Idaho’s Native Milkweeds (Updated)

As David Epstein said in an interview on Longform Podcast, “Any time you write about science, somethings is going to be wrong; the problem is you don’t know what it is yet, so you better be ready to update your beliefs as you learn more.” Thanks to the newly published Guide to the Native Milkweeds of Idaho by Cecilia Lynn Kinter, lead botanist for Idaho Department of Fish and Game, I’ve been made aware of some things I got wrong in the first version of this post. I appreciate being corrected though, because I want to get things right. What follows is an updated version of the original post. The most substantial change is that there are actually five milkweed species native to Idaho rather than six. Be sure to check out Kinter’s free guide to learn more about this remarkable group of plants.

———————

Concern for monarch butterflies has resulted in increased interest in milkweeds. Understandably so, as they are the host plants and food source for the larval stage of these migrating butterflies. But milkweeds are an impressive group of plants in their own right, and their ecological role extends far beyond a single charismatic insect. Work to save the monarch butterfly, which requires halting milkweed losses and restoring milkweed populations, will in turn provide habitat for countless other organisms. A patch of milkweed teems with life, and our pursuits to protect a single caterpillar invite us to explore that.

Asclepias – also known as the milkweeds – is a genus consisting of around 140 species, 72 of which are native to the United States and Canada. Alaska and Hawaii are the only states in the U.S. that don’t have a native species of milkweed. The ranges of some species native to the United States extend down into Mexico where there are numerous other milkweed species. Central America and South America are also home to many distinct milkweed species. Asclepias species found in southern Africa are considered by many to actually belong in the genus Gomphocarpus.

The habitats milkweeds occupy are about as diverse as the genus itself – from wetlands to prairies, from deserts to forests, and practically anywhere in between. Some species occupy disturbed and/or neglected sites like roadsides, agricultural fields, and vacant lots. For this reason they are frequently viewed as a weed; however, such populations are easily managed, and with such an important ecological role to play, they don’t deserve to be vilified in this way.

Milkweed species are not distributed across the United States evenly. Texas and Arizona are home to the highest diversity with 37 and 29 species respectively. Idaho, my home state, is on the low end with five native species. The most abundant species found in Idaho is Asclepias speciosa, commonly known as showy milkweed.

showy milkweed (Asclepias speciosa)

Showy milkweed is distributed from central U.S. westward and can be found in all western states. It occurs throughout Idaho and is easily the best place to look for monarch caterpillars. In fact, the monarch butterfly is Idaho’s state insect, thanks in part to the abundance of showy milkweed, which is frequently found growing in large colonies due to its ability to reproduce vegetatively via adventitious shoots produced on lateral roots or underground stems. Only a handful of milkweed species reproduce this way. Showy milkweed reaches up to five feet tall and has large ovate, gray-green leaves. Like all milkweed species except one (Asclepias tuberosa), its stems and leaves contain milky, latex sap. In early summer, the stems are topped with large umbrella-shaped inflorescences composed of pale pink to pink-purple flowers.

The flowers of milkweed deserve a close examination. Right away you will notice unique features not seen on most other flowers. The petals of milkweed flowers bend backwards, which would otherwise allow easy access to the flower’s sex parts if it wasn’t for a series of hoods and horns protecting them. Collectively, these hoods and horns are called the corona, which houses glands that produce abundant nectar and has a series of slits where the anthers are exposed. The pollen grains of milkweed are contained in waxy sacs called pollinia. Two pollinia are connected together by a corpusculum giving this structure a wishbone appearance. An insect visiting the flower for nectar slips its leg into the slit, and the pollen sacs become attached with the help of the corpusculum. When the insect leaves, the pollen sacs follow. Pollination is successful when the pollen sacs are inadvertently deposited on the stigmas of another flower.

Milkweed flowers are not self-fertile, so they require assistance by insects to sexually reproduce. They are not picky about who does it either, and their profuse nectar draws in all kinds of insects including bees, butterflies, moths, beetles, wasps, and ants. Certain insects – like bumble bees and other large bees – are more efficient pollinators than others. Once pollinated, seeds are formed inside a pod-like fruit called a follicle. The follicles of showy milkweed can be around 5 inches long and house dozens to hundreds of seeds. When the follicle matures, it splits open to release the seeds, which are small, brown, papery disks with a tuft of soft, white, silky hair attached. The seeds of showy milkweed go airborne in late summer.

follicles forming on showy milkweed (Asclepias speciosa)

Whorled or narrowleaf milkweed (Asclepias fascicularis) occurs across western and southern Idaho. Its distribution continues into neighboring states. It is adapted to dry locations, but can be found in a variety of habitats. Like showy milkweed, it spreads rhizomatously as well as by seed. It’s a whispy plant that reaches one to three feet tall and occasionally taller. It has long, narrow leaves and produces tight clusters of greenish-white to pink-purple flowers. Its seed pods are long and slender and its seeds are about 1/4 inch long.

flowers of narrowleaf milkweed (Asclepias fascicularis)

seeds escaping from the follicle of narrowleaf milkweed (Asclepias fascicularis)

Swamp or rose milkweed (Asclepias incarnata) is more common east of Idaho, but occurs occasionally in southwestern Idaho. As its common name suggests, it prefers moist soils and is found in wetlands, wet meadows, and along streambanks. It can spread rhizomatously, but generally doesn’t spread very far. It reaches up to four feet tall, has deep green, lance-shaped leaves, and produces attractive, fragrant, pink to mauve, dome-shaped flower heads at the tops of its stems. Its seed pods are narrow and around 3 inches long.

swamp milkweed (Asclepias incarnata)

Asclepias cryptoceras ssp. davisii, or Davis’s milkweed, is a low-growing, drought-adapted, diminutive species that occurs in southwestern Idaho. It has round or oval-shaped leaves and produces flowers on a short stalk. The flowers have white or cream-colored petals and pink-purple hoods. The range of Asclepias cryptoceras – commonly known as pallid milkweed or jewel milkweed – extends beyond Idaho’s borders into Oregon and Nevada, creeping north into Washington and south into California. Another subspecies – cryptoceras – can be found in Nevada, Utah, and their bordering states.

Davis’s milkweed (Asclepias cryptoceras ssp. davisii)

The final species is rare in Idaho, as Idaho sits at the top of its native range. Asclepias asperula ssp. asperula, or spider milkweed, has a single documented location in Franklin County (southeastern Idaho). Keep your eyes peeled though, because this plant may occur elsewhere, either in Franklin County or neighboring counties. It grows up to two feet tall with an upright or sprawling habit and produces clusters of white to green-yellow flowers with maroon highlights. Its common name comes from the crab spiders frequently found hunting in its flower heads.

A sixth species, horsetail milkweed (Asclepias subverticillata), has been falsely reported in Idaho. Collections previously labeled as A. subverticillata have been determined to actually be the similar looking A. fascicularis.

Party Time for Puncture Vine, Year Two

Party Time for Puncture Vine, Year Two

A noxious weed brought Boiseans together for the second year in a row. After a successful inaugural year, the Boise Goathead Fest returned to downtown Boise, Idaho on the 2nd and 3rd of August. The festival’s namesake comes from a particularly destructive weed whose spiky fruits are notorious for puncturing bike tires. Known commonly as goathead or puncture vine, Tribulus terrestris is abundant in the Treasure Valley and the bane of area bicyclists. Organized by the Boise Bicycle Project and other bike-centric non-profits, Boise Goathead Fest is a celebration of bike culture, as well as an opportunity to spread awareness about this problematic plant.

goathead-themed art

For the two months leading up to Goathead Fest, Treasure Valley residents were encouraged to pull as many goatheads as they could get their hands on. Those who took on the challenge were rewarded with tokens to be redeemed at the Fest for drinks or ice cream. Trophies and prizes were also presented to those who pulled the most goatheads over the two month period. This effort resulted in thousands of pounds of goatheads being removed from the area, saving bicyclists from countless flat tires and slimming down puncture vine’s extensive seed bank.

scale for weighing goathead collections

After two months of collecting goatheads, it was time to celebrate. The two day long party consisted of live music and DJs, a huge bike parade around downtown Boise (for which participants were encouraged to decorate their bikes and wear costumes), and a variety of other bike-themed and non bike-themed activities. Goathead education continued during the Fest with the help of folks from Ada County, City of Boise, Idaho Botanical Garden, and others.

A peak inside the Ada County Weed, Pest, and Mosquito Abatement education and outreach trailer

Goathead coloring page created by Wendy of Idaho Botanical Garden

Puncture vine pennants created by Anna of Idaho Botanical Garden

With all of this attention and awareness focused on a single noxious weed, might it be possible to eliminate it from our community and free ourselves from ruined rides and trashed tires? The seeds of puncture vine are relatively short lived, and as an annual plant, seeds are its only method of reproduction. Even if we can’t altogether eliminate it, we could certainly see a dramatic reduction in its abundance and distribution. Perhaps in the future we will spend less time pulling it and more time celebrating its rarity, reflecting back on the time when punctures permeated our pedal-powered lives. Whatever the result, puncture vine has brought our community together once again. If such a loathsome weed can bring people together in celebration like this, perhaps it’s not entirely bad.

me with goathead balloon

See Also: Boise Weekly – Goathead’s the Burr, Community’s the Word

Using Weeds: Soapwort

Over the past year or so I have written about several edible weeds in an effort to highlight useful weeds. However, weeds don’t have to be edible to be useful. In fact, many weeds are most certainly not edible, but that doesn’t mean they are of no use to humans. Soapwort, for example, is poisonous, and while it does have a history of being used internally as medicine, ingesting it is not advised and should only be done under the direction of a doctor. A much less risky activity would be to make soap out of it.

soapwort (Saponaria officinalis)

Saponaria officinalis, commonly known as bouncing bet, hedge pink, fuller’s herb, scourwort, and soapweed or soapwort, is an herbaceous perennial native to Europe. It has been planted widely in flower beds and herb gardens outside of its native range, desired both for its beauty and utility. Capitalizing on our appreciation for it, soapwort has expanded beyond our garden borders and into natural areas, as well as vacant lots, roadsides, and other neglected spaces. Even in a garden setting it can be a bit of a bully, especially if ignored for a season or two.

The stems of soapwort grow to about two feet tall, are unbranched, and sometimes tinged with pink, purple, or red. The leaves are oblong and oppositely-arranged, and their bases form prominent collars around the stems. Showy clusters of flowers are found atop the stems throughout the summer. Like other flowers in the pink family (Caryophyllaceae), they are cigar-shaped at the base and opened wide at the end, showing off 5 distinct petals with notches at their tips. The petals of soapwort flowers bend backwards, with their sex parts protruding outwards. In his description of the flowers, John Eastman remarks in The Book of Field and Roadside that “the reflexed petals surrounding the sexual organs give the impression of flagrant thrust; this is a gaudy, unshy flower.”

collared stem of soapwort (Saponaria officinalis)

The fragrant flowers are pink to white in color. They open in the evening and remain open for a few short days. In an individual flower, pollen matures and is mostly shed before the stigma is ready to accept it. This helps reduce the chance of self-pollination. Cross pollination occurs with the assistance of moths who visit the flowers at night, as well as bees and other flower-visiting insects that come along during the daytime. Soapwort fruits are oval capsules containing as many as 500 kidney-shaped seeds. Seeds aren’t essential to the plants spread though, as much of its colonization occurs via vigorous rhizomes.

In fact, vegetative reproduction is the means by which soapwort forms such expansive, thick patches. It also helps that it’s poisonous. The saponins – its soap making compounds – that it produces in its roots, shoots, and leaves deter most insects and other animals from eating it. It has a reputation for poisoning horses, cows, and other livestock, and so is unwelcome in pastures and rangelands. Saponins are also poisonous to fish, so growing soapwort near fish ponds is not advised.

soapwort (Saponaria officinalis)

Soapwort occurs in a variety of soils including sandy, dry, and rocky sites and is surprisingly drough-tolerant, fine qualities to have when colonizing neglected sites. While most other organisms ignore soapwort, it has a friend in humans. Eastman sums this up well: “Soapwort’s most important associate – as is true of most plants we label weeds – is undoubtedly humankind, without whose helpful interventions the plant would surely be much rarer than it is.”

I made a soapy liquid out of soapwort by following a recipe that can be found on various blogs and websites by searching “saponaria soap recipe.” Basically it’s a cup of fresh leaves and stems along with a cup of dried leaves and stems added to a quart of distilled water brought to a boil. After simmering for 15 minutes and then allowing it to cool, strain the mixture through cheese cloth, and it’s ready to go.

This gentle but effective soap can be used for cleaning countertops and other surfaces, as well as dishes, fabrics, and skin. Several sources say it is particularly useful for cleaning delicate fabrics. Sierra and I both found it to have a cooked cabbage or spinach scent to it. This can be masked by adding a few drops of essential oil. Despite its odd aroma, both Sierra and I were impressed by its cleansing power and plan to use it more often.

dried leaves of soapwort

soapwort soap

From Pine Tree to Pine Tar (and a bit about baseball)

Scots pine (Pinus sylvestris) is a Eurasian native, distributed across Europe into Eastern Siberia. It is the national tree of Scotland, and the only native pine in northern Europe. Human activity has pushed native populations to extinction; while, at the same time, appreciation for this tree has led to widespread introduction in other parts of the world. Like other pines, humans and Scots pine have a long relationship going back millennia. Pines are incredibly useful trees, which explains both the overexploitation and mass planting of Scots pine.

Scots pine (Pinus sylvestris) via wikimedia commons

In Sweden and other Scandinavian countries, Scots pine not only has a long history of being used as a building material, but also for producing pine tar. As the name suggests, pine tar is a dark, sticky substance extracted from pine wood. Wood tar production dates back centuries and has been made from a number of tree species, including pines and other conifers as well as deciduous trees like birch and beech. Wood tar has myriad uses – as an ingredient in soaps, shampoos, and cosmetics; as medicine; as a food additive; as waterproofing for ships, roofs, and ropes; in hoof care products for horses. It’s no wonder that as demand for pine tar increased in Scandinavia, it became a cash crop for peasants, earning it the nickname “peasant tar.”

Pine tar soap – a decent soap if you can tolerate the intense smell. Regarding the smell of pine tar, Theodore Kaye writes, “The aroma produces reactions that are as strong as the scent; few people are ambivalent about its distinctive smell.”

A study published in the Journal of Archaeological Science examines small and large funnel-shaped pits in Sweden determined to be used for making pine tar. The smaller pits date back to between 240 – 540 AD, the Late Roman Iron Age. They would have been used by Swedes living in small scale settlements. The larger pits date back to 680 – 1160 AD and signify a shift towards large scale production during the Viking Age. As the centuries proceeded, Sweden became a major exporter of pine tar. Their product set the standard. Even today “Stockholm Tar” refers to pine tar of the highest quality.

As Europeans colonized North America, they were introduced to several new pine tree species from which to extract pine tar, including longleaf pine (Pinus palustris), a southeastern native with exceptionally long needles. Pine tar production was especially prolific in the southeastern states, thanks in part to the abundance of longleaf pine and others. North and South Carolina were dominating production by the 1800’s, which helps explain North Carolina’s nickname, The Tar Heel State.

Extracting pine tar from pine wood is fairly simple. The process is called destructive distillation. Pine wood is placed in a contained, oxygen-free environment and subjected to high heat. As the pine tar is released from the wood, the wood turns to charcoal. This is what was happening in the small and large funnel-shaped pits discussed earlier. Root pieces and stumps of Scots pine were placed into the pits. Brush wood was piled on top and then set on fire. As the brush burned, the pine wood below carbonized, and pine tar collected at the bottom of the pit. In larger pits, the pine tar was piped out and deposited into a barrel – a set up known as a pine tar dale.

pine tar dale illustration

Modern production of pine tar is done in kilns (or in laboratories). The concept is the same – wood is enclosed in the kiln, heat is applied, and pine tar drips from the bottom of the kiln. Heartwood, also known as fatwood, is the best part of the pine tree for making pine tar, particularly the heartwood of old stumps. Making pine tar is such a simple process that anyone can do it, and there are numerous tutorials available online.

My familiarity with pine tar comes from being a baseball fan. Pine tar is a useful, albeit controversial, substance in this sport. Batters have a variety of means to help them get a better grip on the bat in order to improve their hitting. Rubbing pine tar on the bat handle is one of them. However, according to Major League Baseball rules, anything applied to, adhered to, or wrapped around the bat to help with grip is not allowed past the bottom 18 inches of the bat. Pine tar is allowed on the bat handle, but if applied past that 18 inches mark, the bat becomes illegal.

pine tar stick for baseball bat handles

This rule goes mostly ignored; unless, of course, someone on the other team rats you out. Which is exactly what happened in 1983 to the Kansas City Royals in a game against the New York Yankees. Royals batter, George Brett, had just hit a home run, which put the Royals in the lead. It had been suspected for a while that Brett had been tarring his bat beyond the legal limit, and this home run was the last straw for Yankees manager, Billy Martin. He brought the suspected illegal bat to the attention of the umpires, and after measuring the bat’s pine tar stain they found it to be well beyond 18 inches. The home run was recalled, and the Yankees went on to win the game.

It doesn’t end there though. After a repeal, it was decided that the dismissal of the home run was the wrong call. If an illegal bat is in play, it should be removed. That’s all. The home run still stands. The Royals and Yankees were ordered to replay the game, starting at the point where Brett had hit his home run. This time the Royals won.

This saga is well known in baseball. There is even a book all about it, as well as a country song and t-shirts. But that’s only part of baseball’s pine tar controversy. While batters are allowed to use it on their bats, pitchers are not allowed to use it to better grip the ball while pitching (however, they can use rosin, which curiously enough, is also made from pine trees). Of course, that doesn’t stop them from trying to get away with it. Sometimes they get caught, like Michael Pineda infamously did in 2014. There are arguments for allowing its use – and perhaps in the future the rules will change – but for now pine tar use by pitchers remains prohibited.

Further Reading – Medicinal Uses for Pine Tar:

Field Trip: Green Spring Gardens and Meadowlark Botanical Gardens

Last month, Sierra and I were in Washington D.C. for the American Public Gardens Association annual meeting. We didn’t get to visit nearly as many gardens as I would have liked. Time was limited, and rain spoiled things a bit. However, we did get a chance to take an all day field trip to a few gardens in nearby Virginia. A couple of the gardens we visited on that trip were Green Spring Gardens in Alexandria, VA and Meadowlark Botanical Gardens in Vienna, VA.

Both gardens are quite large – Green Spring is over 30 acres and Meadowlark covers over 90 acres – and there wasn’t time to get the full experience at either location. Thus, my photos are scant and obviously not fully representative of either place. Either way, we had a good time visiting both gardens.

Green Spring Gardens

The Fairfax County Parks Authority owns and operates Green Spring Gardens. Among other partnerships, they receive considerable support from a non-profit organization called Friends of Green Spring. Although it was the wrong time of year to see them in bloom, Green Spring Gardens has a nationally accredited witch hazel collection that I’m sure would be worth checking out in the winter months. I enjoyed walking through the native plant garden, seeing the newly planted crevice garden, and learning about magnolia bogs from a friendly and enthusiastic volunteer.

the pink form of smooth azalea (Rhododendron arborescens) in the Virginia Native Plant Garden

jewelweed (Impatiens capensis) in the Virginia Native Plant Garden

bush honeysuckle (Diervilla lonicera) in the Virginia Native Plant Garden

hornbeam inflorescence (Carpinus sp.)

newly planted crevice garden

rain lily (Zephyranthes sp.) in the crevice garden

Meadowlark Botanical Gardens

Meadowlark is owned and operated by NOVA Parks. Its immense size made it difficult to decide what to check out in the little time we had, but we were happy with our decision to stop by the wetlands (to see the knees on the Taxodium distichum) and walk through the forested nature trail. We also had fun watching all the bumblebees lumber about from flower to flower.

lichen on Yoshino cherry (Prunus x yedoensis)

bumblebee on common milkweed (Asclepias syriaca)

bumblebees climbing inside leatherflower blossoms (Clematis viorna)

scarlet beebalm (Monarda didyma)

A small peak into what was a very large Fairy Garden

blue leaf form of dusty zenobia (Zenobia pulverulenta)

bear’s breeches (Acanthus sp.)

Armenian cranesbill (Geranium psilostemon)

More Awkward Botany Field Trips:

The Flight of the Dandelion

The common dandelion (Taraxacum officinale) comes with a collection of traits that make it a very successful weed. Nearly everything about it screams success, from its asexually produced seeds to its ability to resprout from a root fragment. Evolution has been kind to this plant, and up until the recent chemical warfare we’ve subjected it to, humans have treated it pretty well too (both intentionally and unintentionally).

One feature that has served the dandelion particularly well is its wind-dispersed seeds. Dandelions have a highly-evolved pappus – a parachute-like bristle of hairs attached to its fruit by a thin stalk. The slightest breath or puff of wind will send this apparatus flying. Once airborne, a dandelion’s seed can travel up to a kilometer or more away from its mother plant, thereby expanding its territory with ease.

Such a low-growing plant achieving this kind of distance is impressive. Even more impressive is that it manages to do this with a pappus that is 90% empty space. Would you leap from a plane with only 10% of a parachute?

Dandelion flight was investigated by researchers at the University of Edinburgh, who used a wind tunnel along with long-exposure photography and high-speed imaging to observe the floating pappus. Their research was presented in a letter published in an issue of Nature in October 2018. Upon close examination, they observed a stable air bubble floating above the pappus as it flew. This ring-shaped air bubble – or vortex – which is unattached to the pappus is known as a separated vortex ring. While this type of vortex ring had been considered theoretically, this marked the first time one had been observed in nature.

Seeing this type of air bubble associated with the dandelion’s pappus intrigued the researchers. About a 100 filaments make up the parachute portion of the pappus. They are arranged around the stalk, leaving heaps of blank space in between. The air bubble observed was not what was expected for such a porous object. However, the researchers found that the filaments were interacting with each other in flight, reducing the porosity of the pappus. In their words, “Neighboring filaments interact strongly with one another because of the thick boundary layer around each filament, which causes a considerable reduction in air flow through the pappus.”

The pappus acts as a circular disk even though it is not one, and its limited porosity allows just enough air movement through the filaments that it maintains this unique vortex. “This suggests,” the researchers write, “that evolution has tuned the pappus porosity to eliminate vortex shedding as the seed flies.” Fine-tuned porosity and the resultant unattached air bubble stabilizes the floating fruit “into an equilibrium orientation that minimizes [its] terminal velocity, allowing [it] to make maximal use of updrafts.” The result is stable, long distance flight.

Wind-dispersed seeds come in two main forms: winged and plumed. Winged seeds are common in trees and large shrubs. They benefit from the height of the tree which allows them to attain stable flight. While such seeds have the ability to travel long distances, their success is limited on shorter plants. In this case, plumed seeds, like those of the dandelion, are the way to go. As the researchers demonstrated, successful flight can be achieved by bristles in place of wings. The tiny seeds of dandelions seen floating by on a summer breeze are not tumbling through the air haphazardly; rather, they are flying steadily, on their way to spoil the dreams of a perfect lawn.

Further Reading (and Watching):

Selections from the Boise Biophilia Archives

For a little over a year now, I’ve been doing a tiny radio show with a friend of mine named Casey O’leary. The show is called Boise Biophilia and airs weekly on Radio Boise. On the show we each take about a minute to talk about something biology or ecology related that listeners in our local area can relate to. Our goal is to encourage listeners to get outside and explore the natural world. It’s fascinating after all! After the shows air, I post them on our website and Soundcloud page for all to hear.

We are not professional broadcasters by any means. Heck, I’m not a huge fan of talking in general, much less when a microphone is involved and a recording is being made. But Casey and I both love spreading the word about nerdy nature topics, and Casey’s enthusiasm for the project helps keep me involved. We’ve recorded nearly 70 episodes so far and are thrilled to know that they are out there in the world for people to experience. What follows is a sampling of some of the episodes we have recorded over the last 16 months. Some of our topics and comments are inside baseball for people living in the Treasure Valley, but there’s plenty there for outsiders to enjoy as well.

Something you will surely note upon your first listen is the scattering of interesting sound effects and off the wall edits in each of the episodes. Those come thanks to Speedy of Radio Boise who helps us edit our show. Without Speedy, the show wouldn’t be nearly as fun to listen to, so we are grateful for the work he does.

Boise Biophilia logo designed by Sierra Laverty

In this episode, Casey and I explore the world of leaf litter. Where do all the leaves go after they fall? Who are the players involved in decomposition, and what are they up to out there?

 

In this episode, Casey gets into our region’s complicated system of water rights, while I dive into something equally complex and intense – life inside of a sagebrush gall.

 

In this episode, I talk about dead bees and other insects trapped and dangling from milkweed flowers, and Casey discusses goatheads (a.k.a. puncture vine or Tribulus terrestris) in honor of Boise’s nascent summer celebration, Goathead Fest.

 

As much as I love plants, I have to admit that some of our best episodes are insect themed. Their lives are so dramatic, and this episode illustrates that.

 

The insect drama continues in this episode in which I describe how ant lions capture and consume their prey. Since we recorded this around Halloween, Casey offers a particularly spooky bit about garlic.

 

If you follow Awkward Botany, you know that one of my favorite topics is weeds. In this episode, I cover tumbleweeds, an iconic western weed that has been known to do some real damage. Casey introduces us to Canada geese, which are similar to weeds in their, at times, overabundance and ability to spawn strong opinions in the people they share space with.

 

In this episode, I explain the phenomenon of marcescence, and Casey gives some great advice about growing onions from seed.

 

And finally, in the spring you can’t get by without talking about bulbs at some point. This episode is an introduction to geophytes. Casey breaks down the basics, while I list some specific geophytes native to our Boise Foothills.