling a thorough history of our species’ agricultural roots will not only give us an understanding as to how we got here, but will also help us learn from past successes and failures. Hence, the work that Spengler and others in the field of archaeobotany are doing is crucial.

To set the stage for a discussion of “the Silk Road origins of the foods we eat,” Spengler offers his definition of the Silk Road. The term is misleading because there isn’t (and never was) a single road, and the goods, which were transported in all directions across Asia, included much more than silk. In fact, some of what was transported wasn’t a good at all, but knowledge, culture, and religion. In Spengler’s words, “The Silk Road … is better thought of as a dynamic cultural phenomenon, marked by increased mobility and interconnectivity in Eurasia, which linked far-flung cultures….This network of exchange, which placed Central Asia at the center of the ancient world, looked more like the spokes of a wheel than a straight road.” Spengler also sees the origins of the Silk Road going back at least five thousand years, much earlier than many might expect.

Most of Spengler’s book is organized into chapters discussing a single crop or group of crops, beginning with grains (millet, rice, barley, wheat) then moving on to fruits, nuts, and vegetables before ending with spices, oils, and teas. Each chapter compiles massive amounts of research that can be a bit overwhelming to take in all at once. Luckily each section includes a short summary, which nicely distills the information down into something more digestible.

Spengler’s chapter on broomcorn millet (Panicum miliaceum) is particularly powerful. While in today’s world millet has largely “been reduced to a children’s breakfast food in Russia and bird food in Western Europe and America,” it was “arguably the most influential crop of the ancient world.” Originally domesticated in East Asia, “it passed along the mountain foothills of Central Asia and into Europe by the second millennium BC.” It is a high-yielding crop adapted to hot, dry conditions that, with the development of summer irrigation, could be grown year-round. These and other appealing qualities have led to an increase in the popularity of millet, so much so that 2023 will be the International Year of Millets.

The “poster child” for Spengler’s book may very well be the apple. Popular the world over, the modern apple began its journey in Central Asia. As Spengler writes, “the true ancestor of the modern apple is Malus sieversii,” and “remnant populations of wild apple trees survive in southeastern Kazakhstan today.” As the trees were brought westward, they hybridized with other wild apple species, bringing rise to the incredible diversity of apple cultivars we know today. Sadly though, most of us are only familiar with the small handful of common varieties found at our local supermarkets.

Of course, as Spengler says, “No discussion of plants on the Silk Road would be complete without the inclusion of tea (Camellia sinensis),” a topic that could produce volumes on its own. Despite the brevity of the section on tea, Spengler has some interesting things to say. One in particular involves the transport of tea to Tibet in the seventh century, where “an unquenchable thirst for tea” had developed. But the journey there was long and difficult. Fermented and oxidized tea leaves traveled best. Along the way, “the leaves were exposed to extreme cold as well as hot and humid temperatures in the lowlands, and all the time they were jostled on the backs of sweaty horses and mules.” This, however, only improved the tea, as teas exposed to such conditions “became a highly sought-after commodity among the elites.”

“In Central Asia, Mongolia, and Tibet, tea leaves were oxidized, dried, and compressed into hard bricks from which chunks could be broken off and immersed in water.” – Robert N. Spengler III in Fruit from the Sands (photo via wikimedia commons)

As dense as this book is, it’s also quite approachable. The information presented in each of the chapters is thorough enough to be textbook material, but Spengler does such a nice job summing up the main points, that there are plenty of great takeaways for the casual reader. For those wanting a deeper dive into the history of our food (which in many ways is the history of us), Spengler’s book is an excellent starting point.

More Reviews of Fruit from the Sands:

———————

Our Instagram has been revived!!! After nearly a year of silence, we are posting again. Follow us @awkwardbotany.

The Cedars of Pencils

People interested in pencils have been particularly excited lately about a pencil being made by Musgrave, a 100+ year old pencil company based in Shelbyville, Tennessee (a.k.a. Pencil City). This pencil is especially unique because it is made from the wood of Juniperus virginiana, known commonly as Tennessee red cedar, eastern red cedar, aromatic cedar, and (yes, even) pencil cedar. For anyone who may have been around in the early 1900’s, this wouldn’t seem like anything special, as it was not uncommon for pencils at that time to made from this wood. However, around the mid-20th century J. virginiana was largely replaced by Calocedrus decurrens as the wood of choice for pencil making, and few (if any) have been made with J. virginiana since then. Hence, Musgrave’s new pencil, fittingly named Tennessee Red Cedar, is a momentous occasion.

The Tennessee Red Cedar Pencil

Pencils today are made from a variety of different woods and wood-adjacent materials (see Wopex pencils), each having their pros and cons and each being loved, hated, or something in between by people who care about pencils. However, pencils made from cedar – Juniperus virginiana and Calocedrus decurrens in particular – tend to be among the most preferred. These woods are soft, attractive, rot resistant, sharpen easily without splintering, and take well to wood stain or lacquer, not to mention they smell great. But if you’re like me and you’re interested in plant names and plant taxonomy, you may have already noticed something – the trees these pencils are made of aren’t cedars at all, at least not in the botanical sense.

Calocedurus decurrens, commonly known as California incense cedar (or simply, incense cedar), is a large tree in the cypress family (Cupressaceae) that occurs in western North America, mainly in California and Oregon. It’s known for its drought-tolerance and fire-resistance, and humans have found numerous uses for it over many centuries (millennia, even). Juniperus virginiana is also in the cypress family and naturally occurs in eastern North America. As a pioneer species, it is one of the first trees to colonize recently disturbed landscapes. Its rot resistant wood makes it an ideal choice for fence posts and many other products. Its heartwood has a red-purple color to it, which is particularly attractive, especially when contrasted with its pale sapwood (see photo of pencils above).

General’s Cedar Pointe – a natural, unfinished pencil made from California incense cedar (Calocedrus decurrens)

Both of these species, as well as others that are commonly referred to as cedars, have scale-like leaves and small cones. They are more appropriately referred to as false cedars. True cedars, on the other hand, are members of the genus Cedrus and mainly occur in the Mediterranean region and the western Himalayas. As members of the pine family (Pinaceae), their leaves are needles, which are borne in clusters atop peg-like stems that form along branches. Their cones are large and barrel-shaped and grow on the tops of branches.

So why the common name confusion? This likely comes from the fact that wood harvested from both groups of trees share similar qualities and have similar uses. While there are no trees in the genus Cedrus native to North America, the wood of species in the genera Juniperus, Thuja, Calocedrus, and Chamaecyparis (which are found in North America) have fragrant, soft, rot-resistant wood that makes great construction material for a variety of things, including pencils. The name cedar simply has more to do with the wood than the genetic relationships or morphological similarities among these species.

“Natural cedar” pencils most likely made from Calocedrus decurrens

In addition to their new Tennessee Red Cedar pencil, Musgrave also recently produced a pencil made from old Tennessee red cedar slats that have been sitting in a storage building since the 1930’s. These limited edition pencils are a true throwback to pencils of old. If you write or draw with wood-cased pencils, it’s worth considering the trees they came from. While it’s not always obvious what wood or material a pencil is made of, the story behind “cedar” pencils illustrates that there is more to a pencil than its name alone.

———————

Read more about Tennessee Red Cedar pencils at Pencil Revolution and The Weekly Pencil.

Winter Interest in the Lower Boise Foothills

The Boise Foothills, a hilly landscape largely dominated by shrubs and grasses, are a picturesque setting any time of the year. They are particularly beautiful in the spring when a wide array of spring flowering plants are in bloom, and then again in late summer and early fall when a smaller selection of plants flower. But even when there aren’t flowers to see, plants and other features in the Foothills continue to offer interest. Their beauty may be more subtle and not as immediately striking as certain flowers can be, but they catch the eye nonetheless. Appeal can be found in things like gnarled, dead sagebrush branches, lichen covered rocks, and fading seed heads. Because the lower Boise Foothills in particular have endured a long history of plant introductions, an abundance of weeds and invasive plants residing among the natives also provide interest.

This winter has been another mild one. I was hoping for more snow, less rain, and deeper freezes. Mild, wet conditions make exploring the Foothills difficult and ill-advised. Rather than frozen and/or snow covered, the trails are thick with mud. Walking on them in this state is too destructive. Avoiding trails and walking instead on trail side vegetation is even more destructive, and so Foothills hiking is put on hold until the ground freezes or the trails dry out. This means I haven’t gotten into the Foothills as much as I would like. Still, I managed to get a few photos of some of the interesting things the lower Boise Foothills have to offer during the winter. What follows is a selection of those photos.

snow melting on the fruit of an introduced rose (Rosa sp.)

fading seed heads of hoary tansyaster (Machaeranthera canescens)

samaras of box elder (Acer negundo)

snow on seed heads of yarrow (Achillea millefolium)

gall on introduced rose (Rosa sp.)

sunflower seed heads (Helianthus annuus)

sunflower seed head in the snow (Helianthus annuus)

snow falling in the lower Boise Foothills

fading seed heads of salsify (Tragopogon dubius)

lichen on dead box elder log

seed head of curlycup gumweed (Grindelia squarrosa)

lichen and moss on rock in the snow

fruits of poison ivy (Toxicodendron radicans)

See Also: Weeds and Wildflowers of the Boise Foothills (June 2015)

———————-

The first issue of our new zine, Dispersal Stories, is available now. It’s an ode to traveling plants. You can find it in our Etsy Shop

Ground Beetles as Weed Seed Predators

As diurnal animals, we are generally unaware of the slew of animal activity that occurs during the night. Even if we were to venture out in the dark, we still wouldn’t be able to detect much. Our eyes don’t see well in the dark, and shining a bright light to see what’s going on results in chasing away those creatures that prefer darkness. We just have to trust that their out there, and in the case of ground beetles, if they’re present in our gardens we should consider ourselves lucky.

Ground beetles are in the family Carabidae and are one of the largest groups of beetles in the world with species numbering in the tens of thousands. They are largely nocturnal, so even though they are diverse and relatively abundant, we rarely get to see them. Look under a rock or log during the day, and you might see a few scurry away. Or, if you have outdoor container plants, there may be a few of them hiding out under your pots with the pillbugs. At night, they leave the comfort of their hiding places and go out on the hunt, chasing down grasshoppers, caterpillars, beetle grubs, and other arthropods, as well as slugs and snails. Much of their prey consists of common garden pests, making them an excellent form of biological control. And, as if that weren’t enough, some ground beetles also eat the seeds of common weeds.

Harpalus affinis via wikimedia commons

Depending on the species, a single ground beetle can consume around a dozen seeds per night. In general, they prefer the seeds of grasses, lambsquarters (Chenopodium album), pigweeds (Amaranthus spp.), and various plants in the mustard family (Brassicaceae). The seeds of these species are small with seed coats that are easily crushed by a beetle’s mandibles. Providing suitable habitat, avoiding insecticides, and minimizing soil disturbance (i.e. reducing or eliminating tillage) are ways that healthy ground beetle populations can be encouraged and maintained. Ground beetles prefer dense vegetation where they can hide during the daytime. Strips of bunchgrasses and herbaceous perennials planted on slightly raised bed (referred to as beetle banks) are ideal because they provide good cover and keep water from puddling up in the beetles’ hiding spots.

The freshness of weed seeds and the time of year they are available may be determining factors in whether or not ground beetles will help control weed populations. A study published in Weed Science (2014), looked at the seed preferences of Harpalus pensylvanicus, a common species of ground beetle that occurs across North America. When given the choice between year old seeds and freshly fallen seeds of giant foxtail (Setaria faberi), the beetles preferred the fresh ones. The study also found that when giant foxtail was shedding the majority of its seeds, the density of beetles was on the decline, meaning that, at least in this particular study, most of the seeds would go uneaten since fewer beetles were around when the majority of the seeds were made available. Creating habitat that extends the ground beetles’ stay is important if the goal is to maximize the number of weed seeds consumed.

Harpalus pensylvanica via wikimedia commons

Of course, the seeds of all weed species are not considered equal when it comes to ground beetle predation. Several studies have sought to determine which species ground beetles prefer, offering seeds of a variety of weeds in both laboratory and field settings and seeing what the beetles go for. Pinning this down is difficult though because there are numerous species of ground beetles, all varying in size and activity. Their abundances vary from year to year and throughout the year, as do their food sources. Since most of them are generalists, they will feed on what is available at the time. A study published in European Journal of Entomology (2003) found a correlation between seed size and body mass – small beetles were consuming small seeds and large beetles were consuming large seeds, relatively speaking.

Another study published in European Journal of Entomology (2014) compared the preferences of ground beetles in the laboratory to those in the field and found that, in both instances, the seeds of field pansy (Viola arvensis) and shepherd’s purse (Capsella bursa-pastoris) were the preferred choice. The authors note that both species have lipid-rich seeds (or high “energy content”). Might that be a reason for their preference? Or maybe it’s simply a matter of availability and “the history of individual predators and [their] previous encounters with weed seed.” After all, V. arvensis was “the most abundant seed available on the soil surface” in this particular study.

Pterostichus melanarius via wikimedia commons

A study published in PLOS One (2017), looked at the role that scent might play in seed selection by ground beetles. Three species of beetles were offered the seeds of three different weed species in the mustard family. The seeds of Brassica napus were preferred over the other two by all three beetle species. The beetles were also offered both imbibed and non-imbibed seeds of all three plants. Imbibed simply means that the seeds have taken in water, which “can result in the release of volatile compounds such as ethanol and acetaldehyde.” The researchers wondered if the odors emitted from the imbibed seeds would “affect seed discovery and ultimately, seed consumption.” This seemed to be the case as all three beetle species exhibited a preference for the imbibed seeds.

Clearly, ground beetles are fascinating study subjects, and there is still so much to learn about them and their eating habits. If indeed their presence is limiting the spread of weeds and reducing weed populations, they should be happily invited into our farms and gardens and efforts should be made to provide them with quality habitat. For a bit more about ground beetles, check out this episode of Boise Biophilia.

Further Reading: